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ABSTRACT

The optimal windowed, translation-invariant binary
image operator depends on conditional probabilities
p(Y|x), where Y is a pixel value in a window about the
pixel. The switching algorithm [1] derives an optimal
increasing filter from the optimal operator by switching
observation vectors in or out of the kernel in such a way
as to obtain an increasing filter with minimal increase
in error over the optimal operator. These operators are
usually designed by estimating the conditional proba-
bilities from observed-ideal pairs of images. However,
samples are typically too small to obtain good estimates
of these probabilities. This paper discusses the design of
increasing optimal filters by the switching algorithm us-
ing prior distributions for the conditional probabilities.

1 INTRODUCTION

A number of methods have been proposed to estimate an
optimal binary window filter (equivalently, an optimal
stack filter) from data [2]. This paper addresses the
switching method, in which the optimal nonincreasing
(unconstrained) filter is estimated from the sample data
and the optimal increasing filter is derived by switching
observation vectors in or out of the kernel in such a
way as to obtain an increasing filter with a minimal
increase in filter error over the optimal unconstrained
filter [3, 1]. As the size of the window increases, the
number of potential switches grows exponentially, and
therefore it is necessary to design an efficient algorithm,
not one that is mainly brute force [3].

This paper applies the switching algorithm in the con-
text of a Bayesian cost function, characterizes the esti-
mated error of the optimal increasing filter in terms of
the prior distribution, and compares the expected posi-
tive bias of the MAE of the derived optimal filters using
both nonBayesian and Bayesian switching (recognizing
that in both cases an increasing filter is obtained).

2 SWITCHING ALGORITHM

Denoting an observation vector in the window by x and
the variable to be estimated by Y, the kernel of the op-
timal filter Yope is Klthopt] = {x : px = P(Y = 1]x) >
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0.5}. The inversion set of 1, consists of all x € K[thopt]
for which there exists z such that x < z and z € K[t ops],
together with all x & K[topt] for which there exists z
such that z < x and z € K[thopt|. topt is increasing if
and only if its inversion set is null. The switching algo-
rithm begins with the inversion set of 1),,; and efficiently
derives a sequence of diminishing inversion sets until it
arrives a null inversion set. The sequence proceeds in
such a fashion as to produce an increasing filter possess-
ing minimal error among all increasing filters (see [1] for
more details).

The algorithm is applied using a cost of switching
and the best filter is the one obtained by a switching
sequence having minimal cost. If the conditional prob-
abilities py and the observation probabilities P(x) are
known, then the cost for MAE optimization is ¢x =
|2px — 1| P(x). In practice, we have only estimates px
and ﬁ(x) of the probabilities. Since it is not uncommon
to have good estimates of the observation probabilities
but not of the conditional probabilities (which actually
determine the optimal filter), for the sake of simplicity,
here we will assume that P(x) is known. If the py es-
timates are very good, then the empirical cost will be
close to the true cost cyx, but in practice samples are
typically too small to obtain good estimates except for
a very small set of observations.

3 BAYESIAN SWITCHING COST COMPU-
TATION

The Bayesian switching algorithm will use the condi-
tional probabilities under the assumption that pyx pos-
sesses a prior distribution f(px) [4]. If we have no knowl-
edge of these probabilities, then we assume p, to be
uniformly distributed over [0, 1].

To analyze the switching cost relative to the observed
data, consider the vector x for which p, < 0.5. If we
make the switch from 0 to 1 and (for the true prob-
ability) px > 0.5, then there is an error decrease of
|2px — 1] P(x); if px < 0.5, then there is an error in-
crease of |2py — 1| P(x). Given py, and the conditional



density f(px |Px), the expected error increase is
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After multiplying through by P(x), the first integral
gives the expected increase in error from the switch 0 to
1 from px being less than 0.5 given the estimated proba-
bility and the second gives the expected decrease in error
from py exceeding 0.5 given the estimated probability.

Looking at ax, we see that if py < 0.5 and ny is large,
then the first integral dominates; however, if px > 0.5
and ny is large, then the second integral dominates. On
the other hand, if ny is small, then py provides little
conditioning and the integrals tend to depend on the
prior distributions of px. The cost of changing the out-
put value for x to 1 depends on ny, which is intuitive
because there is significant cost in changing when a vec-
tor is observed many times, but not when it is rarely
observed. The Bayesian switching algorithm is based
on the cost ax, not cy.

We simplify the notation denoting py by p and px by
P, to show that Eq. 1 can be simplified :
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For the case where switches are from 1 to 0, by similar
arguments we obtain

a(x) = (2E [plp] - 1) P(x) 3)
Hence, the Bayesian switching cost can be expressed by
a(x) = |2E[plp] - 1| P(x) 4)

4 EXPERIMENTAL RESULTS

We assume the prior distribution of px is a beta distri-
bution. It has two parameters, o and 3, and f(px) =

1-2E[p|p] | P(x) (2)
( )

p2(1 — px)PB(a,B)~ !, where B(a,f3) is the beta func-
tion. It has mean a/(a + ) and variance af/(a +
B)%2(a+B+1). Given observations of image realizations
(and therefore py), the conditional density f(px|px) is
also a beta distribution with parameters o’ = a + ny
and ' = 8 + nyx — ux, where ny is the number of times
configuration x has been observed and wuy is the number
of times it has been observed with Y = 1. Under these
conditions, Bayesian switching cost is given by

al

We use three beta prior distributions for the condi-
tional probabilities to estimate optimal increasing fil-
ters for edge noise filtering. We assume the edge noise
intensity is parametrized by 4. The noise intensity is
inversely proportional to the value of 4. § ranges from
21 to 49 and its distribution is given by the curve shown
in Fig. 1. Figure 2 shows, respectively, part of an ideal
image and noise realizations for § = 45,35,25 and 21.
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Figure 1: Distribution of the noise intensity parameter.

Let fq(d) denote the relative frequency of the noise in-
tensity parameter §. For our model, fq(21) = 2f¢(23) =
2fq(25) = 3fq(27) = 4fq(29) and so on. To estimate
a prior distribution, we considered m * fq(d) images for
each 0 and estimated py for each group of m images.
Therefore, for each x at most ), fq(d) = 96 estimates
of px have been computed. These estimates were con-
sidered as realizations of the distribution f(pyx) and then
its parameters a and [ have been estimated using the
maximum likelihood estimation procedure to find the
distribution that most likely generated these samples.
If most of the estimates px were not reliable or if x were
not observed in most of the image groups, then we as-
sumed a = f = 1. The basic difference among the priors
is the amount of data used to estimate px. Prior 1, 2
and 3 have been obtained using m = 2,10 and 50, re-
spectively (that means prior 1 was obtained from 192
images, prior 2 from 960 images, and prior 3 from 4800
images).

Estimates obtained from large samples are more pre-
cise than those obtained from small samples. Therefore,
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Figure 2: Image samples.

we expect prior 3 being more precise than prior 2, and
prior 2 more precise than prior 1.

In fact, expected results have been observed through
experimental results using a 5 X 3 window. For a fixed
value of §, we designed optimal increasing filters and
observed the error curve as the number of training data
increased. Next we analyze the results obtained for 6 =
45,35,25 and 21.

For § = 45 (Fig. 3), prior 3 does as good as possible
with no training. Similar effect is observed for prior 2.
This reflects the low error to begin with. Prior 1 starts
out below no prior but no prior slowly catches up, as we
would expect.

0.00055 T T T T T T
no prior —+—
prior 1 ----e--
prior 2 &
prior 3 ----a---
0.0005 B
g 0.00045
< o
0.0004 B
[ ¢ 00000000
veoe,
WQE’QEE‘EEE’EQE,QQQ,,,,,,,,,u,,,,,,,,x,,,,,,,,x,,,,,,,,,r,,,,,,,,,x,,,,,,,,m,,,,,,,,,x,,, g
0.00035 L L L L L L
0 50 100 150 200 250 300

Number of training examples (x10000)

Figure 3: Error curve for § = 45.

For 6 = 35 (Fig. 4), prior 3 also does as good as pos-
sible with no training. However, for prior 2, the error

curve presents a small decrease as the training data in-
creases. Prior 1 starts out below no prior but no prior
catches up, faster than for § = 45.
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Figure 4: Error curve for § = 35.

For 6 = 25 (Fig. 5), prior 3 does as would be expected,
and the decrease of the error curve of prior 2 is more
accentuated. The interesting thing is how fast no prior
catches up to prior 1. This seems to reflect the lack
of training for prior 1. The fact that no prior goes a
bit below prior 1 for a while seems to mean that the
inaccuracy of prior 1 is putting a drag on no prior. This
is the kind of thing we see for bad priors.
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Figure 5: Error curve for § = 25.

Finally, for § = 21 (Fig. 6), prior 1 only helps where
there is essentially no training. Very quickly it puts a
drag on no prior. No prior also catches up to prior 2
and 3.

In all cases prior 3 always does better than prior 2,
which in its turn does better than prior 1, as we would
expect. Moreover, as the training data increases, train-
ing with no prior catches up to training with prior. How
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Figure 6: Error curve for § = 21.

fast it catches depend on the goodness of the prior. If
prior is not good, then training with no prior results
in smaller error than training with prior for relatively
small amount of training data. In the example above,
use of prior is advantageous for the noise intensities
that are relatively frequent in the distribution consid-
ered (Fig. 1).

5 CONCLUSION

For small amount of training data, use of prior data
has proven useful. As the training data increases, non-
Bayesian training provides better results than those us-
ing non adequate priors. However, if prior is correct, it
provides better results than nonBayesian training, even
for a considerably large amount of training sample.
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