BLIND IDENTIFICATION OF SECOND ORDER HAMMERSTEIN SERIES

Panos Koukoulas and Nicholas Kalouptsidis
Dept. of Informatics, Division of Communications and Signal Processing, University of Athens, Panepistimiopolis, 157 71, Athens, GREECE
\[\begin{aligned} Tel: \& +3017275304 fax:+3017275601
\& e-mail: kalou@di.uoa.gr \end{aligned} \]

Abstract

Blind identification of second order Hammerstein series is considered [1]. The output cumulants up to order 5 are used to determine the Volterra kernels, when the input is a stationary zero mean Gaussian white stochastic process. Both infinite and finite extent kernels are considered.

1 INTRODUCTION

Second order Hammerstein series constitute an interesting class of second order Volterra systems [1], where the second order homogeneous Volterra kernel is diagonal. They have the form

$$
\begin{equation*}
y(n)=\sum_{k=0}^{\infty} h_{1}(k) u(n-k)+\sum_{k=0}^{\infty} h_{2}(k) u^{2}(n-k) \tag{1}
\end{equation*}
$$

Blind identification is concerned with the determination of the Volterra kernels $h_{1}(k)$ and $h_{2}(k)$ on the basis of output information only. The complexity of the problem arises from the fact that the output statistics depend nonlinearly on the kernels even if the system is linear [2], [6]- [7]. This is in sharp contrast with conventional system identification whereby the use of crosscumulants between the output and the input copies depend linearly on the Volterra kernels [2]- [4]. Little is known about the blind identification of general Volterra systems [6][7]. Solution of the blind identification problem for the special case of a second order Hammerstein series presented in this paper will provide useful insight for the general case.

2 OUTPUT CUMULANTS AND SPECTRA

Let us consider the system (1) where the input $u(n)$ is a stationary zero mean Gaussian white stochastic process with power spectral density $C_{2 u}(w)=\gamma_{2}$.

To determine the kernels we shall generate the output cumulants of all orders less than 5 . This is a tedious exercise that makes use of the standard properties of cumulants and the Leonov-Shiryaev formula for manipulating products of random variables [5]. Detailed
derivations are omitted. The resulting expressions are listed below.

Output mean

$$
\begin{equation*}
c_{1 y}=E[y(n)]=\gamma_{2} \sum_{l} h_{2}(l)=\gamma_{2} H_{2}(0) \tag{2}
\end{equation*}
$$

Cumulants of order 2

$$
\begin{aligned}
& c_{2 y}\left(i_{1}\right)=\operatorname{cum}\left[y\left(n+i_{1}\right), y(n)\right] \\
& =\gamma_{2} \sum_{l} h_{1}\left(l+i_{1}\right) h_{1}(l)+2 \gamma_{2}^{2} \sum_{l} h_{2}\left(l+i_{1}\right) h_{2}(l)(3)
\end{aligned}
$$

Cumulants of order 3

$$
\begin{gather*}
c_{3 y}\left(i_{1}, i_{2}\right)=\operatorname{cum}\left[y\left(n+i_{1}\right), y\left(n+i_{2}\right), y(n)\right]= \\
\quad=2 \gamma_{2}^{2} \sum_{l} h_{1}\left(l+i_{1}\right) h_{1}\left(l+i_{2}\right) h_{2}(l) \\
+2 \gamma_{2}^{2} \sum_{l} h_{1}\left(l+i_{1}\right) h_{2}\left(l+i_{2}\right) h_{1}(l) \\
+2 \gamma_{2}^{2} \sum_{l} h_{2}\left(l+i_{1}\right) h_{1}\left(l+i_{2}\right) h_{1}(l) \\
+8 \gamma_{2}^{3} \sum_{l} h_{2}\left(l+i_{1}\right) h_{2}\left(l+i_{2}\right) h_{2}(l) \tag{4}
\end{gather*}
$$

Cumulants of order 4

$$
\begin{align*}
& c_{4 y}\left(i_{1}, i_{2}, i_{3}\right)=\operatorname{cum}\left[y\left(n+i_{1}\right), y\left(n+i_{2}\right), y\left(n+i_{3}\right), y(n)\right]= \\
& =8 \gamma_{2}^{3}\left(\phi_{0}\left(i_{1}, i_{2}, i_{3}, 0\right)+\phi_{0}\left(i_{1}, i_{3}, i_{2}, 0\right)+\phi_{0}\left(i_{2}, i_{3}, i_{1}, 0\right)\right. \\
& \left.\quad+\phi_{0}\left(i_{1}, 0, i_{2}, i_{3}\right)+\phi_{0}\left(i_{2}, 0, i_{1}, i_{3}\right)+\phi_{0}\left(i_{3}, 0, i_{1}, i_{2}\right)\right) \\
& \quad+48 \gamma_{2}^{4} \sum_{l} h_{2}\left(l+i_{1}\right) h_{2}\left(l+i_{2}\right) h_{2}\left(l+i_{3}\right) h_{2}(l) \tag{5}
\end{align*}
$$

where
$\phi_{0}\left(i_{1}, i_{2}, i_{3}, i_{4}\right)=\sum_{l} h_{1}\left(l+i_{1}\right) h_{1}\left(l+i_{2}\right) h_{2}\left(l+i_{3}\right) h_{2}\left(l+i_{4}\right)$

Cumulants of order 5

$$
\begin{gathered}
c_{5 y}\left(i_{1}, i_{2}, i_{3}, i_{4}\right)= \\
=\operatorname{cum}\left[y\left(n+i_{1}\right), y\left(n+i_{2}\right), y\left(n+i_{3}\right), y\left(n+i_{4}\right), y(n)\right] \\
=48 \gamma_{2}^{4}\left(\phi_{1}\left(i_{1}, i_{2}, i_{3}, i_{4}, 0\right)+\phi_{1}\left(i_{1}, i_{3}, i_{2}, i_{4}, 0\right)\right. \\
+\phi_{1}\left(i_{2}, i_{3}, i_{1}, i_{4}, 0\right)+\phi_{1}\left(i_{1}, i_{4}, i_{2}, i_{3}, 0\right)+\phi_{1}\left(i_{2}, i_{4}, i_{1}, i_{3}, 0\right) \\
+\phi_{1}\left(i_{3}, i_{4}, i_{1}, i_{2}, 0\right)+\phi_{1}\left(i_{1}, 0, i_{2}, i_{3}, i_{4}\right)+\phi_{1}\left(i_{2}, 0, i_{1}, i_{3}, i_{4}\right) \\
\left.+\phi_{1}\left(i_{3}, 0, i_{1}, i_{2}, i_{4}\right)+\phi_{1}\left(i_{4}, 0, i_{1}, i_{2}, i_{3}\right)\right) \\
+384 \gamma_{2}^{5} \sum_{l} h_{2}\left(l+i_{1}\right) h_{2}\left(l+i_{2}\right) h_{2}\left(l+i_{3}\right) h_{2}\left(l+i_{4}\right) h_{2}(l)
\end{gathered}
$$

where, $\quad \phi_{1}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right)=$
$=\sum_{l} h_{1}\left(l+i_{1}\right) h_{1}\left(l+i_{2}\right) h_{2}\left(l+i_{3}\right) h_{2}\left(l+i_{4}\right) h_{2}\left(l+i_{5}\right)$
Using the multidimensional Fourier transform we convert cumulants to polyspectra.

Cumulant spectrum of order 2

$$
\begin{equation*}
C_{2 y}\left(w_{1}\right)=\gamma_{2}\left|H_{1}\left(w_{1}\right)\right|^{2}+2 \gamma_{2}^{2}\left|H_{2}\left(w_{1}\right)\right|^{2} \tag{7}
\end{equation*}
$$

Cumulant spectrum of order 3

$$
\begin{gather*}
C_{3 y}\left(w_{1}, w_{2}\right)=2 \gamma_{2}^{2} H_{1}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
\quad+2 \gamma_{2}^{2} H_{1}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
+2 \gamma_{2}^{2} H_{2}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
+8 \gamma_{2}^{3} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}^{*}\left(w_{1}+w_{2}\right) \tag{8}
\end{gather*}
$$

Cumulant spectrum of order 4

$$
\begin{gather*}
C_{4 y}\left(w_{1}, w_{2}, w_{3}\right)= \\
=8 \gamma_{2}^{3}\left(\tilde{\phi}_{0}\left(w_{1}, w_{2}, w_{3}\right)+\tilde{\phi}_{0}\left(w_{1}, w_{3}, w_{2}\right)+\tilde{\phi}_{0}\left(w_{2}, w_{3}, w_{1}\right)\right. \\
\left.+\tilde{\phi}_{1}\left(w_{1}, w_{2}, w_{3}\right)+\tilde{\phi}_{1}\left(w_{1}, w_{3}, w_{2}\right)+\tilde{\phi}_{1}\left(w_{2}, w_{3}, w_{1}\right)\right) \\
+48 \gamma_{2}^{4} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}\left(w_{3}\right) H_{2}^{*}\left(w_{1}+w_{2}+w_{3}\right) \tag{9}
\end{gather*}
$$

where,
$\tilde{\phi}_{0}\left(w_{1}, w_{2}, w_{3}\right)=H_{1}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{2}\left(w_{3}\right) H_{2}^{*}\left(w_{1}+w_{2}+w_{3}\right)$
and
$\tilde{\phi}_{1}\left(w_{1}, w_{2}, w_{3}\right)=H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{1}\left(w_{3}\right) H_{1}^{*}\left(w_{1}+w_{2}+w_{3}\right)$

Cumulant spectrum of order 5

$$
C_{5 y}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=
$$

$$
\begin{array}{r}
=48 \gamma_{2}^{4}\left(\tilde{\phi}_{2}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)+\tilde{\phi}_{2}\left(w_{1}, w_{3}, w_{2} \cdot w_{4}\right)\right. \\
+\tilde{\phi}_{2}\left(w_{2}, w_{3}, w_{1}, w_{4}\right)+\tilde{\phi}_{2}\left(w_{1}, w_{4}, w_{2}, w_{3}\right) \\
+\tilde{\phi}_{2}\left(w_{2}, w_{4}, w_{1}, w_{3}\right)+\tilde{\phi}_{2}\left(w_{3}, w_{4}, w_{1}, w_{2}\right) \\
+\tilde{\phi}_{3}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)+\tilde{\phi}_{3}\left(w_{1}, w_{2}, w_{4}, w_{3}\right) \\
+ \\
\left.+\tilde{\phi}_{3}\left(w_{1}, w_{3}, w_{4}, w_{2}\right)+\tilde{\phi}_{3}\left(w_{2}, w_{3}, w_{4}, w_{1}\right)\right) \tag{10}\\
+384 \gamma_{2}^{5} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}\left(w_{3}\right) H_{2}\left(w_{4}\right) H_{2}^{*}\left(\sum_{i=1}^{4} w_{i}\right)
\end{array}
$$

where, $\quad \tilde{\phi}_{2}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=$

$$
=H_{1}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{2}\left(w_{3}\right) H_{2}\left(w_{4}\right) H_{2}^{*}\left(w_{1}+w_{2}+w_{3}+w_{4}\right)
$$

and $\quad \tilde{\phi}_{3}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=$

$$
=H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}\left(w_{3}\right) H_{1}\left(w_{4}\right) H_{1}^{*}\left(w_{1}+w_{2}+w_{3}+w_{4}\right)
$$

3 NON PARAMETRIC BLIND IDENTIFICATION

We shall assume that the first degree kernel $h_{1}(\cdot)$ is minimum phase and that $H_{1}(0)=\sum_{k} h_{1}(k) \neq 0$. We evaluate eqs. (7)- (10) at suitable slices and we combine the resulting expressions to determine the kernels magnitude spectra.

Eq. (7) at frequency 0 gives

$$
\begin{equation*}
C_{2 y}(0)=\gamma_{2} H_{1}^{2}(0)+2 \gamma_{2}^{2} H_{2}^{2}(0) \tag{11}
\end{equation*}
$$

Taking into account eq. (2) we obtain

$$
\begin{equation*}
\gamma_{2} H_{1}^{2}(0)=C_{2 y}(0)-2 c_{1 y}^{2} \tag{12}
\end{equation*}
$$

Eqs. (8)- (9) give

$$
\begin{gather*}
C_{3 y}\left(w_{1}, 0\right)=2 \gamma_{2}^{2} H_{1}\left(w_{1}\right) H_{1}(0) H_{2}^{*}\left(w_{1}\right) \\
+2 \gamma_{2}^{2}\left|H_{1}\left(w_{1}\right)\right|^{2} H_{2}(0)+2 \gamma_{2}^{2} H_{2}\left(w_{1}\right) H_{1}(0) H_{1}^{*}\left(w_{1}\right) \\
+8 \gamma_{2}^{3}\left|H_{2}\left(w_{1}\right)\right|^{2} H_{2}(0) \tag{13}\\
C_{4 y}\left(w_{1}, 0,0\right)=8 \gamma_{2}^{3} H_{1}\left(w_{1}\right) H_{1}(0) H_{2}(0) H_{2}^{*}\left(w_{1}\right) \\
+8 \gamma_{2}^{3} H_{1}\left(w_{1}\right) H_{2}(0) H_{1}(0) H_{2}^{*}\left(w_{1}\right)+8 \gamma_{2}^{3}\left|H_{2}\left(w_{1}\right)\right|^{2} H_{1}^{2}(0) \\
+8 \gamma_{2}^{3}\left|H_{1}\left(w_{1}\right)\right|^{2} H_{2}^{2}(0)+8 \gamma_{2}^{3} H_{2}\left(w_{1}\right) H_{1}(0) H_{2}(0) H_{1}^{*}\left(w_{1}\right) \\
+8 \gamma_{2}^{3} H_{2}\left(w_{1}\right) H_{2}(0) H_{1}(0) H_{1}^{*}\left(w_{1}\right) \\
+48 \gamma_{2}^{4}\left|H_{2}\left(w_{1}\right)\right|^{2} H_{2}^{2}(0) \tag{14}
\end{gather*}
$$

Using eqs. (14), (13), (7) and (2) we have that

$$
\begin{aligned}
C_{4 y}\left(w_{1}, 0,0\right) & -8 C_{3 y}\left(w_{1}, 0\right) c_{1 y}+8 C_{2 y}\left(w_{1}\right) c_{1 y}^{2}= \\
& =8 \gamma_{2}^{3} H_{1}^{2}(0)\left|H_{2}\left(w_{1}\right)\right|^{2}
\end{aligned}
$$

This equation becomes using eq. (12)

$$
\begin{gather*}
8 \gamma_{2}^{2}\left|H_{2}\left(w_{1}\right)\right|^{2}= \\
=\frac{C_{4 y}\left(w_{1}, 0,0\right)-8 C_{3 y}\left(w_{1}, 0\right) c_{1 y}+8 C_{2 y}\left(w_{1}\right) c_{1 y}^{2}}{C_{2 y}(0)-2 c_{1 y}^{2}} \tag{15}
\end{gather*}
$$

Thus

$$
\begin{equation*}
\gamma_{2}\left|H_{1}\left(w_{1}\right)\right|^{2}=C_{2 y}\left(w_{1}\right)-2 \gamma_{2}^{2}\left|H_{2}\left(w_{1}\right)\right|^{2} \tag{16}
\end{equation*}
$$

From eqs. (15)- (16) we estimate the magnitude spectrum of H_{1} and H_{2}. Since h_{1} is a minimum phase system H_{1} is uniqely determined. It remains to estimate the phase spectrum of h_{2}. Using eqs. (9)- (10) we get

$$
\begin{align*}
& C_{4 y}\left(w_{1}, w_{2}, 0\right)=8 \gamma_{2}^{3} H_{1}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{2}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& \quad+8 \gamma_{2}^{3} H_{1}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{1}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& \quad+8 \gamma_{2}^{3} H_{2}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{1}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& \quad+8 \gamma_{2}^{3} H_{1}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}(0) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
& \quad+8 \gamma_{2}^{3} H_{2}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{2}(0) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
& \quad+8 \gamma_{2}^{3} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{1}(0) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \tag{17}\\
& \quad C_{5 y}\left(w_{1}, w_{2}, 0,0\right)= \\
& =48 \gamma_{2}^{4} H_{1}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{2}(0) H_{2}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{1}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{1}(0) H_{2}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{2}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{1}(0) H_{2}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{1}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}(0) H_{1}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{2}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{2}(0) H_{1}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{1}(0) H_{1}(0) H_{2}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{1}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}(0) H_{2}(0) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{2}\left(w_{1}\right) H_{1}\left(w_{2}\right) H_{2}(0) H_{2}(0) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{1}(0) H_{2}(0) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
& +48 \gamma_{2}^{4} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}(0) H_{1}(0) H_{1}^{*}\left(w_{1}+w_{2}\right) \\
& +384 \gamma_{2}^{5} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}(0) H_{2}(0) H_{2}^{*}\left(w_{1}+w_{2}\right)
\end{align*}(18)
$$

Eqs. (18), (17), (8) and (2) give

$$
\begin{gathered}
C_{5 y}\left(w_{1}, w_{2}, 0,0\right)-12 C_{4 y}\left(w_{1}, w_{2}, 0\right) c_{1 y} \\
+24 C_{3 y}\left(w_{1}, w_{2}\right) c_{1 y}^{2}= \\
=48 \gamma_{2}^{4} H_{1}^{2}(0) H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}^{*}\left(w_{1}+w_{2}\right)
\end{gathered}
$$

which takes the form

$$
\begin{equation*}
48 \gamma_{2}^{3} H_{2}\left(w_{1}\right) H_{2}\left(w_{2}\right) H_{2}^{*}\left(w_{1}+w_{2}\right)=\frac{A}{B} \tag{19}
\end{equation*}
$$

where

$$
\begin{gathered}
A=C_{5 y}\left(w_{1}, w_{2}, 0,0\right)-12 C_{4 y}\left(w_{1}, w_{2}, 0\right) c_{1 y} \\
+24 C_{3 y}\left(w_{1}, w_{2}\right) c_{1 y}^{2}
\end{gathered}
$$

and

$$
B=C_{2 y}(0)-2 c_{1 y}^{2}
$$

Eq. (19) states that H_{2} is the frequency response of a linear system whose output cumulant spectrum of order 3 is given by the right hand side. Using well known techniques of phase specrum estimation for linear systems [8] we obtain $h_{2}(k)$.

4 BLIND IDENTIFICATION OF FINITE EXTEND HAMMERSTEIN SERIES

Finite extent second order Hammerstein series is a special case of (1) with finite extent kernels:

$$
\begin{align*}
y(n)= & \sum_{k=0}^{K_{1}} h_{1}(k) u(n-k)+\sum_{k=1}^{K_{2}} h_{2}(k) u^{2}(n-k) \\
& h_{1}(0)=1 \tag{20}
\end{align*}
$$

In a manner reminiscent of moving average identification, we proceed working with the time domain formulas (2)- (5). It turns out that cumulants of order 5 are needed only if $K_{2}<K_{1}$.

Let us first assume that $K_{1}=K_{2}=K$. Then

$$
\begin{gather*}
c_{2 y}(K)=\gamma_{2} h_{1}(K) \tag{21}\\
c_{3 y}(K, i)=\begin{array}{l}
2 \gamma_{2}^{2} h_{1}(i) h_{2}(K)+2 \gamma_{2}^{2} h_{1}(K) h_{2}(i) \\
0 \leq i \leq K \\
c_{4 y}(K, K, i)=8 \gamma_{2}^{3} h_{1}(i) h_{2}^{2}(K)+16 \gamma_{2}^{2} h_{1}(K) h_{2}(K) h_{2}(i)
\end{array}
\end{gather*}
$$

$$
\begin{equation*}
0 \leq i \leq K \tag{23}
\end{equation*}
$$

From eqs. (21)- (23) we find

$$
\begin{equation*}
\gamma_{2}=\frac{2 c_{3 y}(K, 0) c_{2 y}(K)}{c_{3 y}(K, K)} \tag{24}
\end{equation*}
$$

$h_{1}(i)=\frac{2 c_{3 y}(K, i)}{c_{3 y}(K, 0)}-\frac{c_{4 y}(K, K, i)}{c_{4 y}(K, K, 0)}, \quad 0 \leq i \leq K$
$\gamma_{2} h_{2}(i)=\frac{c_{4 y}(K, K, i)}{2 c_{3 y}(K, K)}-\frac{c_{3 y}(K, i)}{2 c_{2 y}(K)}, \quad 0 \leq i \leq K$
Suppose next that $K_{2}>K_{1}$. Then

$$
\begin{align*}
& c_{3 y}\left(K_{2}, i\right)= \begin{cases}2 \gamma_{2}^{2} h_{1}(i) h_{2}\left(K_{2}\right), & \text { if } 0 \leq i \leq K_{1} \\
0, & \text { if } K_{1}<i \leq K_{2}\end{cases} \tag{27}\\
& \qquad c_{4 y}\left(K_{2}, K_{2}, i\right)= \\
& = \begin{cases}8 \gamma_{2}^{3} h_{1}(i) h_{2}^{2}\left(K_{2}\right), & \text { if } 0 \leq i \leq K_{1} \\
0, & \text { if } K_{1}<i \leq K_{2}\end{cases} \tag{28}\\
& c_{4 y}\left(K_{2}, K_{1}, i\right)= \\
& = \begin{cases}8 \gamma_{2}^{3} h_{1}(i) h_{2}\left(K_{1}\right) h_{2}\left(K_{2}\right) \\
+8 \gamma_{2}^{3} h_{1}\left(K_{1}\right) h_{2}\left(K_{2}\right) h_{2}(i), & \text { if } 0 \leq i \leq K_{1} \\
8 \gamma_{2}^{3} h_{1}\left(K_{1}\right) h_{2}\left(K_{2}\right) h_{2}(i), & \text { if } K_{1}<i \leq K_{2}\end{cases} \tag{29}
\end{align*}
$$

Hence

$$
\begin{gather*}
\gamma_{2}=\frac{2 c_{3 y}\left(K_{2}, 0\right) c_{3 y}\left(K_{2}, K_{1}\right)}{c_{4 y}\left(K_{2}, K_{2}, K_{1}\right)} \tag{30}\\
h_{1}(i)=\frac{c_{3 y}\left(K_{2}, i\right)}{c_{3 y}\left(K_{2}, 0\right)}, \quad 0 \leq i \leq K_{1} \tag{31}\\
\gamma_{2} h_{2}(i)=\frac{c_{4 y}\left(K_{2}, K_{1}, i\right)}{4 c_{3 y}\left(K_{2}, K_{1}\right)}-\frac{c_{3 y}\left(K_{2}, i\right) c_{4 y}\left(K_{2}, K_{1}, K_{1}\right)}{8 c_{3 y}^{2}\left(K_{2}, K_{1}\right)}, \\
0 \leq i \leq K_{2} \tag{32}
\end{gather*}
$$

Likewise if $K_{1}>K_{2}$, then

$$
\begin{gather*}
c_{2 y}\left(K_{1}\right)=\gamma_{2} h_{1}\left(K_{1}\right) \tag{33}\\
c_{3 y}\left(K_{1}, i\right)= \begin{cases}2 \gamma_{2}^{2} h_{1}\left(K_{1}\right) h_{2}(i), & \text { if } 0 \leq i \leq K_{2} \\
0, & \text { if } K_{2}<i \leq K_{1}\end{cases} \tag{34}\\
c_{4 y}\left(K_{1}, K_{2}, i\right)= \\
= \begin{cases}8 \gamma_{2}^{3} h_{1}\left(K_{1}\right) h_{2}\left(K_{2}\right) h_{2}(i), & \text { if } 0 \leq i \leq K_{2} \\
0, & \text { if } K_{2}<i \leq K_{1}\end{cases} \tag{35}\\
c_{5 y}\left(K_{2}, K_{2}, K_{2}, i\right)= \\
= \begin{cases}48 \gamma_{2}^{4} h_{1}(i) h_{2}^{3}\left(K_{2}\right) \\
+144 \gamma_{2}^{4} h_{1}\left(K_{2}\right) h_{2}^{2}\left(K_{2}\right) h_{2}(i), & \text { if } 0 \leq i \leq K_{2} \\
48 \gamma_{2}^{4} h_{1}(i) h_{2}^{3}\left(K_{2}\right), & \text { if } K_{2}<i \leq K_{1}\end{cases} \tag{36}
\end{gather*}
$$

From eqs. (33)- (36) we find

$$
\begin{gather*}
\gamma_{2}=\frac{c_{5 y}\left(K_{2}, K_{2}, K_{2}, 0\right) c_{2 y}^{2}\left(K_{1}\right)}{3 c_{4 y}\left(K_{1}, K_{2}, K_{2}\right) c_{3 y}\left(K_{1}, K_{2}\right)} \tag{37}\\
h_{1}(i)=\frac{c_{5 y}\left(K_{2}, K_{2}, K_{2}, i\right)}{c_{5 y}\left(K_{2}, K_{2}, K_{2}, 0\right)} \\
-\frac{3 c_{5 y}\left(K_{2}, K_{2}, K_{2}, K_{2}\right) c_{3 y}\left(K_{1}, i\right)}{4 c_{5 y}\left(K_{2}, K_{2}, K_{2}, 0\right) c_{3 y}\left(K_{1}, K_{2}\right)}, \quad 0 \leq i \leq K_{1} \tag{38}\\
\gamma_{2} h_{2}(i)=\frac{c_{3 y}\left(K_{1}, i\right)}{2 c_{2 y}\left(K_{1}\right)}, \quad 0 \leq i \leq K_{2} \tag{39}
\end{gather*}
$$

5 CONCLUSIONS

Blind identification of second order Hammerstein series has been considered. The Volterra kernels are calculated using output cumulants of order up to 5 . Extensions to more general Volterra systems including higher order Hammerstein series are examined.

References

[1] J. C. Ralston, A. M. Zoubir and B. Boashash, "Identification of a Class of Nonlinear Systems Under Stationary Non-Gaussian Excitation", IEEE Trans. on Signal Processing, vol. SP-45, no. 3, pp. 719-735, March 1997.
[2] N. Kalouptsidis, Signal Processing Systems: Theory and Design, John Wiley, 1997
[3] P. Koukoulas and N. Kalouptsidis, "Nonlinear System Identification Using Gaussian Inputs", IEEE Trans. on Signal Processing, vol. SP-43, pp. 18311841, August 1995.
[4] V. J. Mathews, "Adaptive Polynomial Filters", IEEE Signal Processing Mag., vol. 8, pp. 10-26, July 1991.
[5] V. P. Leonov and A. N. Shiryaev, "On a Method of Calculation of Semi-Invariants", Theory Prob. Appl., vol. 4, pp. 319-329, 1959.
[6] P. Bondon and M. Krob, "Blind Identifiability of a Quadratic Stochastic System," IEEE Trans. on Inform. Theory, vol. IT-41, pp. 245-254, January 1995
[7] G. B. Giannakis and E. Serpedin, "Linear Multichannel Blind Equalizers of Nonlinear FIR Volterra Channels," IEEE Transactions on Signal Processing, vol. SP-45, no. 1, pp. 67-81, January 1997.
[8] H. Pozidis and A. P. Petropulu, "System Reconstruction Based on Selected Regions of Discretized Higher Order Spectra," IEEE Transactions on Signal Processing, vol. SP-46, no. 12, pp. 3360-3377, December 1998.

