

ARCHITECTURAL OPTIMIZATIONS FOR SOFTWARE-BASED

MPEG4 VIDEO ENCODER

F. Nasim, S. Masud, N. Khan, K. Virk, A. Farrukh

Multimedia Research Labs, Department of Computer Science,
Lahore University of Management Sciences,

Sector-U, D.H.A, Lahore 54792, Pakistan
Email: {smasud, nkhan} @ lums.edu.pk

ABSTRACT

This paper presents a set of architectural optimizations for
improving the performance of an MPEG4 video encoder.
The techniques presented here focus on optimizing the
encoder architecture rather than module level algorithmic
modifications. The optimizations contribute to the
development of a fast and memory efficient encoder
without affecting video quality. An interface driven
methodology has been developed to identify and solve
performance bottlenecks for the encoder. Appropriate
data flow between components has been developed so
that memory intensive operations, such as memory access
and copying, are minimized. These optimizations have
been applied on MPEG4 simple profile encoder. Results
demonstrate orders of magnitude computational
improvements without any algorithmic modifications.

1.0 INTRODUCTION

Because of intricate algorithms, the real-time software
only implementation of MPEG4 is considered to be
computationally complex. Software optimizations are
necessary at all levels of the encoder to achieve high
performance. Many papers have previously been
presented on the algorithmic improvements to the
constituent modules of the MPEG4 encoder, especially
the motion estimation module [3, 4, 5]. This paper
addresses the problem of optimization of the software
architecture of an MPEG4 encoder. Purely architectural
approaches presented in this paper complement other
MPEG4 algorithmic optimizations.

This paper specifically focuses on the interfaces
between constituent modules rather than the individual
modules shown in figure 1. Optimization has been
achieved through improved logical partitioning of
encoder modules and efficient data transfer between these
modules. An MPEG4 reference implementation by
MoMuSys [7] has been used to demonstrate the
performance improvements.

The rest of the paper is organized as follows:
Section 2 describes typical issues that are encountered in
the software implementation of a MPEG4 video encoder.

Section 3 describes core optimization techniques that
have been developed in this work. Section 4 documents
the results obtained from application of the proposed
methods on MPEG4 implementation followed by
conclusions in Section 5.

2.0 ENCODER IMPLEMENTATION ISSUES

2.1 Memory Management

CPU speed in modern computers is orders of magnitude
greater than the bus transfer speed and memory access
speed. Memory access is therefore an important factor in
improving encoder efficiency. Many core components of
an encoder are data intensive in their working. For
example, DCT computation, bitstream writing and motion
estimation are all core components of an encoder; that are
also closely related to memory operations e.g. memory
reading, writing, and copying. In general, operations that
involve memory access have a high cost on all
development platforms [2, 6]. The proposed approach
aims to improve encoder performance by minimizing
memory operations.

2.2 Inter Module Data Transfer

Video encoders process large amounts of data in many
modules. This data must be stored in memory and passed
between various blocks of the encoder efficiently. Data
transfer and storage costs contribute to performance
deterioration since they involve copying of data between
memory locations. The ‘number-of-memory-operations’
factor is an issue in data transfer as well as in general
memory management.

2.3 Memory Size Reduction

The amount of memory used by an encoder becomes
important when dealing with DSP processors. By
reducing the amount of memory used by an encoder, its
portability to different DSP systems increases. An
encoder should ideally be designed to use minimum
possible amount of memory without creating memory

allocation/de-allocation loops that cause memory
fragmentation.

Frame
Input DCT VLC

IDCT

Buffer
Store

Motion
Compensation

Motion
Estimation

+

+
+

-
Q

IQ

Input
Frame

Encoded
Stream

Figure 1: Common video encoder components

Interface optimization, as described in this paper,
improves the architectural framework and data
communication in the MPEG4 encoder. However, to
achieve further performance improvement, algorithmic
changes must be assimilated in respective encoder
modules.

3.0 OPTIMIZED IMPLEMENTATION

The proposed architectural optimizations affect almost all
major MPEG4 encoder components. Figure 2 illustrates
which optimizations will affect various parts of the
encoder.

Before the techniques are described, it is important to
consider the load distribution for the MPEG4 encoder:
Motion estimation contributes 40 – 60 % of the load
while the remaining percentage is contributed by the
other encoder components. This paper does not propose
any algorithmic change in the motion estimation
component; performance gains reported are the result of
only the architectural optimizations at the interface level
of various encoder components alone. The motion
estimation component has only been optimized at the
architectural level, i.e. through data transfer optimizations
and memory management.

Platform-independent optimization methods for
MPEG4 encoder components as well as optimized
architectural design are described below. These include
schemes for efficient memory management, bitstream
writing and structural improvements in motion estimation
and other encoder components.

3.1 Motion Estimation

Because of its large computational load, much research
work is being carried out to discover new algorithms that
improve the computational complexity of motion
estimation. Algorithms that reduce motion estimation

load [5, 9] automatically lead to a substantial decrease in
encoder load. A good motion estimation algorithm results
in accurate identification of motion vectors which leads to
a substantial reduction in inter frame size. This paper
discusses an optimized method of handling the output
generated by the MPEG4 motion estimation module
including motion vectors and difference data. Effective
handling of this output facilitates data reuse and memory
size reduction.

In the MPEG4 reference encoder, motion
estimation is applied to every frame and the difference
data for the entire frame is stored in a frame-sized buffer.
In the suggested architecture, motion estimation is still
applied in the frame loop but difference data is not stored
at this point, only the motion vector and the mode
information are stored. These are used while processing
macroblocks to calculate difference data for DCT and
reconstruction. This saves unnecessary copying of frame-
sized buffers and also improves memory utilization by
using much smaller macroblock-sized buffers for
intermediate calculations.

3.2 Image Interpolation

MPEG4 supports half-pel precision motion estimation.
Image interpolation is therefore necessary for computing
sub-pixel motion estimation. Increasing the depth of
interpolation gives better block matching performance at
the expense of increased computational complexity [1].
An efficient method of storing the interpolated pixel
information has been developed that reduces this memory
overhead.

Sub-pixel motion estimation requires
interpolation of the samples of the search area in the
reference frame to form a higher resolution interpolated
region [1]. This interpolated information is usually stored
(for the entire frame) in a buffer that is several times
larger than the frame size depending on the sub-pixel
accuracy. In the MPEG4 reference implementation, a
buffer four times larger than the frame size has been used
to store the interpolated data for half-pel motion
estimation. This is an inefficient use of memory as
motion estimation occurs once per macroblock and only a
small fraction of the interpolated information is used at
any time. It is thus sufficient to interpolate only the
macroblock that is currently being processed instead of
interpolating the entire frame resulting in a much smaller
buffer size.

3.3 Bitstream Writing

The bitstream writing module writes a variable number of
bits to the output bitstream for several components of the
encoder. Optimization of MPEG4 bitstream writing
functions is described below:

Frame
Input

Optimized
Data

Transfer

DCT/
Q VLC

IDCT
/ IQ

Motion
Compensation

Motion
Estimation

+

-
+

Input
Frame

+

Memory Size
Reduction &
Data Reuse

Inter Module
Data Sharing

Lookup Table
Indexing

Encoded
Stream

Variable
Initializations

VLC Lookup
Table Pre-
Calculation

(b) (a)

Optimized
Data

Transfer

Figure 2: Location of architectural optimizations indicated
in the encoder structure. (a) Initializations phase occurs
before frame processing begins (b) Frame processing
architecture

During initializations, a memory buffer is
declared that is equal to largest possible stream size for
one frame for storing the encoded stream. During
bitstream writing, the ‘put_bits’ function uses a 32-bit
register for storing bits. The contents of the register are
moved to stream buffer when they have filled these 32
bits. Thus memory is accessed only at multiples of 32 bits
resulting in reduction in memory load operations. To
improve performance further, the mechanism has been
enhanced to two 32-bit registers instead of one and the
writing pointer switches to next register when the first is
filled. The contents of both registers are moved to
memory simultaneously when the second register is
filled, thus reducing the memory load operations by a
factor of 50%.

In RISC CPU architectures that have a large
number of registers such as TM1300 [6], the above
mechanism can be expanded to more than two registers.
However, the bottleneck in using more registers is the
overhead caused by increased condition checking
statements.

3.4 Other Improvements

It has been observed in the MPEG4 implementation that
frame-sized buffers are allocated and then de-allocated
for every frame that is processed. Such allocation/de-
allocation affects the underlying memory structure. All
memory allocations for frame-size buffers and any other

variables that are used for every frame should be carried
out together in a single pass. All such variables were
identified in the MPEG4 reference code and their
allocation/de-allocation and usage were modified so that
these variables were initialized only once and then reused
during frame processing. These initializations are
performed before any frame processing begins.

The ‘best-fit’ data types have been used to store
image data. For example, unsigned char arrays have been
used in the optimized architecture while in the MPEG4
reference implementation the ‘short int’ type was being
used. This was a waste of space since the maximum data
size would always fit inside one byte.

Since it uses the smallest possible data type to
store values, the proposed architecture can support data
level parallelism. For example, when copying is required,
instead of copying each ‘unsigned char’ individually, four
unsigned char types can be copied simultaneously by
using a single ‘int’ data type to perform the copying.

Additional performance gain has been realized
through pre-calculation of VLC tables, for all possible
combinations, and storing them in a lookup table. The
pre-calculation occurs in the initialization phase at the
same time as the variable initializations and results in
speed-up as complex computations are replaced by
memory accesses.

4.0 RESULTS AND DISCUSSION

The results of applying these techniques to the MPEG4
reference implementation [7] are shown in Table 1.
Sequences ‘Akiyo’ and ‘Foreman’ (300 frames each)
were used for testing the encoder performance. For the
full D1 sequence (720 * 480 pixels), a sequence of 300
frames was captured and used from the movie ‘Patriot’.
The performance results have been obtained using Intel
VTune(TM) Performance Analyzer ver 7.0 running on
Intel Pentium-4 at 2.6 GHz with 256MB DDR RAM.

As can be seen in table 1, performance
improvement is proportional to the size of the input video
frames. This is a result of improved memory management
and data transfers between interfaces of various modules
of the encoder.

Table 1: Improvement in encoder performance
Seqs Size MPEG4

Reference
(ms)*

MPEG4
Optimized

(ms)*

Speed
Improvement

factor
Akiyo QCIF 1131 76 15.93
Foreman QCIF 1361 89 15.29
Akiyo CIF 14157 292 48.48
Foreman CIF 14806 334 44.33
Patriot Full D1 50139 1100 45.58

* Note: Times have been calculated for encoding 25 frames
excluding motion estimation time in order to highlight the gains
achieved through architectural optimizations.

Table 2: PSNR values
Seqs Size MPEG4 Ref

PSNR (Y) dB
MPEG4 Opt
PSNR (Y) dB

Akiyo QCIF 34.51 34.50
Foreman QCIF 31.41 32.41
Akiyo CIF 36.60 36.61
Foreman CIF 32.41 33.41
Patriot Full D1 35.29 36.21
* Note: Average PSNR of Y component for 300 frames

The performance gain is more pronounced on

frames of larger size as the memory and data size
considerations become more important on frame
sequences of larger dimensions. Application of the
proposed methods contributes to a better underlying
physical memory structure. Superior data exchange and
reuse methodologies also reduce the memory size
required and the total number of memory accesses. These
techniques are generic and can be applied to any software
video encoder to improve real-time performance.

The optimized encoder takes 16 times less time
than the original implementation when a QCIF sequence
is used. The performance improves even further when the
larger CIF and Full D1 frame sequence is used, giving
approximately 45 times improvement. The improvement
is independent on the amount of motion in the test
sequence. This is because the techniques presented in this
paper do not affect the Motion Estimation algorithm used
(or the algorithm of any other module). Further gains in
performance can be achieved by introducing algorithmic
improvements in various modules of the encoder.

The performance gains achieved using the
techniques presented in this paper are close to the
improvements achieved through algorithmic
optimizations presented in other research. It is important
to note here that in previously published work,
algorithmic optimizations were applied to the motion
estimation module. As discussed in section 3, the motion
estimation module contributes greatest load in a video
encoder. Therefore, its optimization results in large
performance gains. For example, Zheng et al [8]
demonstrated a 35 – 80 times improvement in codec
performance using algorithmic modifications. In our
work, performance gains in the range of 15 to 50 times
for different frame sizes have been achieved by using
only software architectural modifications without
changing the motion estimation algorithm. This has been
due to improved memory access and data transfer
structure.

5. CONCLUSION

This paper presents an optimization of the software
implementation of an MPEG4 encoder using only

architectural optimizations. The techniques presented here
provide 15 to 50 times performance gains as a result of
improved coupling of data within modules and efficient
transfer of data between communicating modules.
Optimum memory management practices have also been
suggested. The proposed methods do not degrade the
video quality of the encoded bit stream as they only affect
data and memory structure of the MPEG4 encoder and
leave intact the algorithms used in various modules of the
encoder. The results illustrate the fact that architectural
optimizations can have a strong impact on software based
MPEG4 encoder efficiency.

 REFERENCES
[1] I. E. G. Richardson, “Video Codec Design”, John

Wiley & Sons, 2002
[2] Intel Corporation, “IA-32 Intel Architecture

Software Developer’s Manual”, vol. 1, vol.2
[3] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A.

Kassim, “A novel unrestricted center-biased
diamond search algorithm for block motion
estimation”, IEEE transactions on Circuits and
Systems for Video Technology, Vol. 8, No. 4, pp.
369-377, August 1998

[4] J. McVeigh, G. K. Chen, J. Goldstein, A. Gupta, M.
Keith, and S. Wood, “A Software-Based Real-Time
MPEG-2 Video Encoder”, IEEE transactions on
Circuits and Systems for Video Technology, Vol.
10, No. 7, pp. 1178-1184, Oct. 2000

[5] K. Ramkishor, P.S.S.B.K. Gupta, T.S. Raghu, K.
Suman, “Algorithmic optimizations for software-
only MPEG-2 encoding”, IEEE Transactions on
Consumer Electronics, Vol. 50, No. 1, pp 366 –
375, 2004

[6] Philips Electronics North America Corporation,
“TM1300 Data Book”, 1999

[7] Publicly available MPEG-4 reference software
from ISO (ISO/IEC 14496-5),
http://www.iso.ch/iso/en/ittf/PubliclyAvailableStan
dards/14496-5_Compressed_directories/Visual/,
MoMuSys Implementation

[8] W. Zheng, I. Ahmad, M. L. Liou, “Real-Time
Software Based MPEG-4 Video Encoder”,
Proceedings of Workshop and Exhibition on
MPEG-4, 18-20 June 2001 pp 71 – 74

[9] X. Jing, L. Chau, “An Efficient Three-Step Search
Algorithm for Block Motion Estimation”, IEEE
transactions on Multimedia, June 2004, pp435-438

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Ayesha Farrukh
	Kamran Virk
	Nadeem Khan
	Shahid Masud
	Farooq Nasim

