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ABSTRACT 
Mental task classification using brain signals, mostly electroen-
cephalogram (EEG), is an approach to understand human 
brain functions. As EEG seems to be chaotic, it is important to 
verify the capability of probabilistic and statistical processing 
tools (such as HMM-based classifiers) in working with chaotic 
signals. At first, we study the performance of HMM’s in classi-
fication of different classes of synthetically generated chaotic 
signals. Then performance of such classifiers in EEG-based 
mental task classification is studied. Results show good per-
formance in both cases.  
 
Keywords: Chaos, Hidden Markov Models (HMM), EEG-Based 
Mental Task Classification  

1. INTRODUCTION 

Introducing EEG signal, hopes to use it for communications 
and environment control with no need to limbs and peripheral 
nerves arose [1]. Nowadays, research groups are trying to pro-
vide such communication channels, namely Brain-Computer 
Interfaces, for patients suffering from severe motor control 
disabilities [1-3].  
One approach to provide such an interface is mental task 
classification; i.e. each segment of EEG signal should be 
assigned to its appropriate class among the predefined classes 
of mental tasks. Different types of classifiers have been used 
for this purpose; such as, neural classifiers [2, 4-9] and 
HMM-based classifiers [10-13].  
There are some evidences showing EEG signals’ chaotic behav-
ior [14-17]. As an approach to better understanding the nature of 
EEG signal and evaluating its chaotic behavior as well as as-
sessment of compatibility of HMM’s with chaos, this study is 
set to verify if chaotic signals can be well modeled and classified 
by these statistical and probabilistic models, HMM’s which have 
shown very good results in speech processing and have been 
used growingly in EEG signal processing.  
A dynamical chaotic system may be modeled as  

sn+ 1 = f (sn)  

where sn is the state of system at time n, and f is a nonlinear 
function. These states can be observed through yn = h(sn) [18]. 
Modelling f and h by probability functions leads to HMM mod-
els of chaotic systems.  
At first, we have used different types of synthetically generated 
chaotic signals, such as logistic map, tent map, and Lorenz 
model. For each type of these chaotic signals, we have assigned 

a parameter as the characteristic parameter of each class, and 
based on that parameter, the signals of that class are produced, 
while other parameters are constant in all classes of that type.  
After transient state, signals are used for modeling and classifi-
cation; i.e. the chaotic system is in its basin of attraction and the 
HMM model is to be the model of the basin of attraction.  
Performance of classifiers is evaluated regarding the level of 
chaocity and the difference between levels of chaocity of those 
classes of signals which are to be classified. The criterion for the 
level of chaocity is assigned to be the Lyapunov exponent of the 
chaotic signal.  
Different structures of discrete HMM (dHMM) and multi-
Gaussian HMM (mHMM) classifiers have been studied to de-
termine the best model for representing each type of chaotic 
signals (if it exists). Maximum performance in each experiment 
is reported.   
Finally, we have studied different structures of HMM classifiers 
in classification of raw EEG signals related to different mental 
tasks.  
The cross-validation procedure used in this study is PCV (ran-
domized Permutation Cross Validation) and .  

2. DATA, METHODS AND RESULTS  

2.1 Synthetically Generated Chaotic Signals 
We have studied classification of datasets of logistic map, tent 
map, and Lorenz model using dHMM and mHMM classifiers in 
this section.  
For logistic map we have  

x i + 1 = a × x i × (1 – x i ). 

The parameter a is selected as the characterizing parameter of 
each class. At first we produced 8000 samples of data, and then 
1000 initial samples were deleted to ignore the transient seg-
ment. 7000 remained samples were segmented into 70 seg-
ments of 100 samples.  
To compute Lyapunov exponent, we have generated 600 points 
of logistic map with a random initial point for 20 times. Each 
time, Lyapunov exponent has been computed after deleting the 
transient phase. Then mean of these 20 quantities was selected 
as the Lyapunov exponent of that class of data.  
For tent map, we have:  

x i + 1 = r × (1 – 2 × | x i – 0.5| ). 

The parameter r is selected to be the characteristic parameter of 
each class. Data samples have been provided as for logistic map. 
Tables 1-3 show the characteristic parameters and relevant 



Lyapunov exponents for datasets. (Each row shows information 
for each study on logistic and tent maps).  
As logistic map and tent map are both discrete one-dimensional 
signals, use of a multi-dimensional chaotic model with continu-
ous dynamicity; e.g. Lorenz model seems to be needed. This 
model produces three-dimensional signal, and combining the 
samples of these three dimensions, we have produced samples of 
our classes of signals. For Lorenz model we have: 
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The parameter r was selected as the characteristic parameter. b = 
8/3, and p = 10 were constant parameters. The initial points of 
the signal were selected randomly.  
While natural signals are distorted by correlated noises, Gaus-
sian noise of variance 0.01 has been added to synthetic chaotic 
signals to make them nearer to natural signals and the above 
studies have been performed for new set of signals.  
For purpose of cross-validation, 50 segments of data were as-
signed randomly to train and 20 to test the classifier for 10 
times; in each time the initial point of signal was selected ran-
domly.  

2.1.1  dHMM  
The number of states of models was between 1 and 5, and the 
number of observable symbols (levels of quantization)/state was 
powers of two between 22 and 28. In training of HMM classifi-
ers, initial probability matrices have been selected randomly. 
Maximum number of EM algorithm iterations in training the 
HMM models has been selected to be 50.  
At first, we have studied the performance of dHMM in classifi-
cation of signals produced by logistic map. Studies have shown 
if the difference between Lyapunov exponents is less then more 
complicated structures are required to result in a good (nearly 
100%) classification.  
In order to generalize the results, dHMM has been used to clas-
sify different classes of signals produced by tent map equation, 
as well. Different structures of dHMM classifiers showed to be 
100% capable in classification of classes of tent map signals.  
After that, classification of signals as logistic map or tent map 
has been considered. Results have shown the high capability 
(100%) of dHMM in classification of these two types of sig-
nals.  
In the case of classification of Lorenz signals, for two classes 
with r1 = 90 and r2 = 80, the best classification percentage was 
65.75 ± 6.24 % for dHMM with one state and 64 observable 
symbols/state.  
For logistic map, the percentage of classification decreases a 
little when the noise is added to the signal. For example, for two 
datasets of logistic map with a1 = 3.90 and a2 = 3.80, the best 
classification percentage is 97.75 ± 1.84 % for models with 7 
states and 16 observable symbols/state. For a1 = 3.90 and a2 = 
3.925, we have 94.25 ± 5.78 % for models with 8 states and 32 
observable symbols/state. In classification of signals to tent and 
logistic classes, we have nearly complete (99 %) classification 
accuracy for models of simple structures. For tent map classifi-
cation the best performances are more than 96 %.  
In both past steps, more complicated models lead to worse per-
formance. This shows the importance of the quantization step in 
working with dHMM which applies as a filter to data and fits the 
model to it. 

Table 1 Lyapunov Exponents of logistic maps 
a1 L1 a2 L2 |L1 – L2| 
3.9 0.4944 3.8 0.4309 0.0635 
3.9 0.4944 3.925 0.5349 0.0405 
3.9 0.4944 3.875 0.4583 0.0361 

3.825 0.4020 3.8 0.4309 0.0289 
 
Table 2 Lyapunov Exponents of logistic map, tent map 

a L r L |L1 – L2| 
3.9 0.4944 0.6 0.1823 0.3121 
3.8 0.4309 0.6 0.1823 0.2486 
3.9 0.4944 0.8 0.4700 0.0244 

 
Table 3 Lyapunov Exponents of tent maps 

r1 L1 r2 L2 |L1 – L2| 
0.7 0.3365 0.8 0.4700 0.1335 
0.9 0.5878 0.8 0.4700 0.1178 
0.9 0.5878 0.7 0.3365 0.2513 
 

For signals of Lorenz model, the performance was low and add-
ing noise made it lower: for classes with r1 = 90 and r2 = 80, we 
have 61.9 ± 6.4023 % for dHMM with 5 states and 128 observ-
able symbols/state.  

2.1.2 mHMM 
For chaotic signals, that a very small deviation (e.g. resulted by 
quantization) can lead to change of basin of attraction, mHMM 
is expected to produce better results than dHMM. Therefore, we 
have studied performance of mHMM-based classifiers in the 
same cases above. We have used mHMM’s with between 1 and 
10 states and between 1 and 10 Gaussian mixtures/state (100 
different structures). Covariance matrix has been considered 
diagonal. Gaussian mixtures have been initiated by k-means and 
then trained by EM for at most 5 iterations.   
At first logistic maps with a1 = 3.90, and a2 = 3.875 were con-
sidered. In the case of no noise, there is a very high accuracy of 
98.5 ± 3.74% for 9 states and 1 Gaussian/state as the maximum 
accuracy. The best classification percentage for noise-
contaminated data was 74.50 ± 11.55% for 10 states and 2 
Gaussians/state. Because this structure was on the limit of the 
number of states (10 states), it is probable that there may be a 
structure with better performance out of the applied ranges. So 
we continued our study for structures having up to 30 states and 
2 Gaussians/state. The best performance showed to be that of the 
structure with 19 states: 84.75 ± 7.45% [see Figure 1].  
Decreasing the parameter a of the logistic map to a1 = 3.80 and 
a2 = 3.825, we have 79.25 ± 10.31% of correct classification for 
the simple structure of 2 states and 1 Gaussian/state. Conversely, 
there is a decrease in classifier performance increasing the 
chaocity of data to a1 = 3.90 and a2 = 3.925, as the best per-
formance is 71.00 ± 5.39 % for the structure with 1 state and 6 
Gaussians/state, however the difference between Lyapunov ex-
ponents has been increased [see Table 1].  
The classifiers showed 100% accuracy in classification of dif-
ferent classes of data to logistic map and tent map.  
In classification of tent maps, the classifiers were well capable 
as well. Accuracy of 91.75 ± 7.08% for classification of two 
datasets of tent map with r1 = 0.7, r2 = 0.8 for the structure with 
9 states and 2 Gaussians/sate, and 97.50 ± 1.94% for r1 = 0.9, r2 
= 0.8 for the same structure, and 100% for r1 = 0.9, r2 = 0.7 for 
several structures were reached.  
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Figure 1 Classification Accuracy for models of different number of states 
with 2 Gaussian mixtures as the mean of results of 10 times of imple-
mentation of classification of noise-contaminated logistic maps with a1 = 
3.90, and a2 = 3.875 (cross-validation PCV). 

We had good results for Lorenz model. Correct classification 
percentage of Lorenz data with r1 = 90 and r2 = 80 was at most 
84.50 ± 3.72% for 1 state and 4 Gaussians/state mHMM. In-
creasing the length of signals leads to 99.7 ± 0.9% for signals 
with length three times before. Increasing the distance of 
chaocity of two classes of signals, having r1 = 90, r2 = 60, the 
maximum percentage of correct classification was 98.40 ± 
1.02% for 1 state and 1 Gaussian/state mHMM; i.e. using just a 
Gaussian function we can classify these two classes of signals.  

2.2 EEG-Based Mental Task Classification 
We have used EEG data set provided by Department of 

Medical Informatics, Institute for Biomedical Engineering, Uni-
versity of Technology Graz (Gert Pfurtscheller et al.) for BCI 
competition 2003.  

EEG signals were acquired during performing mental tasks 
in a feedback session by a normal subject (female, 25y). The 
subject sat in a relaxing chair with armrests. The task was to 
control a feedback bar by means of imagery left or right hand 
movements according to the cues shown to the subject. The or-
der of left and right cues was random. All data were collected 
on one day with several minutes break in between runs [19].  
There have been several studies on selecting the best EEG-
channels for the purpose of classification of mental tasks [20, 
21] and it has been shown that for recognition of imagery hand 
movements, two or three channels of data over the motor cortex 
are enough to be processed. Mentioned dataset provides data 
only from 3 channels C3, C4, and Cz. Sampling frequency is 
128Hz, and the data is filtered between 0.5 and 30 Hz. There are 
140 trials of 9 second length. In each trial the first 2s was quiet; 
at t = 2s an acoustic stimulus indicates the beginning of the trial, 
and a cross ‘+’ was displayed for 1s; then at t = 3s an arrow (left 
or right) was displayed as the cue. At the same time the subject 
was asked to move a bar into the direction of the cue [19]. 
Therefore, only the period between t = 4s and t = 9s of each trial 
was considered for classification study.  
We have randomly chosen 100 trials as training- and 40 trials as 
test-dataset. This process has been repeated 20 times on ran-
domly separated training and test data and at last the results of 
all these trends have been averaged to provide the total classifi-
cation accuracy percentage.  

In addition to EEG dataset related to movement imagery, men-
tioned here, we have studied raw EEG signal mental task classi-
fication using data recorded during hypnotism sessions in 
RCISP1 by Abootalebi et al. In that case, application of mHMM 
on raw data from all channels has been used for classification of 
mental tasks, relaxation and imagination, in hypnosis and nor-
mal states. Electrodes were placed according to 10-20 standard. 
EEG signal was sampled at 256Hz and filtered using an elliptic 
filter with band-width of 0.5-30Hz and then down-sampled to 
128Hz. Data of 4 subjects with high hypnotizability have been 
used. For each subject, a 1-minute segment of each task was 
selected to be processed. Each 1-minute segment was divided 
into 12 5-second segments. 

2.2.1 dHMM 
At first, we have considered classification of signals using 1s 
windows with no overlap. So HMM’s are to model signals with 
1s length. In the case the result of classification is assigned to be 
the average of results of the classifier for different seconds of 
data, we have 67.63 ± 6.66% accuracy for the classifier with 1 
state and 4 observable symbols/state.  
If we consider the result of classifier for all seconds of data, we 
can see that the classification percentage is decreasing. So the 
best way is to use just the first second for classification. Reasons 
for the observed decrease in classification results can be: 1. the 
user lose his concentration on the task, and 2. existed feedback 
in the BCI system has affected the signals in a way that the 
probabilistic classifier of HMM cannot be well used for their 
classification. To increase the classifier performance, the length 
of window was made half. The best classification percentage 
showed to be for the classifier with 2 states and 16 observable 
symbols/state according to second 0.5s segment of data, which 
is 77.13 %.  

2.2.2 mHMM 
Data preparation is the same as previous section. Initials models 
are selected according to k-means, and maximum iteration for 
performing EM algorithm to train the classifier was set to be 5.  
Averaging the results of classification of different seconds, we 
can see 70.25 ± 9.35% of correct classification for the classifier 
with 5 states and 10 Gaussians/state. As well, it was shown that 
for data classification according to just one second of data, the 
classification percentage decreases using later seconds of data. 
For classification according to 1st second of data the perform-
ance was 76.25%, which is for classifier with 10 states and 6 
Gaussians/state.  
If windows are selected to be 0.5s then the classification per-
formance is 63.75 ± 7.23% for classifier with 8 states and 4 
Gaussians/state. Using first 0.5s segment, there is an increase in 
classification performance to 77.5% for classifier with 8 states 
and 2 Gaussians/state.  
Studies on RCISP data led to not very good percentage of cor-
rect classification for most of subjects in hypnosis state (100, 
79.17, 90.91, 71.43% for 4 considered subjects), while results in 
normal state were satisfactory (91.57, 95.83, 100, 100%, for 
mentioned 4 considered subjects, respectively).  
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3. DISCUSSION AND CONCLUSIONS 

In the case of dHMM, results show that by decreasing the differ-
ence between levels of chaocity of different classes, more com-
plex structures are needed to classify them. As well, if the quan-
tities of Lyapunov exponents of two classes are less then classi-
fication accuracy is more.  
When tent map is considered, dHMM leads to 100% classifica-
tion rate. It shows that the map producing chaotic signal is more 
important than the chaosity level of signal and HMM classifier 
can fit to tent map better than logistic map.   
It has been shown that in lots of cases, making models more 
complex does not lead to better performance of the classifier.  
To find the optimum structure, a number of structures should be 
studied and then, according to the resulted classification per-
centages, the optimum structure will be specified. There is no 
optimum structure for signals of same map with different char-
acteristic parameters (different classes) according to our study. 
But for each two classes of signals we can find the optimum 
structure according to results shown in the table of classification 
accuracy for different structures, provided the selected structure 
is not located on the edge of the table; in such cases, we should 
continue our study to find a structure with a maximum accuracy.  
In the case of Lorenz signals, increasing the length of signal, 
leads to better performance. This verified the fact that it is 
needed to consider chaotic signals in long term.  
Performance of these classifiers was studied in mental task 
classification. In our study, we have reached more than 75% 
of correct classification for imagery movement (77.5% ac-
curacy considering only the first half-second data of each 
trial) and nearly 100% for RCISP data.  
In this study we wanted to show the capability of HMM, a 
probabilistic classifier,  in classification of raw EEG signals, as a 
class of chaotic signals. It should be noticed that in the case of 
using features, such as frequency features, the classification 
accuracy will be much better. As we have studied this case for 
Graz dataset, the results were up to 90% of correct classification. 
As well, features such as fractal dimensions and Hjorth 
parameters [11] have been used with HMM for mental task 
classification with very good performance.  
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