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ABSTRACT
In this paper, we propose a novel approach using the

morphological properties of the R-R segments in an ECG
signal for biometric authentication. The authenticity of a
given R-R segment is decided by comparing it to a match-
ing R-R segment morphologically synthesized from a model
characterizing the identity to be authenticated. The morpho-
logical synthesis process uses a set of R-R segments (tem-
plates), recorded during enrolment at different heart-rates,
and a time alignment algorithm. This ensures the authenti-
cation to be independent of the, usually variable, heart-rate.
The optimum average equal-error-rate obtained in our ex-
periments is 2%.

1. INTRODUCTION

Person authentication has traditionally been achieved by
means of passwords, tokens or PINs, i.e. something that
the person possesses. Biometrics permits to authenticate
a person using his/her inherent individual characteristics,
i.e. something that the person is or produces. Common bio-
metric modalities include fingerprints, voice, facial geome-
try, or iris. Also electrocardiogram signals (ECG), which
reflect the electrical activity of the heart, appear to have a
promising potential for biometric applications as shown by
the identification results reported in [1, 2, 3, 4].

ECG signals are mainly used in diagnosis but they vary
from person to person according to different factors such
as anatomic differences in the heart, gender, relative body
weight, and chest configuration [4]. Detailed clinical diag-
nosis requires the ECG to be recorded using ten electrodes
out of which twelve electrical potential differences (leads)
are derived. In the framework of biometric applications a sin-
gle lead appears to be sufficient [1, 4]. At present, portable
ECG monitors that do not require using conductive gel (dry-
electrode devices) are commercially available. This opens
the possibility for devising convenient biometric appliances
based on mere skin contact.

A biometric authentication system is implemented by
comparing a measurement of a biometric to its model which
results from an enrollment phase. The comparison, in ECG-
based biometrics, relies on the characteristics of the PQRST-
cycles (see Fig. 2a) that compose an ECG recording. Cur-
rent approaches are based on the extraction of features from
a PQRST-cycle [1, 2, 3, 4], in particular the relative location
and amplitudes of the P, Q, R, S, and T peaks (Fig. 2a). In
practice such peaks cannot be precisely determined in an au-
tomated way, e.g. when they do not clearly appear in the sig-
nal as a result of certain electrode configurations, in patho-
logical cases or when the noise level is high. Furthermore

the finite sampling frequency and errors in the detection pro-
cedures contribute to the uncertainty in the determination of
the peak locations.

Rather than determining the peaks locations for feature
extraction, we use the morphology of R-R segments (i.e. the
shape of the signal that is defined by the relative positions of
the characteristic points of the PQRST-cycle) as a means for
comparison between a biometric measurement and a model.
The R-peaks are taken as reference because they are present
in every electrode configuration and can be more precisely
and unambiguously determined as they constitute the high-
est peaks in the ECG signal. Furthermore, all the elements
of a PQRST-cycle are contained within an R-R segment.
Whereas the relative location of the distinctive patterns in
a PQRST-cycle can change as a result of the heart-rate vari-
ability, the morphology of R-R segments remains essentially
unchanged.

In this paper we investigate the use of R-R segments mor-
phology to achieve biometric authentication by obtaining an
equal-error-rate (EER). This approach is tested in our own
database consisting of ten subjects. While larger ECG data-
bases are available online, they are primarily intended for
clinical applications since they mainly contain ECGs affected
by heart conditions. Thus, performing biometric classifica-
tion on such databases could rather lead to the recognition of
diseases.

The rest of this paper is organized as follows. Section 2
presents the basic structure of the biometric authentication
system based on the morphological comparison of R-R seg-
ments and introduces the notion of morphological synthesis.
In Section 3 the preprocessing and R-R segmentation are dis-
cussed. Section 4 describes the algorithm for morphological
R-R segments synthesis. We present our experimental results
and conclusion in Sections 5 and 6 respectively.

2. MORPHOLOGICAL ECG-BASED
AUTHENTICATION

Biometric authenticity is decided on the basis of a score
that quantifies the resemblance between a biometric mea-
surement and the model associated with the enrolled subject
(denoted by i) whose identity was claimed. Such score is
obtained as depicted in Fig. 1.

The digitized ECG signal is first preprocessed and seg-
mented into R-R segments (see Section 3). For each R-R
segment (s), the corresponding R-R length (ρ) is determined
(for convenience we quantify the duration of a digital signal
in terms of its length in number of samples).

The current R-R segment is amplitude and length normal-
ized so that its sample-values are scaled in the range [−1;+1]
and it contains L (length-normalization parameter) samples.
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Fig. 1. Morphological ECG-based authentication

The amplitude normalization is done by dividing the positive
(resp. negative) samples by the absolute value of the maxi-
mum (resp. minimum) sample-value in the current R-R seg-
ment. Because of the heart-rate variability, the R-R segments
have in general different lengths. We normalize the length of
each R-R segment using standard spline-fitting interpolation
so as to get L equidistant points. Henceforth the normalized
version of any signal is denoted using the ”¯” symbol. Thus,
s̄ is the normalized version of s.

An estimate of the normalized version of s denoted as ˆ̄si is
morphologically synthesized using the length-normalization
parameter L, the current R-R length ρ , and the elements in
the set { ri, j

∣

∣1 ≤ j ≤ J} where the number of elements J ≥ 2
is the model order. The model of subject i consists of the
set of enrolled templates {ri, j} (having respective lengths
{ρi, j}) and the morphologic synthesis algorithm. A partic-
ular choice for the morphologic synthesis algorithm is de-
scribed in Section 4. Another approach to morphologically
synthesize ECG signals can be found in [5].

The similarity score between s and the model is equal to
the l2-norm of s̄ and ˆ̄si, i.e.

∥

∥s̄− ˆ̄si
∥

∥. To decide the authentic-
ity of the claimed identity this score is usually compared to
a threshold θ . The identity is authenticated if

∥

∥s̄− ˆ̄si
∥

∥ < θ .
The threshold is set depending on the application and trades
security versus convenience (see Section 5).

3. PREPROCESSING AND R-R SEGMENTATION

Prior to detecting the R peaks, the ECG signal is
preprocessed using a Savitzky-Golay (SG) time-domain
smoothing filter [6]. This is a standard filter choice in ECG
signal processing which fits a polynomial function to the data
surrounding each sample and replaces it by the value of its
fitted polynomial.

Among the various approaches [7] used to automatically
identify the constitutive elements of a PQRST-cycle, we fo-
cus on the algorithm described in [8]. This algorithm pre-
serves the sharp components in the signal, can effectively
remove baseline drifts, does not require any specific assump-
tions other than the sharpness of the peaks and valleys con-
stituting the PQRST-cycle, and is computationally efficient.

In Fig. 2 we briefly sketch the processing steps leading
to the R-R segmentation. An in-depth description of this
process can be found in [8]. In Fig. 2a a preprocessed ECG

Fig. 2. R-R segmentation

signal (x) is shown. A significant baseline drift is apparent
in such signal. To detect the R peaks, an R-peak enhanced
signal (xenh) is derived from x (Fig. 2b). This signal allows
for straightforward R-peak detection using simple threshold-
ing. The baseline drift is removed using a baseline estimate
signal denoted as xbase (Fig. 2c) which is subtracted from x
to derive the baseline-corrected signal in Fig. 2d. The R-R
segments are delimited by the ’*’ symbols in Fig. 2d.

4. MORPHOLOGICAL R-R SYNTHESIS

We formalize the process of morphologically synthesizing R-
R segments as follows. Given a set of R-R templates sharing
a common morphology: { ri, j

∣

∣1 ≤ j ≤ J} (e.g. the set asso-
ciated with the model of subject i) with respective lengths
{ρi, j

∣

∣ρi, j < ρi, j+1} and the current R-R length ρ , we seek
to generate a normalized R-R segment ˆ̄si that has the same
morphology as the elements in {r̄i, j}. The case ρ ∈ {ρi, j} is
trivial as ˆ̄si is equal to r̄i, j such that ρi, j = ρ .

When ρ /∈ {ρi, j} the morphological synthesis problem is
solved using the notion of time alignment for comparing two
signals. Time alignment is essentially used to match morpho-
logically close signals that do not evolve at the same pace.
Time alignment algorithms include linear time normaliza-
tion and dynamic time warping [9] (DTW). The latter is used
here.

DTW is mainly used in speech applications to achieve
time alignment between a reference signal and a test signal
whose time scales are not aligned. Thus, DTW results in a
nonlinear warping path that compensates for local compres-
sion or expansion of the time scale. In Fig. 3, we depict the
path corresponding to the normalized versions of two ”mor-
phologically close” R-R segments denoted as x̄1 and x̄2. The
reference signal x̄1 and the test signal x̄2 are reported in the
vertical and horizontal axes respectively. The path (denoted
as Px̄1,x̄2) exhibits diagonal segments in the regions corre-
sponding to similar patterns in x̄1 and x̄2, and horizontal or
vertical segments where the signals do not align.

For our purposes we slightly modified the DTW algo-
rithm by removing vertical segments in order to make Px̄1,x̄2
a function from the x̄2-domain into the x̄1-domain. Thus, a
vertical segment was replaced by a single point correspond-
ing to the mean vertical value along the considered segment.

Using the fact that Px̄1,x̄2 aligns matching temporal pat-
terns, an estimate for the test signal x̄2 (denoted as ˆ̄x2) can be
obtained from the reference signal x̄1 and the path Px̄1,x̄2 . If
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Fig. 3. Path Px̄1,x̄2 between x̄1 and x̄2

n = Px̄1,x̄2(m) then the following relations hold:

ˆ̄x2(m) = x̄1(n)
⇒ ˆ̄x2(m) = x̄1(Px̄1,x̄2(m)) ; m = 1, . . . ,L.

(1)

The relations in (1) serve as basis for synthesizing ˆ̄si from
{ri, j}. By arbitrarily choosing a reference template (denoted
as ri,k) in {ri, j} and replacing x1 (resp. x2) by ri,k (resp. si)
in (1), we have:

ˆ̄si(m) = r̄i,k(Pr̄i,k,s̄i(m)) ; m = 1, . . . ,L. (2)

To estimate the path Pr̄i,k,s̄i , we consider the association
between each template length ρi, j with its respective (inter-
template) path Pr̄i,k,r̄i, j with ri,k as reference. For each positive
integer ρ , such path can be estimated from the inter-template
paths, the template lengths and ρ . Thus, an estimate for Pr̄i,k,s̄i

(denoted as P̂r̄i,k,s̄i) can be obtained through a functional F :

P̂r̄i,k,s̄i = F (Pr̄i,k,r̄i,1 , . . . ,Pr̄i,k,r̄i,J ,ρi,1, . . . ,ρi,J,ρ). (3)

A particular choice for F , which we adopt here, corre-
sponds to a linear combination of the inter-template paths (4).

P̂r̄i,k,s̄i(m) =
J
∑
j=1

αi, jPr̄i,k,r̄i, j(m) ; αi, j ∈ R, (4)

where each coefficient αi, j depends on the template lengths
and ρ . For notation convenience we do not explicitly denote
such dependency.

The monotonicity of P̂r̄i,k,s̄i can be ensured by constrain-
ing the weighting coefficients αi, j or by post-processing. A
possible form of post-processing can be defined as follows:

P̂′
r̄i,k,s̄i

(m) =

t
J
∑
j=1

αi, jPr̄i,k,r̄i, j(m)

|

P̂r̄i,k,s̄i(m) = max(P̂r̄i,k,s̄i(m−1), P̂′
r̄i,k,s̄i

(m)),

(5)

where 2 ≤ m ≤ L, P̂r̄i,k,s̄i(1) = P̂′
r̄i,k,s̄i

(1) and J·K is the nearest
integer function. Using the estimated P̂r̄i,k,s̄i in (2), yields:

ˆ̄si(m) = r̄i,k

(

P̂r̄i,k,s̄i(m)
)

. (6)

A possible approach for obtaining the linear combination
coefficients αi, j consists in using the Lagrange interpolation
formula:

αi, j = ∏
l 6= j

ρ −ρi,l

ρi, j −ρi,l
. (7)

Instead of using the full set of templates to determine the
αi, j’s (full template selection FTS), it is possible to select
only two neighboring templates ri,k,ri,k+1 in {ri, j} depending
on ρ (neighboring template selection (NTS)). The lengths
of the chosen templates are such that: ρi,k < ρ < ρi,k+1. If
ρ < ρi,1 (ρ > ρi,J) then k = 1 (k = J−1). P̂′

r̄i,k,s̄i
(m) can then

be determined from (5) by setting αi, j
∣

∣

j 6=k,k+1 = 0:

P̂′
r̄i,k,s̄i

(m) =
r

αi,kPr̄i,k,r̄i,k(m)+αi,k+1Pr̄i,k,r̄i,k+1(m)
z

=
r

αi,km+αi,k+1Pr̄i,k,r̄i,k+1(m)
z

,
(8)

where αi,k =
ρ−ρi,l

ρi,k−ρi,l
and αi,k+1 = 1−αi,k. Thus, αi,k,αi,k+1

relate to linear interpolation.

5. RESULTS

The ECG signals for our experiments were acquired at a sam-
pling frequency of 128 Hz by means of two electrodes placed
on both wrists using the dry-electrode ECG acquisition de-
vice described in [10]. An anti-aliasing filter and a power-
line notch-filter are embedded in the device.

Ten subjects participated in five five-minute long exper-
imental sessions distributed over four weeks. Subjects were
instructed to remain sufficiently quiet so as to reduce muscu-
lar noise. Two-hundred noise-free R-R segments per subject
were manually selected to obtain the EER corresponding to
the authentication based on a single R-R segment.

The EER is a common biometric performance indicator
which corresponds to the rate at which the false accept rate
(FAR, i.e the fraction of R-R segments incorrectly authenti-
cated) is equal to the false reject rate (FRR, i.e. the fraction
of R-R segments incorrectly rejected). FAR and FRR can be
traded using the threshold θ .

We estimated the EER for each subject as the average of
a ten-fold cross-validation. The R-R segments of each sub-
ject were randomly divided into ten groups and ten estimates
for the EER were obtained. In each estimate one group was
set apart for building the biometric model and the remaining
(nine) groups along with nine groups corresponding to each
of the other nine subjects were used to compute the EER.

Given a cross-validation group, the J templates for the
biometric model were chosen so that their lengths were
(approximately) uniformly distributed between the lengths
of the shortest and longest R-R segments in the group.
The number of templates was chosen to be equal for each
enrolled-subject’s model.

Different combinations for the length-normalization and
model order parameters were tested in terms of the average
EER across subjects. In Fig. 4 we depict the average EERs
resulting from using FTS (unfilled symbols) and NTS (filled
symbols).

The EER associated with FTS has a tendency to increase
with the model order for each choice of L. The lowest EER
corresponds to J = 2 and L = 300. The linear interpolation
appears then to be optimal. This result leads to the NTS ap-
proach in which only linear interpolations are performed.
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For J = 2 both approaches give the same result. However,
the EER for the NTS is noticeably lower for higher J regard-
less of L. The lowest EER is equal to 0.033 for L = 300
and J = 2. The optimum value for L is 300 for both ap-
proaches. From our results it appears that increasing J be-
yond 5, does not lead to an important decrease in EER. This
suggest that building a biometric model necessitates only
few R-R segments whose lengths must conveniently be cho-
sen between the longest (corresponding to the lowest heart-
rate) and shortest (corresponding to highest heart-rate) pos-
sible lengths. Thus, a possible enrolling strategy can consist
in eliciting low and high heart-rates through relaxation and
physical activity.

To investigate the increasing trend (with the model order)
of the EER associated with the FTS approach, the EERs are
computed when the required length is inside and outside the
interval defined by the shortest and longest templates. These
cases are respectively referred to as interpolation and extrap-
olation. In Table 1, we report the EERs associated to few
combinations of L and J for interpolation and extrapolation
corresponding to the FTS and NTS approaches. In every
case, the extrapolation-EER is higher than the correspond-
ing interpolation-EER. The lowest EER (2%) occurs for the
interpolation in the NTS approach. This result remains con-
stant for different model orders and length-normalization val-
ues.

Comparing the extrapolation-EERs for both FTS and
NTS leads to the following observations. First, the
extrapolation-EER is higher in FTS than in NTS for each pair
L,J. Second, the extrapolation-EER increases faster with J
in the FTS approach.

Extrapolation leads to higher EER for both FTS and NTS.
Possible solutions to handle this issue are: discarding those
R-R segments whose lengths lead to extrapolation or en-
sure that the enrolment procedure includes templates with
extreme lengths.

Biometric modalities for authentication are evaluated ac-
cording to different criteria among which we mention EER,
convenience, privacy concerns, and identity theft deterrence.
As far as EER is concerned, the early results of our approach
can compare with hand-geometry (0.01), face (0.03), and fin-
gerprint (0.05) based authentication [11]. Yet, ECG offers
advantages in terms of convenience and identity theft deter-
rence. Indeed, the ECG can be simply acquired through hold-
ing two electrodes for few seconds. In addition, it appears to
be difficult counterfeiting someone’s ECG without the help
of sophisticated equipment.

Privacy concerns apply to the proposed ECG-based au-
thentication system, since it is required to store templates in
the system. Such storage can be nevertheless made secure by
using cryptographic techniques specially developed for bio-
metric applications [12].

6. CONCLUSIONS AND FUTURE WORK

In this paper we used the morphological characteristics of
R-R segments to achieve biometric authentication. The re-
semblance between an R-R segment and a biometric model
was quantified by means of a novel algorithm that allowed
us to morphologically synthesize a matching R-R segment in
function of the current heart-rate. Thus, the authentication
was made independent of the (usually variable) heart-rate.

The optimal approach and parameters choice for the mor-

Fig. 4. Average EER across subjects, FTS (unfilled sym-
bols), NTS (filled symbols)

FTS NTS
Interp. Extrap. Interp. Extrap.

L = 300,J = 6 0.046 0.092 0.022 0.061
L = 300,J = 8 0.050 0.127 0.022 0.071
L = 300,J = 10 0.056 0.157 0.022 0.084
L = 700,J = 6 0.045 0.074 0.021 0.059
L = 700,J = 8 0.050 0.116 0.022 0.052
L = 700,J = 10 0.052 0.165 0.021 0.073

Table 1. EERs associated with extrapolation and interpola-
tion for the FTS and NTS approaches

phological synthesis were defined in function of the biomet-
ric performance in terms of EERs. Thus, the dynamic se-
lection of elements in the biometric model in function of the
current heart-rate appears to bring the lowest EER.

In order to deal with degraded EERs caused by extrapola-
tion, those R-R segments with lengths outside the interval de-
fined by the shortest and longest templates can be discarded.
This can lead to a substantial improvement of the EER. In our
experiments the EER decreased from 3% to 2% (see Fig. 4
and Table 1).

Another strategy to limit the extrapolation effect would
consist in ensuring that the enrolment procedure includes R-
R templates having extreme lengths. This can be achieved
by eliciting low and high heart-rates through relaxation and
physical activity.

Authentication was done on the basis of a single R-R seg-
ment. This can be extended to a sequence of R-R segments.
Thereby further decreases in EER are expected.

To evaluate further the validity of our approach, the algo-
rithms presented in this paper are being tested in a database
comprising more subjects with measurements taken during a
longer time span to take into account ECG differences across
time.
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[7] B.-U. Köhler, C. Henning, and R. Orglmeister, “The
Principles of Software QRS Detection,” IEEE Engi-
neering in medecine and Biology, vol. 21, no. 1, pp.
42–57, 2002.

[8] P.E. Trahanias, “An Approach to QRS Complex Detec-
tion Using Mathematical Morphology,” IEEE Trans-
actions on Biomedical Engineering, vol. 40, no. 2, pp.
201–205, 1993.

[9] H. Sakoe and S. Chiba, “Dynamic programming algo-
rithm optimization for spoken word recognition,” IEEE
Trans. Acoustics, Speech, Signal Processing, vol. 26,
no. 1, pp. 43–49, 1978.

[10] F. van de Bovenkamp, “Heart tuner pro-04 user guide,”
http://www.heartcoherence.com/userguide/
pro04UserGuide.htm.

[11] T. Mansfield, G. Kelly, D. Chandler, and J. Kane,
“Biometric Product Testing Final Report,”
http://www.cesg.gov.uk/site/ast/biometrics/media/
BiometricTestReportpt1.pdf, 2001.

[12] P. Tuyls, A. H. M. Akkermans, T. A. M. Kevenaar, G-J.
Schrijen, A. M. Bazen, and R. N. J. Veldhuis, “Practi-
cal biometric authentication with template protection,”
in 5th Int. Conf. on Audio- and Video-Based Personal
Authentication (AVBPA), July 2005, vol. LNCS 3546,
pp. 436–446.

©2007 EURASIP 742

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

