15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

H.264 FRACTIONAL MOTION ESTIMATION REFINEMENT: A REAL-TIME AND
LOW COMPLEXITY HARDWARE SOLUTION FOR HD SEQUENCES

F URBAN'2, R POULLAOUEC!, JF NEZAN?, O DEFORGES>

(1) THOMSON RD FRANCE,
Video Compression Lab
1 av. de belle fontaine, CS 17616
35576 Cesson Sévigné CEDEX, France
fabrice.urban @thomson.net

ABSTRACT

The MPEG-4 AVC/H.264 video compression standard introduces
a high motion estimation complexity. Quarter-pixel accuracy and
variable block size enhances compression performances, but in-
crease computation requirements. We propose a low complexity
VLSI design for variable block size fractional motion estimation of
high definition video sequences. Thanks to an improved datapath a
high throughput is achieved with low logic resources. A complete
real-time motion estimation application has been prototyped on a
heterogeneous platform comprising a DSP and a FPGA. The sys-
tem achieves motion estimation of 720p sequences at 60 frames per
second.

1. INTRODUCTION

Motion estimation is known to be a key operation for video com-
pression. A highly accurate motion estimation can significantly re-
duce the bit-rate of a video stream, but involves a high computa-
tional complexity. For the H.264 video compression standard up to
60% of the computation load of the video encoder concerns motion
estimation with multiple reference frames, variable block search
and Fractional-accuracy Motion Estimation (FME).

Integer Motion Estimation (IME) has been widely studied in the
past few years. Fast algorithms have been developed to reduce the
computational burden without decreasing quality [1} 2| 3], and a lot
of VLSI architectures have been designed [4} 15, 16].

However with FME, the complexity and memory bandwidth
are highly increased. A few work on FME coprocessors can be
found [[7,18,19]. This paper presents a new design to refine a motion
vector to sub-pixel accuracy. The datapath of the Processing El-
ement (PE) is optimized for fractional-pixel accuracy. The design
achieves high efficiency with limited hardware resource. It supports
variable block size with no hardware modification and Lagrangian
cost computation.

The design has been prototyped in a complete motion estima-
tion application on a multicomponent platform. A Digital Signal
Processor (DSP) computes IME and an FPGA refines the motion
field to quarter-pixel accuracy using H.264 standard interpolation
filters. The system achieves real-time motion estimation on 720p
(1280x720) sequences up to 60 frames per second.

introduces
proposes an

The paper is organized as follows: Section
fractional-pixel accuracy motion estimation, section
optimized VLSI design, section[dgives prototyping results on a het-
erogeneous platform, finally section[3]concludes.
2. FRACTIONAL-PIXEL ACCURACY MOTION
ESTIMATION OVERVIEW

Increasing the precision of motion vectors enhances the compres-
sion performances of a video encoder, but introduces an extra com-
putation cost. This section evaluates the complexity of fractional-
pixel motion estimation for H.264 high definition video encoding.
In the MPEG-4/AVC H.264 standard, the quarter-pixel accu-
racy luminance picture is interpolated with two successive filtering

©2007 EURASIP

836

(2) IETR/Image group Lab
UMR CNRS 6164/INSA
20 av. des Buttes de Coésmes
35043 RENNES Cedex, France
jnezan,odeforge @insa-rennes.fr

stages [[10]. Half-pixel samples are interpolated first using a 6-tap
separable FIR filter with coefficients (1,-5, 20, 20, -5, 1). Once half-
pixel samples are available, quarter pixel samples are computed by
averaging two adjacent samples horizontally, vertically or diago-
nally.

The computation overhead introduced by sub-pixel refinement is
due to two operations: the interpolation of sub-pixel samples and
the evaluation of new displacements (distortion computation).

2.1 Interpolation strategy

The image resolution is enhanced, involving the use of interpolation
filters, and higher memory constraints. Interpolating the full sub-
pixel frame before motion estimation is usually banished because of
the huge necessary memory bandwidth (For quarter-pixel FME the
memory size and bandwidth are increased by a 16:1 ratio compared
to IME). Instead an on-the-fly interpolation strategy is preferred.
the filters are applied on a small search window around the best
integer-pixel accuracy matching block (Fig.[T). Memory constraints
are thus reduced. Hardware and software implementations can take
advantage of high bandwidth local memories. External memory
access concern only integer-pixel accuracy data.

o O Oo-o0o-0-0-0-0 04 |

o O Oo-0O Oo-0-0-0o 0O O

o O F I [y o O O
13+ [B I

o O OoO-p~-&F-CO—-8 -0 0 |
15+ EE A | I

o O D-I'E-D o-m-o O |
O DRGNS

o O D-ﬂ]-D-D-I%I-El O O
[IR O R + i

o O O-GE-O—-+8E-#-0 0O O
[B S B B B

o O o-0-0-0-0o 0 O

o O o-o0o-0o-0-0-0 0]

o O Oo-o0o-0-0o-0o-0o 0 |

Legend:

Pixel location Half pixel samples
- horizontally interpolated
| vertically interpolated

+ horizontally & vertically

Integer-accuracy best
match Reference block

¢ Search windows

£ (+- Y pixel) . Quarter pixel samples

Figure 1: Sub-pixel search window and necessary data to compute
quarter-pixel samples for a 4x4 block

2.2 Search strategy

The density of candidate motion vectors is increased. To limit the
number of search points a two-step approach is generally preferred:

EUSIPCO, Poznan 2007

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

The motion is estimated at integer pixel accuracy and then refined
to quarter-pixel with a limited search range (usually r < 1 pixel)
around the integer-accuracy best match.

The FME search strategy depends on the target and implementa-
tion. For hardware implementations a restricted full search usually
reduces logic control and optimizes the datapath. For software im-
plementations it is better to reduce computations and a two step
approach (logarithmic search [1]]) is usually adopted.

3. PROPOSED VLSI ARCHITECTURE FOR FME

Despite the small search window of sub-pixel refinement, this step
is the most computationally intensive part of motion estimation.
This section describes a dedicated VLSI architecture for fractional-
pixel accuracy motion vector refinement. It achieves high through-
put with low memory bandwidth and low resource utilization.

3.1 Opverall VLSI architecture design

To benefit from the high degree of parallelism of a VLSI implemen-
tation the algorithm must be regular. Therefore a quarter-pixel accu-
racy full search approach with Lagrangian optimization is adopted
with a search range of 3 7 pixels in each direction. 48 candidates

((2*3+ 1)2-1) are evaluated around the IME best match. Neces-
sary input data are the pixel-accuracy reference window, the current
block and the differentially coded integer-accuracy motion vector in
order to compute a Lagrangian cost for each candidate.

The sub-pixel refinement coprocessor includes (fig[2) a quarter
pixel interpolation module to generate sub-pixel samples. A Pro-
cessor Element (PE) matrix is in charge of computing a distortion
measure for each candidate displacement. The adopted distortion
measure is the Sum of Absolute Differences (SAD). The best can-
didate (holding the smallest SAD) is finally selected in the decision
tree. The block size is parameterizable without any hardware mod-
ification in order to support multiple block size motion estimation.

Subpixel Refinement coprocessor

Quarter-pixel

Reference p ati .| PE matrix
ixel data ™ interpolation >
P filter Decie Moti
ecision otiony
Block size I i » Vector

Current
pixel data

Figure 2: Overall pipeline design

The design of each module is in adequacy with the throughput
of previous one. The datapath is thus optimized. The design allows
high throughput with low resources utilization. External memory
bandwidth is kept low thanks to efficient data reuse.

3.2 Interpolation filters

Sub-pixel data is interpolated on-the-fly to eliminate the need for
data memorization. Reference window pixels are input serially in
raster-scan order beginning from top-left corner of the reference
window. Once the filter is initialized (depending on the filter size),
16 quarter-pixel samples are generated per input pixel, as shown in
Fig. B}left. To improve parallelism p input pixels are processed si-
multaneously per clock cycle, resulting in outputting 16 X p quarter
pixels per clock cycle.

Any interpolation filter can be used: from H.264 filters for best
accuracy to bilinear filter for resources and time saving.

3.3 PE matrix

From existing dedicated architectures for IME that can be be found
in previous work [4, 15 [11]], designs using inter-layer parallelism [S]]
(or type II architecture [4]]) best fit line-scan input mode and small
search range and best minimize the hardware resources.

©2007 EURASIP

837

g8 8-B-E-R-0-0 0 4 quadrants of the reference window
[] =] for a 1 pixel block
according to data availability
[}]
(] [m]] o
O O0pH AO
g 8 g 8 @ ® @20 2
o
=
0 o 0 o @ O O O £
coploqol s
0 ° O OO OGN0, ||2
(SRS (SIS 6@ O ®10 =
0 0 @-@-0-08-0-8 8 OQO QOO
=]] Oo-o-O0-0-0-0 =] o
Legend: 7 quarter-pixels

@ Pixel location Half pixel samples
- horizontally interpolated
|vertically interpolated

+ from previous %2 pixels

@ Center pixels

« Quarter pixels interpolated
 values per input reference
" pixel

. Quarter pixel samples

Figure 3: Scheduling of H.264 filtered sub-pixels availability for a
4x4 block (left) and distortion dependencies (right)

In existing full-search sub-pixel refinement architectures [8} 9]
the interpolation filter is not included in the study. We propose here
a distortion computation matrix architecture that match the interpo-
lation filter design to reduce hardware requirements. In addition the
subsequent decision tree is also reduced.

3.3.1 Integer-pixel accuracy full search modeling

In[4] the full search Integer Motion Estimation (IME) algorithm
with a search range of +/- r for a n X m block is expressed as 4
nested loops (Alg. [I).

Algorithm 1 IME nested loops

fork = 1..m (block height)
forl =1..n (block width)
forAi = —r..r (vertical search range)
forAj = —r..r (horizontal search range)
SAD(Aj, A+ = |x1 (k,1) —xp (k+ AL, 1+ Aj)|
endAj
end Ai
endl
endk

x1 denotes current picture and x; reference picture

Inter-layer parallelism is obtained by unrolling Ai and Aj loops
in hardware. The distortion measure is computed simultaneously
for every search point in (2 x 4 1)? PEs. This model results from
two hypothesis: firstly the current pixel x;(k,!) is broadcast to all
PEs and secondly all reference pixels from x; (k—r,l —r) to xp (k+
r,l +r) are available and propagated to the PEs with registers.

3.3.2 Inverted sub-pixel accuracy full search modeling

For Fractional Motion Estimation (FME) images x; and x; do not
have the same scale. Data density is higher for the search window
then for the current block. Consequently the number of propaga-
tion register increase exponentially with the accuracy [8]. To re-
duce the number of registers, the technique used in [11] for IME,
which consists in broadcasting reference window data to the PEs
and propagating current block can be derived to FME: reference
window data is spread to appropriate PEs. Alg. [T]is then inverted
(letu = k+Aiand v =1+ Aj) and two loops (Ag and Ah) are added
to handle fractional-pixel accuracy. The model is transformed into
Alg. 2] The number of registers is then independent of the sub-pixel
accuracy. Ai and Aj are integer displacements and Ag and Ah are

EUSIPCO, Poznan 2007

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

sub-pixel accuracy displacements with a being the accuracy factor
(i.e. a = 2 for half pixel, a = 4 for quarter-pixel).

Algorithm 2 new FME nested loops

foru=1—s..m+s (block height)
forv=1—s..n+s (block width)
forAi = —s..s (integer vertical search range)
forAj = —s..s (integer horizontal search range)
forAg = —(a—1)..0 (fractional v. search range)
forAh = —(a—1)..0 (fractional h. search range)
SAD(Aj,Ai)+ = |x1 (u— Ai,v — Aj)
—xp(au+ Ag,av+ Ah)|
end Ah
end Ag
end Aj
end Ai
endv
endu

with —r < aAi+Ag <rand —r<aAj+Ah<r
and 1 <u—Ai<mand1 <v—Aj<n

Loops Ai, Aj, Ag and Ah are unrolled in hardware (e.g. for quar-
ter pixel accuracy this results in a 7 x 7 PE matrix). As a result
reference pixels from x;(ak — r,al — r) to xp(ak,al) are spread to
appropriate PEs and current pixels xj(k,/) to xj(k— s,/ —s) are
propagated.

The inequalities 1 <u—Ai <m and 1 <v—Aj < n are en-
sured in hardware by propagating “Enable” signals of the PEs along
with current block data. The first a® cost results are available after
m(n+ 1) cycles, the subsequent ones after appropriate delays. The
resulting systolic architecture (Fig.) has many advantages.

e Propagation registers concern now the current block and their
number is roughly divided by a?2.

e The subsequent comparison unit is reduced (shorter pipeline)
because the distortion results of search points are not available
simultaneously.

e The system works as fast as the interpolation filter can provide
data because search area samples computed on the fly are used
immediately.

o Interpolated data are never stored, thus saving bandwidth and
memory/registers.

The proposed architecture reduces hardware requirements over pre-
vious ones while giving optimal performances. The distortion com-
putation unit and the comparison tree are designed taking into ac-
count data dependencies with interpolation filter. The absolute dif-
ferences between the quarter-pixel samples and the current pixel
values are computed as soon as the data is available then accumu-
lated. Fig[]shows the design of the SAD computation matrix. For
clarity of the figure only half pixel is represented (a =2 and r = %)
and p = 1. The 9 positions are partitioned in 4 quadrants because
of data causality (current block propagation). Each quadrant repre-
sents the unrolling of Ag and Ah loops of Alg[2] The 4 quadrants
is the result of the unrolling of Ai and Aj loops. The top left quad-
rant is started first, the top right quadrant is delayed by one cycle
and the delay of the bottom quadrants corresponds to the compu-
tation of one line. Dummy cycles necessary to fill the search area
registers are removed from the initialization step. Instead results
are partitioned according to data availability and the decision tree
resources are reduced. Indeed the comparison units are shared; for
quarter-pixel accuracy there are at most a> = 16 values (out of 49)
to compare at a time.

This architecture makes full use of the inter-layer parallelism,
and in addition supports intra-level parallelism. Performances can
be increased by unrolling Al loop by a factor p. The detail of PE
implementation on the fig[3] corresponds to p = 2. At each cycle
2 absolute differences are computed and accumulated. The perfor-
mances are thus roughly doubled at the cost of a hardware resource

©2007 EURASIP 838

increase (the interpolation filters and PE matrix are enlarged).

In order to consider rate-distortion optimization, the SAD accu-
mulator is initialized by a value corresponding to the Lagrangian
cost of the vector. This value is computed with very low hardware
resources during the initialization of the interpolation pipeline.

Search area

x2(k] o) @II§I§2(k,l+1)
O | @ 2+

X2KHLY g '

Current block pixel x1(kt1,1) | PE | IEIEI
xl(k+l,l+l)—‘ —I

First quadrant

A,

"""" A |
oh [0} o4 (o) B8
- n: block width - - // 1
Legend Fourth quadran

IEl Register for current block data propagation

Processing Element

Figure 4: SAD matrix design (half pixel)

Current pixels[0..d-1]

Reference |
area
pixels[0..d-1]

{ —

Adder

=
Cost w Accumulator
initialization
|
SAD

Figure 5: PE design

This architecture is compatible with a low memory bandwidth
but achieves a high degree of parallelism. The use of both inter- and
intra-level parallelism further enhances performances.

Hardware resources are almost independent of the block size.
The block size is parameterizable with no hardware modification.

3.4 Decision tree

To obtain the optimal motion vector, costs function computed in
the PE matrix are compared to each other in a dedicated compari-
son tree (Fig.[6). Simultaneously available values (issued from the
same quadrant) are compared in a binary tree structure. The lowest
cost of each quadrant is then sequentially compared to the current
optimum. Finally the sub-pixel motion vector is output when the
4th quadrant’s costs have been processed.

The binary tree base size is limited to a? thanks to the early start
of distortion calculation in the PEs. Consequently its resources are
shared between the 4 quadrants without delaying the result. On the
contrary, because there are less values to compare the processing
pipeline is shorter.

EUSIPCO, Poznan 2007

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

_ Motion Vector
=

AI"AI
T

Figure 6: Decision tree

Half pixel filter [

Read reference block
Quarter pixel filter
SAD computation
Read current block
Decision

Output data

Time (Clock cycle)

40 43

(a) H.264 filter

Bilinear filter [

Read reference block
SAD computation
Read current block
Decision

Output data

Time (Clock cycle)

=3

(b) Bilinear filter

Figure 7: Units scheduling for p =2

3.5 Implementation results

Compared to previous motion estimation architectures, the data is
processed as soon as it is available instead of waiting for the whole
search window. Data register count and logic are thus reduced
thanks to an improved datapath.

Input Filter pipeline | Total
width type length | cycles
p=1Dbyte H.264 13 209
Bilinear 8 108
p=2bytes | H.264 14 112
Bilinear 9 59
p =4 bytes H.264 14 70
Bilinear 9 39

Table 1: FPGA implementation timings

The number of cycles necessary to refine an 8x8 motion vector
to quarter-pixel accuracy is given table (1| for different implemen-
tations. The implementation of the refinement with an intra-level
parallelism of 2 pixels per cycle results in 112 cycles latency with
the H.264 interpolation filter and 59 cycles with the bilinear filter.
The difference is due to the filter size which implies a longer initial-
ization time for horizontal and vertical interpolation with the stan-
dard filter (Fig.[7). The system using the H.264 filter and clocked
at 133MHz produces a result in 840ns for 8x8 blocks. This is fast
enough to handle 720p frames at 60Hz. For better performances,
intra-level parallelism can be increased.

Tab 2] gives synthesis results for the quarter pixel refinement im-
plementation with H.264 filter and 2 pixels per cycle on a Xilinx
Virtex 2 Pro FPGA. Resources can be drastically reduced with a
bilinear filter, for which an intra-level parallelism of 1 pixel per cy-
cle is sufficient to obtain comparable timing results. The maximum
frequency is 150 MHz. A 32x32-bits multiplier is used to compute
the Lagrangian cost. The propagation registers necessary in the in-

©2007 EURASIP

839

register Max 4-input | Gate
Implementation | block size | LUTs count
Block RAM (10) 8x8 6.3K 98K
Block RAM (10) 16x16 64K | 99.5K
LUTs (1.4 Kb) 8x8 7.4K 127K
LUTSs (2.5 Kb) 16x16 8.9K 162K

Table 2: Synthesis results on XC2VP20-5

terpolation filters and PE matrix are implemented in RAM blocks.
Consequently the logic cost is reduced and almost independent of
the block size. The design supports then variable block size with
virtually no extra cost.

4. MULTICOMPONENT ME PROTOTYPE

A complete motion estimation application has been prototyped on a
heterogeneous platform composed of a TI Digital Signal Processor
C6416 at 1GHz and a Virtex 2 Pro FPGA. The DSP runs the IME
algorithm and the FPGA handle FME refinement. The operations
have been efficiently scheduled to take advantage of the available
parallelism of the platform.

4.1 IME on DSP

Many IME have been developed to find a compromise between
computation complexity and motion vector accuracy [1} [12} 13|
14} 12, [15]. The well-known EPZS (Enhanced Predictive Zonal
Search) [2] and hierarchical (HME) [[15] algorithms have been im-
plemented and evaluated in [3]. EPZS offers good performances
both in execution time and accuracy. HME is more robust but is
more computationally intensive. For the rest of this paper EPZS al-
gorithm have been retained since it is faster and more popular for
software implementation.

4.2 FPGA as a sub-pixel refinement coprocessor

The sub-pixel refinement operation being very computationally in-
tensive, this task is performed on an FPGA where the design pre-
sented above is implemented.

The IME is based on a predictive algorithm (cf Section [A.).
Previously estimated motion vectors are necessary to predict the
current motion as well as to compute the Lagrangian cost. This
causes data dependencies between IME and FME which results in
inevitable sequential processing. To take advantage of the parallel
multicomponent architecture the motion vector of the left block is
input in the IME stage at integer accuracy instead of quarter-pixel
accuracy. As a result the motion estimation architecture is a 2-stage
pipeline. The first stage is the IME on DSP and the second stage is
the FME on FPGA (Fig.[§).

DSP FPGA
Pel
FME| IME block 0 -
stage|stage Pel 1/4-pe
£ 2 block 1| [block 0 =
. . Pel 1/4-pel | |2
Fractional-pixel accuracy block 2| [block 1{|®
results avialable Pol Tapel
Integer-pixel accuracy block 3| _[block 3
results avialable

Figure 8: Block-level pipeline implementation

4.3 Timing results

The table [3| gives timing results per block and per 1280x720 high
definition frame. The DSP runs the EPZS Integer motion estimation
algorithm at 900 ns for a 8x8 block and 4000 ns for a 16x16 block.

EUSIPCO, Poznan 2007

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

The sub-pixel refinement on the FPGA takes only 842 and 1925 ns
and is realized in parallel thus with no overhead.

Practical results however present an execution time of 1250 and
4600 ns for 8x8 and 16x16. The small overhead is due to the pro-
totyping platform constraints. No external memory is connected to
the FPGA thus current block and reference window must be trans-
ferred by the DSP to input buffers on the FPGA. This increases
refinement operation which has to take into account data transfers.

[Blocksize] 8x8 [16x16 |

DSP 900 ns 4000 ns

pel 720p frame: 13 ms | 14.4 ms

FPGA 1/4 pel 842 ns 1925 ns

refinement only (12 ms) (7 ms)

w H.264 filter

Total 1250 ns 4600 ns

DSP + FPGA | 720p frame: 18 ms | 16.5 ms
Pel + 1/4 pel

Table 3: Execution times for 8x8 and 16x16 blocks

With one 1GHz DSP and an FPGA at 133 MHz the computation
of 1/4-pixel motion fields achieves 55 and 60 frames per second for
8x8 and 16x16 block size respectively.

The coprocessor achieves good acceleration results with low re-
sources and memory bandwidth. To further improve performances,
the intra-level parallelism can be increased. The throughput roughly
doubles each time input bandwidth p doubles but it increases logic
ressources.

Compared to previous work [7, (8, |9, 6], the proposed design
achieves high throughput and low resources with no implmentation
trade-off. Thanks to the use of a DSP the system offers a high de-
gree of flexibility.

4.4 Impact of quarter-pixel motion vector refinement

In order to compare the impact of implementation trade-offs on
the motion field quality the motion estimator have been imple-
mented in an H.264 video encoder internally developed at Thomson
R&D. Several 1280x720 high definition video sequences have been
encoded with variable block size motion estimation from 8x8 to
16x16, one reference frame and constant quantification at different
quantification steps and for different configurations of the motion
estimation.

The two sequences that highlight the most FME impact are “city”
and “horses”. They are low motion and high detail sequences. the
quarter-pixel accuracy motion estimation reduces the bit-rate by
more than 50%. Table [4f summarize relative bit-rate loss with or
without sub-pixel motion refinement.

FME Bit-rate loss
implementation 720p “city” | 720p “horses”
1-pixel with 0 0
block-level pipeline
pixel accuracy 61 % 24 %

Table 4: Implementation trade-offs and relative bit-rate loss

5. CONCLUSION

On the one hand Fractional Motion Estimation involves a high com-
putation power, especially for high definition video and latest com-
pression standards. One the other hand encoding performances are
highly increased.

An efficient VLSI design is proposed to refine motion vectors to
sub-pixel accuracy with a small search range around a previously
computed integer-accuracy motion vector. The hardware resources
are reduced thanks to a new PE matrix design well suited to FME.

©2007 EURASIP

840

It requires low memory bandwidth and achieves high throughput.
The design supports variable block size motion estimation.

A complete motion estimation application has been prototyped
on a heterogeneous platform embedding a DSP and a FPGA. The
system computes 720p motion fields up to 60 frames per seconds.

REFERENCES

[1] J. R. Jain and A. K. Jain, “Displacement measurement and
its application in interframe coding,” IEEE Transactions on
Communications, vol. COM-29(12), pp. 1799-1808, 1981.

A. M. Tourapis, “Enhanced Predictive Zonal Search for Single
and Multiple Frame Motion Estimation,” Visual Communica-
tions and Image Processing, pp. 1069-79, 2002.

F. Urban, R. Poullaouec, J. F. Nezan, and O. Déforges, “Real-
time Multi-DSP Motion Estimator for MPEG-4 AVC/H.264
High Definition Video,” International Conference on Signals
and Electronic Systems, September 2006.

(2]

(3]

L. Vos and M. Stegherr, “Parameterizable VLSI architectures
for the full-search block-matching algorithm,” IEEE Transac-
tions on Circuits and Systems, vol. 36 issue 10, pp. 1309-
1316, 19809.

C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, T.-C.
Wang, and L.-G. Chen, “Analysis and architecture design of
variable block-size motion estimation for H.264/AVC,” IEEE
Transactions on Circuits and Systems I, vol. 53, no. 3, pp. 578
— 593, March 2006.

K. Gaedke, M. Borsum, M. Georgi, A. Kluger, J.-P. Le Glanic,
and P. Bernard, “Architecture and VLSI implementation of a
programmable HD real-time motion estimator,” I[EEE Interna-
tional Symposium on Circuits and Systems, May 2007.

T.-C. Chen, Y.-W. Huang, and L.-G. Chen, “Fully utilized
and reusable architecture for fractional motion estimation of
H.264/AVC,” Internatinal Conference on Acoustics, Speech
an Signal Processing, vol. 5, pp. 9-12, 2004.

(5]

(6]

(7]

T. Dias, N. Roma, and L. Sousa, “Fully parameterizable vlsi
architecture for sub-pixel motion estimation with low memory
bandwidth requirements,” November 2005.

C. Rahman and W. Badawy, “A quarter pel full search block
motion estimation architecture for H.264/AVC,” IEEE Inter-
national Conference on Multimedia and Expo, July 2005.

I. E. Richardson, H.264 and MPEG-4 Video Compression:
Video Coding for Next-generation Multimedia. ~John Wiley
and Sons, 2003.

H. Yeo and Y. H. Hu, “A novel modular systolic array archi-
tecture for full-search blockmatching motion estimation,” In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, vol. 5, pp. 3303-3306, May 1995.

P. Hosur and K. Ma, “Motion Vector Field Adaptive Fast Mo-
tion Estimation,” Second International Conference on Infor-

mation, Communications and Signal Processing (ICICS ’99),
1999.

K. Virk, N. Khan, S. Masud, F. Nasim, and S. Idris, “Low
Complexity Recursive Search Based Motion Estimation Algo-
rithm for Video Coding Applications,” in Proceedings of 13th
European Signal Processing Conference, Antalya, Turkey,
2005.

Y.-S. Chen, Y.-P. Hung, and C.-S. Fuh, “Fast Block Matching
Algorithm Based on the Winner-Update Strategy,” in /IEEE
Transactions on Image Processing, vol. 10, August 2001.

B. Chupeau, P. Robert, M. Pecot, and P. Guillotel, “Multiscale

motion estimation,” Workshop on Advanced Matching in Vi-
sion and Artificial Intelligence, 5th, 6th June 1990.

[10]

[11]

[12]

[13]

(14]

[15]

EUSIPCO, Poznan 2007

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

