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ABSTRACT 

This paper is a contribution to enhance the signal processing chain 
required in mobile systems. The system must be low power as it is 
powered by batteries. Thus a signal driven sampling scheme based 
on level crossing is employed, adapting the sampling rate and so the 
system activity by following the input signal variations. In order to 
efficiently filter the non-uniformly sampled signal obtained at the 
output of this sampling scheme a new adaptive rate FIR filtering 
technique is devised. The idea is to combine the features of both 
uniform and non-uniform signal processing tools to achieve a smart 
online filtering process. The computational complexity of the pro-
posed filtering technique is deduced and compared to the classical 
FIR filtering technique. It promises a significant gain of the compu-
tational efficiency and hence of the processing power.  
 
 

1. CONTEXT OF THE STUDY 

The motivation of this work is to contribute in the development of 
smart mobile systems. The goal is to reduce their size, cost, power 
consumption, processing noise and electromagnetic emission. This 
can be done by smartly reorganizing their associated signal proc-
essing theory and architecture. The idea is to combine the signal 
event driven processing with the clock less circuit design in order 
to reduce the system dynamic activity. Mostly the systems are 
processing signals with interesting statistical properties, but the 
Nyquist signal processing architectures do not take full advantage 
of such properties. These systems are highly constrained due to 
the Shannon theory especially in the case of signals such as elec-
tro-cardiograms, speech, seismic signals etc. which are almost 
always constant and vary sporadically only during brief moments. 
This condition causes a large number of samples without any rele-
vant information, a useless increase of system activity and so a 
useless increase of system power consumption. This problem can 
be resolved by employing a smart sampling scheme, captures only 
the relevant information from the incoming signal. The idea is to 
realize a signal event driven sampling scheme, based on signal 
amplitude variations. This sampling scheme drastically reduces 
the activity of the post processing, analysis or communication 
chain because it only captures the relevant information. It is based 
on “level-crossing” that provides a non-uniform time repartition of 
the samples. In this context an AADC (Asynchronous Analog to 
Digital Converter) [2] based on LCSS (Level Crossing Sampling 
Scheme) [1] has been designed. Algorithms for processing [3 & 6] 
and analysis [7 & 8] of the non-uniformly spaced out in time sam-
pled data obtained with AADC have also been developed. The 
focus of this work is to develop an efficient FIR filtering tech-
nique. The idea is to adapt the sampling rate and the filter order by 
following the variations of the incoming signal. An efficient solu-
tion is proposed by combining the features of both non-uniform 
and uniform signal processing tools. 

2. LCSS (LEVEL CROSSING SAMPLING SCHEME) 

The LCSS has already been studied by Jon W. Mark [1]. In [4], 
authors have shown that ADC based upon LCSS has a reduced ac-
tivity and thus allows power saving and noise reduction compared to 
Nyquist ADCs.  
An M-bit resolution AADC has 2M - 1 quantization levels which are 
disposed according to the input signal amplitude dynamics. In the 
studied case the quantization levels are regularly spaced. A sample 
is captured only when the input analog signal (x(t)) crosses one of 
these predefined levels. The samples are not uniformly spaced in 
time because they depend on the signal variations as it is clear from 
Figure 1.  

Xn-1
Xn

tn-1          tn

dtn

X(t)

q

Xn-1
Xn

tn-1          tn

dtn

X(t)

q

 
Figure 1: Level-crossing sampling scheme  

A condition for proper reconstruction of non-uniformly sampled 
signals has been discussed in [5].In [5], Beutler showed that the 
reconstruction of an original continuous signal is possible, if the 
average sampling frequency F  of the non-uniformly sampled 
signal is greater than twice of the input signal bandwidth (fmax). This 
condition can be expressed mathematically by

max2 fF > . According 
to [2], in the case of LCSS, the number of samples is directly influ-
enced by the resolution of AADC. For an M-bit resolution AADC, 
the average sampling frequency of a signal can be calculated by 
exploiting its statistical characteristics. Then an appropriate value of 
M can be chosen in order to respect the Beutler’s criterion. 
 

3. PROPOSED FILTERING TECHNIQUE 

Block diagram of the proposed filtering technique is shown in Fig-
ure 2. This technique is splitted into two filtering cases explained in 
Sections 3.3.1 and 3.3.2 respectively.  
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Figure 2: Block Diagram of the proposed filtering technique,‘____’  
represents the common blocks and signal flow used in both filtering 
cases,‘……..’ represents the signal flow used only in  case 1 and   ‘----
-’  represents the blocks and signal flow used only in case 2  
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3.1. AADC + ASA 
For a non-uniformly sampled signal obtained at the output of an 
AADC, the sampling instants (according to [1]) are defined by 
Equation 1. 
  nnn dttt += −1 .   (1) 
In Equation 1, tn is the current sampling instant, tn-1 is the previous 
one and dtn is the time delay between the current and the previous 
sampling instant, as shown in Figure 1.  
Let δ be the processing delay of AADC for one sample point. For 
proper signal acquisition the x(t) must satisfy the “tracking condi-
tion” [2] given by Expression 2. In Expression 2, q is the quantum 
of AADC and is defined by Equation 3. 

δ
q

dt
tdx
≤

)( . (2) 
12
)(

−
∆

= M
txq .   (3) 

In Equation 3, ∆x(t) represents the amplitude dynamics of x(t) and M 
represents the resolution of AADC. AADC has a finite bandwidth 
so in order to respect the Beutler’s criteria [5] and the tracking con-
dition [2], a band pass filter with pass-band [fmin ;  fmax] is employed 
at the input of AADC. 
The relevant (active) parts of the non-uniformly sampled signal are 
selected and windowed by ASA (Activity Selection Algorithm). 
This algorithm has been implemented by employing the values of 
dtn (Equation 1). The complete procedure of activity selection has 
been explained in [8]. ASA displays interesting features with LCSS 
which are not available in the classical case. It correlates length of 
the selected window with the signal activity. In addition, it also 
provides an efficient reduction of the phenomenon of spectral leak-
age in case of transient signals. This is done by minimizing the sig-
nal truncation problem with a simple and efficient algorithm instead 
of a smoothening window function (used in the classical scheme) 
[8]. 
3.2. Adaptive Rate Sampling 
In case of AADC the sampling is triggered when the input signal 
crosses one of the pre-specified threshold levels. As a result, the 
temporal density of the sampling operation is correlated to the input 
signal variations. The relevant signal parts are locally over-sampled 
in time [3]. More the signal varies rapidly more it crosses thresholds 
in a given time period. This is the reason of local over-sampling in 
time of relevant signal parts. Contrary no sample is taken for the 
static signal parts. The approach is especially well suited for the low 
activity sporadic signals. Hence for such kind of signals the average 
sampling frequency remains less than the required sampling fre-
quency for the classical scheme, performing the same operation. 
This smart sampling reduces the system activity and at the same 
time improves the accuracy of signal acquisition.   
ASA selects and windows relevant parts of the non-uniformly sam-
pled signal obtained at the output of AADC. The selected data ob-
tained at the output of ASA can be used directly for further digital 
processing. However in the studied case it is required to uniformly 
resample the selected data. So there will be an additional error due 
to this transformation. Nevertheless, prior to this transformation, one 
can take advantage of the inherent over-sampling of the relevant 
signal parts in the system. Hence it adds to the accuracy of post-
resampling process. The NNR (nearest neighbour resampling) inter-
polation is employed for data resampling. The reasons of inclination 
towards NNR interpolation are discussed in [8 & 11].  
The resampling frequency (Frsi) of each selected window obtained 
at the output of ASA can be specific depending upon the window 
length (in seconds) and the signal slope lying within this window 
[8]. The value of Frsi for the ith selected window can be calculated 
by using the following equations. 

iii ttTs minmax −= .  (4) 
i

i
i Ts

NFrs = .  (5) 

In Equation 4, tmaxi and tmini are the final and the initial times of 
the ith selected window. These parameters describe the window 
length (Tsi) in seconds. In Equation 5, Ni is the number of samples 
lying in the ith selected window, depends upon the signal slope lying 
within this window [8]. 
3.3. Adaptive Rate Filtering 
The proposed filtering technique is a smart alternative of the multi-
rate filtering [9 & 10]. It achieves computational efficiency which is 
not attainable with the classical FIR filtering.  
It is known that for fixed design parameters (cut-off frequency, 
transition-band width, pass-band and stop-band ripples) the FIR 
filter order varies as a function of the operational sampling fre-
quency. For high sampling frequency the order is high and vice 
versa. Thus computational gain can be achieved by adapting the 
sampling frequency and the filter order by following the input signal 
variations.  
In the classical signal processing the input signal is sampled at a 
fixed sampling frequency, regardless of its activity. A unique (fixed 
order) FIR filter is employed to filter this sampled signal. Contrary 
in case of the proposed filtering technique the sampling frequency 
and the filter order both are adapted by following the incoming sig-
nal variations. The computational gain over the classical filtering is 
achieved by realising the adaptive rate sampling (only relevant sam-
ples to process) along with the adaptive filter order (only relevant 
number of operations per output sample).  
The idea is to offline design a reference FIR filter by taking into 
account the incoming signal statistical characteristics and the appli-
cation requirements. In the studied case the reference filter is de-
signed by taking into account the bandwidth (fmax) of x(t). The refer-
ence filter is designed for a reference sampling frequency (Fref), 
satisfying the Nyquist criteria for x(t). It can be expressed mathe-
matically by Expression 6. 

max2 fF ref ×≥ .   (6) 

The reference filter impulse response (hk) is sampled at Fref during 
offline processing. Here k represents the index of the reference filter 
coefficients. Fref and the resampling frequency of the ith selected 
window (Frsi) should match in order to perform a proper filtering 
operation. During online processing Fref and Frsi remain the same if 
they are already equal. Otherwise, the difference between Fref and 
Frsi leads to two different filtering cases, explained below. The 
combine flowchart of both filtering cases is shown in Figure 3. 
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Figure 3: Combine flowchart of both filtering cases, ‘____’ repre-
sents the common block used in both cases, ‘……..’ represents the 
block and signal flow only used in  case 1 and  ‘-----’ represents the 
blocks and signal flow only used  in  case 2 
 
3.3.1. Filtering case 1 
This case is true if Frsi is greater than Fref. In this case Fref remains 
the same and Frsi is decreased to match it to Fref. For case 1, Frsi 
(calculated by Equation 5) is higher than the overall Nyquist fre-
quency of x(t). The upper limit on the Frsi is employed by the Bern-
stein’s inequality [2], given by Expression 7. In Expression 7, ∆x(t) 
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is the amplitude dynamics of x(t). Here ∆x(t) is adapted to match to 
the amplitude range of AADC. The term on left hand side is the 
slope of x(t) and fmax is the bandwidth of x(t). Thus for an M-bit reso-
lution AADC the highest sampling frequency (Fsmax) occurs for a 
pure sinusoid of frequency fmax and amplitude ∆x(t) and can be calcu-
lated by employing Equation 8.  

max).(..2)( ftx
dt

tdx
∆≤ π .   (7)      )12.(.2 maxmax −= MfFs .   (8) 

Fsmax applies the upper limit on Frsi. Once the data is sampled by 
AADC and windowed by ASA, Frsi can be reduced by simply as-
signing Frsi = Fref. This is done in order to resample the selected 
data lying in the ith selected window closer to the Nyquist frequency. 
It avoids the unnecessary interpolations during the data resampling 
process of the ith selected window. It also avoids the processing of 
unnecessarily samples from the system. Therefore improves the 
computational gain of the proposed filtering process.  
 
3.3.2. Filtering case 2 
This case is valid if Fref is greater than Frsi. In this case it appears 
that the data lying in the ith selected window may be resampled at a 
frequency which is less than the overall Nyquist frequency of 
x(t).Therefore it can cause aliasing. The sampling rate of AADC 
varies according to the slope of x(t). A high frequency signal part 
has a high slope and AADC samples it at a higher rate. Hence a 
signal part with only low frequency components can be sampled by 
AADC at an overall sub-Nyquist frequency of x(t). But still this 
signal part is locally over-sampled in time with respect to its local 
bandwidth. This statement is valid as far as the amplitude dynamics 
of this signal part are adapted to match the amplitude range of 
AADC. It makes the relevant signal part to usually cross all thresh-
olds (more than one) of AADC so it is locally over-sampled in time. 
This statement is further illustrated with the results summarised in 
Table 3. Hence there is no danger of aliasing when the low fre-
quency relevant signal parts are locally over-sampled at overall sub-
Nyquist frequencies.   
In case 2, hk is decimated in order to keep the sampling frequency of 
the decimated filter coherent with Frsi. The decimation factor Di can 
be specific for each selected window depending upon Frsi. Various 
methods can be adapted to deal with the fractional Di and to keep the 
sampling frequency of the decimated filter coherent with Frsi. The 
employed method is depicted in Figure 3. 
From Figure 3 it is clear that Di and Frsi are correlated. First Di is 
calculated by using Frsi. Then a decision is made on the basis of Di, 
weather an adjustment of Frsi is required or not. If Di is an integer 
keep the same Frsi. If Di is not an integer, make an increment in Frsi 
depending upon the fractional part of Di and then the Di is recalcu-
lated for this new Frsi. This fulfils both above stated goals of keep-
ing Di as an integer and the sampling frequency of the decimated 
filter coherent with Frsi.  
A simple decimation leads to a reduction of filter’s energy which 
will lead to an attenuated version of the filtered signal. Di is a good 
approximate of ratio between energy of the original (reference) filter 
and of the decimated filter (decimated for the ith selected window). 
Hence this effect of decimation is compensated by scaling the coef-
ficients of the decimated filter with Di.  
The process of obtaining the decimated and scaled filter for the ith 
selected window from the reference one is shown mathematically by 
Equations 9 and 10.   

kDji i
hhd =, . (9)        

ijiji Dhdhw ×= ,,
.  (10) 

According to Equation 9 the decimated filter impulse response (hdi,j) 
for the ith selected window is obtained by picking every Di

th coeffi-
cient from the reference filter impulse response (hk). Here k and j 
represents the indexes of the impulse responses of the reference 
filter and of the decimated filter respectively. If the length of hk is A 

then the length of hdi,j is Pi = A/Di. The process of scaling the hdi,j in 
order to obtain the decimated and scaled impulse response (hwi,j) for 
the ith selected window is clear from Equation 10.  

4. ILLUSTRATIVE EXAMPLE 

In order to illustrate the proposed filtering technique an input signal 
shown on the left part of Figure 4 is employed. Its total duration is 
20 seconds and consists of three active parts. The summery of signal 
active parts is given in Table 1. 

Active Part Signal Components Length (Sec) 

First 0.5.sin(2.π.20.t) +  0.4.sin(2. π.1000.t) 0.5 
Second 0.45.sin(2. π.10.t) + 0.45.sin(2. π.150.t) 1.0 
Third 0.6.sin(2. π.5.t) + 0.3.sin(2. π.100.t) 1.0 

Table 1: Summary of the input signal active parts 
 
Table 1 shows that the input signal is band limited up to 1 kHz. This 
signal is sampled by employing a 3-bit resolution AADC. As M = 3 
so the highest possible sampling frequency (Fsmax), calculated by 
Equation 8 is 14 kHz.  
The non-uniformly sampled signal obtained with AADC is selected 
and windowed by ASA. For this example the reference (initial) 
window length is chosen equal to 1 second [8]. The three selected 
windows obtained with ASA, centred on each active part of the 
input signal are shown on the right part of Figure 4. 

 
Figure 4: Input signal (left) and the selected signal (right) 

 
Table 1 shows that each active part of the signal has a low and high 
frequency component. In order to filter the high frequency compo-
nent of each signal activity a low pass reference FIR filter is imple-
mented by using the standard Parks-McClellan algorithm. The ref-
erence filter parameters are given in Table 2.  

Cut-off 
Freq (Hz) 

Transition 
Band (Hz) 

Pass Band 
Ripples 

Stop Band 
Ripples 

Fref 
( Hz) A 

30  30~80 -25 (dB) -80 (dB) 2500 127 
Table 2: Summary of the reference filter parameters 

 
In Table 2, A represents the order of the designed reference filter. 
Fref is the reference sampling frequency for which the reference 
filter is designed. As x(t) is band limited to 1 kHz so the Fref is cho-
sen equal to 2.5 kHz in order to satisfy the condition given by Ex-
pression 6.   
Parameters of each selected window, obtained with ASA are sum-
marized in Table 3.  

Selected 
Window 

Tsi 

(Sec) 

Ni 
(Samples) 

Frsi 

(Hz) 
Fref 

(Hz) 
Filtering 

case 
First 0.4998 3000 6000 2500 1 

Second 0.9995 1083 1083 2500 2 
Third 0.9992 460 460 2500 2 

Table 3: Summary of parameters of each selected window 
 
Table 3 exhibits the interesting features of the proposed filtering 
technique. Ni and Frsi represent the sampling frequency adaptation 
by following the slope of x(t). It is achieved due to the smart fea-
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tures of AADC and ASA. It is also clear from Ni that the relevant 
signal parts are over-sampled locally in time like any harmonic 
signal [3].  
Tsi in Table 3 exhibits the dynamic feature of ASA which is to cor-
relate the reference window length with the signal activity lying in 
it. Contrary in the classical case, the windowing process does not 
select only the active parts of the sampled signal. Moreover the 
reference window length remains static and is not able to adapt ac-
cording to the signal activity lying within the window. For this stud-
ied example the reference window length is chosen equal to 1 sec-
ond. Hence in the classical case, it will lead to twenty 1-second 
windows for the whole signal span (20 Sec). It follows that the sys-
tem has to process more than the relevant information part.  
The decimation factor (Di), the filter order (Pi) and the adjusted 
resampling frequency (Frsi), for each selected window is summa-
rized in Table 4.  

Selected 
Window 

Filtering 
case 

Frsi  

(Hz) 
Adjusted Frsi 

(Hz) Di Pi 

First 1 6000 2500 x 127 
Second 2 1083 1250 2 64 
Third 2 460 500 5 26 

Table 4: Di ,Pi and adjusted Frsi, for the  ith selected window 
 
For the 1st selected window filtering case 1 is valid. So Frs1 is re-
duced by assigning Frs1 = Fref. This reduction of Frs1 has two fol-
lowing benefits. First it avoids the needless interpolations during the 
data resampling process of the 1st selected window. Secondly it 
avoids the processing of excessive samples from the system. Hence 
it adds to the computational efficiency of the proposed filtering 
technique. In case 1, hk remains unaltered so there is no need to 
calculate D1. 
For the 2nd and the 3rd selected windows the filtering case 2 is valid. 
So hk is decimated with D2 and D3 for the 2nd and the 3rd selected 
windows respectively. P2 and P3 in Table 4 represent the adaptation 
of reference filter order for the 2nd and the 3rd selected windows. D2 
and D3 are used later on to scale the impulse responses of decimated 
filters hd2,j and hd3,j respectively. This scaling is applied to keep the 
energy of decimated filters at the same level to that of the original 
(reference) filter. The adaptation of hk for the 2nd and the 3rd selected 
windows is another advantage of the proposed technique. It is 
achieved due to the appealing feature of ASA. Contrary, in the clas-
sical case the filter remains time invariant and has to be designed for 
the worst situation. In this example the input signal is band limited 
to 1 kHz. Therefore if the sampling frequency is chosen equal to 2.5 
kHz in order to respect the Shannon theorem then for the same filter 
parameters (Table 2), Parks-McClellan algorithm design gives a 
127th order FIR filter. In the classical case the signal is sampled at a 
fixed sampling frequency (2.5 kHz), regardless of its activity. Hence 
a fixed order filter (H = 127) is employed for the whole signal span. 
That causes a useless system activity. 
The activity lying in the 3rd selected window is filtered by applying 
the proposed filtering technique and the classical one. In order to 
make a comparison of filtering quality the spectra of filtered signals 
obtained with the proposed and the classical filtering techniques are 
calculated. Spectra of the filtered signals and their zooms obtained 
with the proposed and the classical filtering techniques are shown in 
the left and the right parts of Figure 5 respectively.  
Figure 5 shows that a relative error of 0.4% occurs between the 
results obtained with the proposed and the classical filtering tech-
niques. It shows that for the 3rd selected window decimation of the 
reference filter leads to a loss of quality. The measure of this quality 
loss can be used to decide the upper bound on the decimation factor 
(Di). By performing offline calculations the maximum value of Di 
can be decided for which the decimated and scaled filter provides 
filtering with an acceptable level of accuracy. The level of accuracy 
is application dependent. 
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Figure 5: Spectrum of the filtered signal and its zoom obtained with 
the proposed filtering technique (top and bottom left respectively) 
and obtained with the classical filtering technique (top and bottom 
right respectively) 
 

5. COMPUTATIONAL COMPLEXITY 

This section compares the computational complexity of the pro-
posed filtering technique with the classical one. The complexity 
evaluation is made by considering the number of online operations 
executed to perform the algorithm.  
It is known that in the classical case the incoming signal is sampled 
at a fixed sampling frequency. In this case a time invariant, fixed 
order filter is employed to filter the sampled data. As for an H order 
FIR filter, H multiplications and H additions are computed for each 
output sample. The total computational complexity C1 for Nu (num-
ber of uniform) samples can be calculated by employing Equation 
11. 
In the proposed filtering technique, the sampling frequency and the 
filter order both are not fixed and are adapted for each selected win-
dow according to the slope of x(t). In comparison to the classical 
case this approach locally requires some extra operations in each 
selected window. 
Filtering case selection is the first online operation performed by the 
proposed filtering technique. It requires one comparison between 
Fref and Frsi. If case 1 is true then the reference filter impulse re-
sponse (hk) remains the same. Contrary in case 2, hk is decimated. 
The data resampling operation is required in both cases before filter-
ing. In case 1, resampling is performed at a reduced Frsi. On the 
other hand in case 2, it is performed at the same or an increased Frsi 
(recall Figure 3). The NNR interpolator is employed to resample the 
non-uniform selected data. This interpolator requires only a com-
parison operation for each resampled observation. Therefore the 
interpolator performs Ni comparisons, where Ni represents the total 
number of samples lying in the ith selected window.  
In addition to this, filtering case 2 requires some additional opera-
tions. In case 2, it is required to decimate hk. Therefore Di is calcu-
lated for the ith selected window. The calculation of Di requires 
seven operations for the worst situation, three divisions, one multi-
plication, two comparisons and one floor operation as shown in 
Figure 3. In order to make a complexity comparison the operation 
count for the worst situation is taken into account. Decimation proc-
ess of the reference filter for the ith selected window has a negligible 
complexity as compare to operations like addition or multiplication. 
This is the reason that the complexity of the decimator is not taken 
into consideration. Moreover, it is required to scale the impulse 
response of the decimated filter by Di. The filter coefficients scalar 
performs Pi multiplications; here Pi represents the order of the deci-
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mated filter for the ith selected window. The combined computa-
tional complexity C2 of the proposed filtering technique for both 
filtering cases is given by Equation 12. 

321321
tionsMultiplica

u

Additions

u NHNHC ..1 += .  (11)    
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In Equations 12, β is a multiplying factor and its value is 0 for case 1 
and 1 for case 2. The parameter i = {1, 2, 3,…., L} represents the 
index of the selected window. The computational gain of the pro-
posed filtering technique over the classical one can be calculated by 
employing Equation 13. 

( ) )..(.313

..

1

2

1

∑
=

++++++

+
== L

i
iiiiii

uu

PNPNPN

NHNH
C
CG

β

. (13) 

From Equations 11 and 12 it is clear that addition and multiplication 
are the common operations between the classical and the proposed 
filtering techniques. The operations like comparison, division and 
floor are uncommon between them and are required only in the 
proposed filtering technique. Because of these uncommon opera-
tions the computation comparison between the proposed and the 
classical filtering techniques is not straightforward. In order to make 
them approximately comparable the following assumptions are 
made. 
*Comparison has same processing cost as that of an addition. 
*Division and floor operations are very small in number as com-
pare to the addition, multiplication and comparison operations, so 
can be ignored during computation evaluation. 
By following these assumptions, comparisons are merged into addi-
tions and divisions and floor are neglected during the complexity 
evaluation process. 
The computational gain of the proposed filtering technique over the 
classical one is calculated for the results of illustrative example, for 
different time spans of x(t). The results are summarized in Table 5. 

Time Span (Sec) Gain in Additions Gain in Multiplications 
Ts1 1.98 2 
 Ts2 3.90 3.97 
 Ts3 23.5 24.42 

Total signal span (20)  24.9 25.2 
Table 5: Summary of processing gain of the proposed filtering tech-

nique over the classical one  
The adjusted value of Frs1 is equal to the sampling frequency in the 
classical case (Table 4). Yet 1.9 & 2 times gains are achieved in 
additions and multiplications respectively, for the 1st selected win-
dow. This is due to the dynamic feature of ASA which is to corre-
late the window length with the signal activity lying in it (0.5 Sec). 
Contrary, in the classical case the window length remains static (1 
Sec) and system has to process extra samples.  
Table 5 shows 24.9 & 25.2 times gains in additions and multiplica-
tions respectively for the whole signal span (20 sec). This gain is 
achieved by employing the joint benefits of AADC, ASA and re-
sampling. As they allow to adapt the sampling frequency and the 
filter order by following the incoming signal variations. 
 

6. CONCLUSIONS 

A new adaptive rate filtering technique is proposed. This technique 
is well suited for low activity sporadic signals like electro-
cardiograms, speech, seismic signals, etc. A reference filter is de-
signed offline by taking into account the input signal bandwidth and 
the application requirements. The proposed technique is splitted into 

two filtering cases. A complete methodology of firstly choosing the 
appropriate filtering case for the ith selected window and then adjust-
ing Frsi or hk depending upon the validity of case 1 or case 2 respec-
tively has been demonstrated. It shows how the data resampling rate 
or the reference filter order is smartly adapted for each selected win-
dow by following the input signal variations. The computational 
complexity of the proposed adaptive rate filtering technique is de-
duced collectively for both filtering cases. A method to make an 
approximate computation comparison between the proposed and the 
classical filtering techniques is described. The comparison is made 
by using the results of an illustrative example. The results show 24.9 
times gain in additions and 25.2 times gain in multiplications of the 
proposed filtering technique over the classical one. It shows that the 
proposed filtering technique leads to a significant reduction of the 
total number of operations. This reduction in operations is achieved 
by combining the adaptive rate sampling (reduce the number of 
samples to process) along with adaptive rate filtering (reduce the 
number of operations per output sample).  
The decimation of reference filter is required in filtering case 2. The 
complete procedure of decimating and scaling the pre-calculated 
reference filter during online computation is demonstrated. The 
decimation of reference filter reduces the quality of the decimated 
filter as compared to the reference one. The upper bound on decima-
tion factor can be determined by offline calculations, for which the 
decimated and scaled filter gives response with an acceptable level 
of accuracy. Moreover for applications where high quality filtering 
is required, an appropriate filter can be calculated directly online for 
each selected window at the cost of an increased computational 
load.  
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