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Abstract— We present in this paper, a new algorithm to
construct different types of lower degree approximates of a
high-degree singular system based onto SVD-approach, that
had the main advantage to preserve the key properties of
the original system, such as stability, and give a quantization
of approximation error. By the use of Schur method, model
reduction is performed either on the proper and improper parts
of a high-degree original system. A numerical example is provided
to illustrate the time and the frequency behavior of approximates
vis--vis original system.

Index Terms— High-degree system, modeling, singular systems,
descriptor systems, singular values, model reduction, Weierstrass
canonical forms.

I. INTRODUCTION

Since they gave a more complete class of dynamical models
than the state variable systems (also called standard systems),
singular systems (or descriptor systems [1]) are of great
importance. Great number of notions and results for state
space systems, like stability, have been successfully extended
to descriptor systems and more recently, several works in the
field of model reduction of descriptor systems have been done
[2,3]. We suggest, in this paper, an extension of the SV D-
based model reduction to the continuous-time, linear, c-stable
singular systems: this tool permits to construct two stable
low- order approximates by truncation of the smallest singular
values; the first one is obtained by reducing only the proper
part, while improper part is copied entirely, the second one
is the result of reduction performed in proper and improper
parts. In the next, preliminary results and a procedure for
constructing reduced-order models are stated, followed by an
illustrative example. Comments and concluding notes highlight
the main idea of our work.

II. MAIN RESULTS

Consider a linear continuous-time, c-stable descriptor sys-
tem (1)

Eẋ(t) = Ax(t) + Bu(t) ,
y(t) = Cx(t) + Du(t) ,

(1)

where x(t) ∈ Rn is the state-vector, u(t) ∈ Rm is the control-
vector and y(t) ∈ Rp is the output-vector, and E, A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n are constant matrices with E singular.
We assume that the pencil λE − A is regular. The proper
procedure of any descriptor model reduction scheme is to

replace the n-order system (1) by a reduced r-order system
(2),

Erẋr(t) = Arxr(t) + Bru(t) ,
yr(t) = Crxr(t) + Dru(t) ,

(2)

with Er, Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ Rp×r, and r < n.
The system (2) must keep the same key properties of the initial
system (1), like regularity and stability, and the approximation
error is wished to be small.
The Gramians
The proper (improper) gramians of the descriptor system (1)
are solutions of the projected generalized continuous-time
(discrete-time) Lyapunov equations [5].
The proper controllability gramian Gpc and proper observabil-
ity gramian Gpo are the unique symmetric, positive semidef-
inite solutions of the projected generalized continuous-time
Lyapunov equations

EGpcA
T + AGpcE

T = −PlBBT PT
l , (3)

ET GpoA + AT GpoE = −PT
r CT CPr , (4)

where Pl and Pr are the spectral projectors onto the left and
right deflating subspaces of the pencil λE −A corresponding
to the finite eigenvalues. Furthermore, the improper control-
lability gramian Gic and improper observability gramian Gio

are the unique symmetric, positive semidefinite solutions of
the projected generalized discrete-time Lyapunov equations

AGicA
T − EGicE

T = (I − Pl)BBT (I − Pl)T , (5)

AT GioA− ET GioE = (I − PT
r )CT C(I − Pr) . (6)

While transforming the pencil λE−A in Weierstrass canonical
form, there exist two nonsingular matrices W and T such that

E = W

(
Inf

0
0 N

)
T , (7)

A = W

(
J 0
0 In∞

)
T , (8)

where In denotes the n-order identity matrix, N is nilpotent
with index of nilpotency ν, and J is a Jordan matrix. This
representation defines the decomposition of the system (1) into
two deflating subspaces of dimensions nf and n∞ correspond-
ing to the finite (proper) and infinite (improper) eigenvalues



of the pencil λE−A. In this case, the projection matrices will
have the following expressions

Pr = T−1

(
Inf

0
0 0

)
T , (9)

Pl = W

(
Inf

0
0 0

)
W−1 . (10)

The set of the proper and improper gramians forms the
gramians of the descriptor system (1).

III. DESCRIPTOR MODEL REDUCTION

In order to reduce the descriptor system (1), we have
to compute the full rank factors L and R of the proper
observability and controllability gramians. Initially, the pencil
is transformed in the GUPTRI (Generalized Upper Triangular)
form [6], i.e.,

E = V

[
Enf

Eu

0 En∞

]
UT , (11)

A = V

[
Anf

Au

0 An∞

]
UT , (12)

where Enf
is upper triangular, nonsingular and En∞ is upper

triangular with zeros on the diagonal, Anf
is upper quasi-

triangular and An∞ is upper triangular, nonsingular. Then W∞
and T∞ are computed as

W∞ = V

[
0

In∞

]
, T∞ = U

[
Y

In∞

]
, (13)

where Y satisfies the generalized Sylvester equations

Enf
Y − ZEn∞ = −Eu , (14)

Anf
Y − ZAn∞ = −Au , (15)

and the transformations associating with the Y and Z are given
by (11) and (12).
V and U are defined by equations

V T B =
[

Bnf

Bn∞

]
, (16)

CU =
[

Cnf
Cn∞

]
. (17)

The algorithm that we suggest gives out two types of state-
space reduced systems. The first reduced model M1, given
by (Er1, Ar1, Br1, Cr1, Dr1), results of reduction of only
the proper part of the descriptor system, the improper part
is copied, while the approximate model M2 obtained by
the second approach, and given by (Er2, Ar2, Br2, Cr2, Dr2),
resulting of the reduction carried out at once on the proper
and improper parts.
The Algorithm:
The two reduced models M1 and M2 will be calculated by
following step-by-step procedure.
Input: A realization (E,A, B, C, D) of the descriptor system
(1) such that λE −A is regular and c-stable.
Step 1 Reduce E and A to the GUPTRI form (11) and (12).
Step 2 Compute the solutions Y and Z of the generalized
Sylvester equations (14,15)
Step 3 Form and partition the matrices in (16,17), according

to the partition of V and U induced by (11) and (12).
Step 4 Compute the Cholesky factors Rf and Lf of the
solutions Xc = RfRT

f and Xo = LT
f Lf of the generalized

Lyapunov equations

Enf
XcA

T
nf

+Anf
XcE

T
nf

= −(Bnf
−ZBn∞)(Bnf

−ZBn∞)T ,
(18)

ET
nf

XoAnf
+ AT

nf
XoEnf

= −CT
nf

Cnf
. (19)

Step 5 Test: If rank(Rf )¡nf (rank(Lf )¡nf ), compute the full
column (row) rank matrix R1 (L1) from the QR decomposi-
tions with column (row) pivoting

RT
f = QR

[
RT

1

0

]
, (20)

Lf = QL

[
L1 0

]
. (21)

Otherwise R1 = Rf (L1 = Lf ).
Step 6 Form the matrices

R = U

[
R1

0

]
, (22)

L =
[

L1 −L1Z
]
V T . (23)

Step 7 Compute the matrices

W∞ = V

[
0

In∞

]
, (24)

T∞ = U

[
Y

In∞

]
. (25)

Step 8 Compute and partition for the singular values decom-
position of the matrix LER,

LER =
[

U1 U0

] [
Σ1 0
0 Σ0

] [
V1 V0

]T
, (26)

where Σ1 = [σ1, σ2, · · · , σlf ] is the preserved part corre-
sponding to the lf largest proper singular values of the proper
system.
Step 9 Construct the matrices

Wl =
[

LT U1Σ
− 1

2
1 , W∞

]
, (27)

Tl =
[

RV1Σ
− 1

2
1 , T∞

]
. (28)

Step 10 Reduce the order of the improper subsystem
(En∞ , An∞ , Bn∞ , Cn∞), or equivalently, reduce the order of
the regular discrete-time system, assuming, according to the
GUPTRI decomposition, that An∞ is nonsingular,

An∞z(k + 1) = En∞z(k) + Bn∞ν(k)
ψ(k) = Cn∞z(k) .

(29)

The classical discrete-time Schur method [7] gives a reduced
model (E∞r, A∞r, B∞r, C∞r) of the improper model, and
the singular values of the system (29) are called the improper
singular values of the system (1), and are given by Φ =
[φ1, φ2, · · · , φl∞ , 0, · · · , 0].
Output: The approximates M1 and M2 are given by

[Er1, Ar1, Br1, Cr1, Dr1] = [WT
l ETl,W

T
l ATl, W

T
l B, CTl, D] ,

(30)



[sEr2 −Ar2] = diag[sEfr −Afr, sE∞r −A∞r] (31)

Br2 = [Bfr;B∞r], Cr2 = [Cfr, C∞r], Dr2 = D, (32)

where the matrices Efr, Afr ∈ Rlf×lf , Bfr ∈ Rlf×m, Cfr ∈
Rp×lf , are obtained by truncation of the lf rows and columns
of Ar1, lf rows of Br1, and lf columns of Cr1 respectively.
The matrices E∞r = Il∞ , A∞r ∈ Rl∞×l∞ , B∞r ∈ Rl∞×m,
C∞r ∈ Rp×l∞ , are the state space matrices of the l∞ reduced-
order system coming from the order reduction on the improper
part (Step 10). Note that the system M1 will have (lf +n∞)-
order, while M2 will have a smaller order, equal to (lf + l∞).
Remarks The H∞-norm of the error system transfer function
∆H(s) = H(s) − Hr(s) verifies the following upper bound
[4]

||H(s)−Hr(s)||H∞ = sup
ω∈R

||H(jω)−Hr(jω)||2 ≤ 2
nf∑

i=lf+1

σi ,

(33)
where ||.||2 denotes the spectral matrix norm.

IV. SIMULATION RESULTS

Consider a 120-order descriptor MIMO system (2 In-
puts/3 Outputs) [8], where nf = 100 and n∞ = 20. The
proposed algorithm 1 compute two reduced-order models M1
and M2, for lf = 1, and l∞ = 1. The two approximates M1
of order r = 21, singular, and M2, of order r = 2, regular
are c-stable. In Fig. 1, we show how well the error estimate
(33), for the model M1, is tight for each I/O combination,
and the Hankel upper bound always guaranteed. The proper
singular values is shown in Fig. 2, when only the proper sub-
system is considered, and the improper singular values when
improper sub-system is considered see Fig. 3. We traced also
magnitude of approximation error of approach 2 in Fig. 8 (the
plots are same for other Inputs/Outputs channels). For the
sake of comparison, in addition to the frequency responses,
we plot the time responses (step and impulse responses) of
original descriptor and its two approximates M1 and M2
(see Fig. 4 and Fig. 4), where only one channel is considered
(1stI/1stO); note that the time responses of the reduced-order
models M1 and M2 come closer of the one of the full-order
model. Similar time responses plots are obtained for the other
Input/Output channels.

1To solve the generalized Sylvester and Lyapunov equations, the package
SLICOT [9] was used.
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Fig. 1. Singular value of approximation error and upper bound for reduced-
order model M1, lf = 1, nf = 100
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Fig. 2. Proper singular values distribution
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Fig. 3. Improper singular values distribution
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Fig. 4. Impulse responses of original and the two reduced-order models
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Fig. 5. Step responses of original and the two reduced-order models

V. CONCLUSION

In this paper, model reduction of descriptor systems is
investigated. So, SV D-based model reduction techniques of
descriptor systems are presented and new model reduction
algorithm is proposed. To built it, at first we examined the
model reduction algorithm reported in [5] and we extended it
to either the proper and improper part of descriptor system
by the use of the regular discrete-time Schur-based model
reduction for the improper part of the descriptor system. As
a result, two different stable approximates: in the first one,
only the proper part (corresponding to the finite eigenvalues
of the pencil λE − A) is reduced, and the improper part
(corresponding to the infinite eigenvalues of the pencil) is fully
preserved, while in the second approach, the twice of parts are
reduced offering an interesting characterization of the resulting
low-order model since it is described by a regular state-space
realization. It is worth noting that they are very close to the

original system behavior.
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