
EFFICIENT CONVOLUTION BASED ALGORITHMS

FOR EROSION AND DILATION

M. Razaz and D.M.P. Hagyard

School of Information Systems

University of East Anglia

Norwich England

ABSTRACT
Morphological operations based on primitives such as
dilation and erosion are slow to compute in practice
especially for large structuring elements. For direct
implementation of these primitives, the computing time
grows exponentially with the size of the structuring
element used. The latter renders these implementations
impractical for large structuring elements due to a rapid
increase in computation time. There have been attempts
in the literature to develop fast algorithms for
implementation of morphological primitive operations.
These are mainly restricted to convex and often symmetric
structuring element shapes. We have developed a fast
convolution-based approach for implementing
morphological erosion and dilation and other operations
such as opening and closing based on these primitives.
The major advantages of this approach are: (i) it can use
any structuring element shape including non-convex
cases and (ii) it is very fast. This paper briefly introduces
the approach and presents timing results for dilation and
erosion using three different implementations of the
approach. These results are also compared against a direct
(brute force) implementation of the primitives.

1 . INTRODUCTION
Fast implementation of morphological primitive
operations such as dilation and erosion is crucial for their
success in image processing applications. Direct
implementation of these primitives is a brute force
approach and is computationally very slow, the
computing time grows exponentially with the size of the
structuring element. Previously we presented a fast
morphological transform (FMT) method for efficient
computation of binary primitives [7]. The major
significance of FMT is that its computing time i s
independent of the structuring element size. The
restriction of FMT and other fast implementations in the
literature, see for example [5,6,9], is that the structuring
elements used are usually confined to convex, and mostly
symmetric shapes and certain types of lozenge
geometries. In this paper we present a fast convolution
based approach for implementing these primitives which
overcomes the restriction and can use any arbitrary
structuring element.

We first represent dilation and erosion primitives in terms
of a thresholded convolution operation. These primitives
are then implemented using a fast circular convolution
algorithm, which works very efficiently for large
structuring elements when the images and structuring
elements are of similar sizes. However in practice a
structuring element is usually much smaller than the
image itself, and therefore the fast circular convolution
algorithm would be wasteful and inefficient to use. To
overcome these difficulties, we have developed two fast
dilation and erosion algorithms using spatial domain
overlap-save and overlap-add convolution methods.
Timing results for dilation and erosions for these
algorithms are presented and discussed.

2 . DILATION AND EROSION AS
CONVOLUTION

We now briefly describe how dilation and erosion can be
expressed in terms of a thresholded convolution. For
simplicity the analysis is presented in one dimension but
can easily be extended to multidimensions.

Let us define a nonlinear threshold function ht(.) to be:

Let the dilation of the function f(x) by the structuring
element s(x) [1,3] be given by

[f s](x) f(x y)
{y Z :s(y) 1}n

⊕ = −
∈ =

U

The linear convolution of f1 = f(x) and f2= s(x) on the
other hand is given by

[f * f](x) = [f (x y) f (y)]1 2 1 2
y Zn

− •
∈
∑

The convolution kernel can now be set up such that the
convolution integral will be 0 only when all the members
of the convolution kernel are over zero (or white) pixels
in the image. If any of the convolution kernel members
are over non-zero (or black) pixels of the image then the
values will multiply to more than zero and the result of the

h x
x

xτ

τ
τ

()
,

,
=

≤
>





0

1

convolution must therefore be greater than zero. By
thresholding the convolution value using ht(.) such that
every non-zero value is written as black, the combination
has the same result as the “hit” operation described in [1]
i.e.:

[f s](x) ([f * s](x))⊕ = hτ ,

The erosion operation can also be expressed in terms of
thresholded convolution by using duality property:

Thus erosion can be performed by inverting the image in
the spatial domain, performing a dilation and then
inverting the resultant image back. This is equivalent to
performing a dilation on the background of the input
image.

3 . IMPLEMENTATION
We can see by examining the expressions for the
morphological dilation or erosion that the most time
consuming operation is the convolution. The
thresholding is straight forward to perform and operates
in O(n) time where n is the number of pixels in the image.
We have implemented the dilation and erosion operations
using a fast circular convolution algorithm. This involves
performing an FFT on the image and the kernel
(structuring element) to convert both into the frequency
domain. This is followed by direct frequency domain
multiplication, which is equivalent to a circular
convolution in the spatial domain. To perform the
multiplication correctly, the image and structuring
element must be of the same size. If the structuring
element is smaller than the image then it has to be padded
up with zeros. Once the multiplication has been
performed, the result is inverse Fourier transformed into
the spatial domain. The image is thresholded and then
output to a file.

There are a number of FFT algorithms that can be used for
implementation of the fast convolution, most of which
have limitations on the sizes of image they can operate
on. The particular FFT algorithm used for this
implementation was a variation of the mixed-radix FFT
transform algorithm [8]. This algorithm, while not the
fastest, is capable of processing a wide variety of different
sized images. It operates by breaking the width and
height of the images down into their prime factors to
arrange the image into groups of pixels to operate on.
The largest prime factor that can be used is 19. Any image
which has a height or width with a prime factor greater
than 19 or that is odd, must be increased in size until they
are even with prime factors less than 19. If an image has
to have its dimensions increased the existing data i s
written into the top left-hand corner of the area. This
occurs when an image is increased to allow its dimensions
to be accepted by the FFT, and to bring the structuring
element image up to the same size as the image being used
by the FFT algorithm.

The mixed-radix FFT algorithm should in theory show
approximately logarithmic behaviour [4]. However we
found that the operation of the algorithm to accommodate
the different sizes of input image introduces a variation in

the computing time depending on what prime factors were
found in the size of the image. Therefore the size of input
image was modified so as to give a minimum FFT
computing time.

After the complex multiplication of the images and the
inverse transformation of the result back into the space
domain, the image is thresholded. This occurs in the same
step as copying the image from the floating point array
into the byte array. In the byte array off (or white) pixels
are represented by 0, and on (or black) pixels are
represented by 255. These values are transferred to the
floating point array. For thresholding operation, the
threshold is set at 125. This value is unimportant as long
as values of 0 are represented as white. When performing
an erosion the image value is reversed after the
thresholding. For erosion, the edges of the output image,
where the structuring element would have been partially
off the image, are ignored since they contain incorrect
information due to the off image areas being read as white.

In the fast circular convolution method just described, the
kernel (structuring element) is padded up to the size of the
output image for dilation or to the size of the input image
for erosion. However when the kernel is significantly
smaller than the image as is the case for most practical
morphological image processing applications, then the
above circular convolution becomes inefficient due to the
wasteful zero padding involved.

To overcome this problem we developed the overlap-add
and overlap-save algorithms, that speed up computation
time and allow the convolution of a large image with a
smaller kernel to be performed [2] without having to pad
up the kernel. The two algorithms are similar and are
performed in the spatial domain. The input image i s
subdivided into N segments (slices) of the kernel, the
convolution is evaluated for each segment, and then all
the separate convolution results are recombined in the
spatial domain . In between these two operations any
convolution algorithm can be used. In this case, our fast
convolution is used, employing the multiplication of two
equal sized Fourier transforms in the frequency domain.
Multiplication of two discrete Fourier transforms i s
equivalent to a circular convolution in which information
that would be written off the end of the sample due to the
‘spreading’ effect of the convolution will ‘wrap-around’
and appear at the beginning of the sample. The
management of these wrap-around errors is performed by
the overlap-add and overlap-save algorithms in a slightly
different manner. The overlap-add algorithm pads the
segment of the image so that the spreading of the image
under convolution does not fall off the end of the sample
and wrap-around on the output. The overlap-save
algorithm uses overlapping segments of the image and
discards those parts of the output image that contain wrap-
around errors. For both algorithms, the segment size
chosen is important, and must be at least twice as large as
the size of the convolution kernel used. Increasing the
segment size will reduce the number of segments needed
for the image, and therefore the number of overlap pixels
processed is doubled. Reducing the size of segments
reduces the overlap at the end of the image. The size can
be chosen to minimise the number of pixels processed.
We now briefly describe the overlap- save algorithm in
the following section. The overlap-add algorithm follows
a similar procedure except that segments are padded as
explained above.

0 1< <τ

[]() ([]()))f s x h f s xc cΘ = ∗τ

3 . 1 Overlap-Save Algorithm
Consider an input image array x(n) and a kernel
(structuring element) h(q) containing Q values. The
overlap-save algorithm convolves x(n) and h(q) in the
spatial domain. The image is split into slices, each N
pixels long. The value of N is somewhat arbitrary, but as
wrap-around errors extend for Q-1 pixels into the output of
each slice, so N should be at least equal to 2Q. The main
structure of the algorithm is as follows:

(i) Perform an N-point FFT on h(q) to generate
complex H(k). Since N is greater than Q it will be
necessary to pad h(q) with zeros.

(ii) Select N pixels from the input array, x(n). Each
successive slice of the array should overlap the
previous selection by Q-1 pixels. Thus each slice
consists of Q-1 pixels from the previous slice and
N-(Q-1) new pixels. This slice, xm(n), has an N-
point FFT performed on it to create Xm(k).

(iii) Multiply H(k) by Xm(k) to generate H(k)Xm(k).

(iv) Perform an N-point IFFT on H(k)Xm(k) to find
ym(r) in the space domain.

(v) Discard the first Q-1 points of ym(r) and write the
following N-(Q-1) pixels into the output.

(vi) Goto (ii) and process the next slice.

Note that at each iteration of the loop N-(Q-1) new pixels
are processed, and that the FFT of the convolution kernel
has to be performed only once.

4 . EXPERIMENTAL RESULTS
Different experiments were carried out to test the
correctness and timing of the algorithms developed. For
the overlap-add and overlap-save algorithms the optimum
segment size was chosen by calculating the number of
pixels that would be input to the FFT algorithm and
multiplying that value by the time per pixel to perform
the convolution. The segment size to give the smallest
estimated time was calculated from Graph 1.

The timing results were produced using a series of
octagonal structuring elements ranging from 9x9 pixels
to 255x255 pixels. The image used for testing was a
greyscale image, 864 by 864 pixels which had been
thresholded to produce an approximately equal mix of
black and white pixels.

Graph 2 compares the results for dilation using the fast
circular convolution, overlap-add, overlap-save and direct
brute force algorithms. Both the overlap-add and overlap-
save algorithms are superior to the convolution method,
with the overlap-add being slightly faster than the
overlap-save algorithm. The brute force algorithm i s
significantly slower than the rest as the computation time
grows exponentially with the size of structuring element.

Graph 3 shows the timing results for erosion. The
overlap-add and overlap-save algorithms, as can be seen,
have a speed advantage over the convolution method,

whilst the structuring element remains small compared to
the image. Once the structuring element gets above
approximately 25% of the size of the input image the

direct convolution method is faster. Again as was the case
for dilation, the overlap-add algorithm for erosion i s
faster than the overlap-save algorithm. Notice that the
timing for the fast convolution method remains constant
as the structuring element size increases. This is because
the erosion does not increase or decrease the size of the
image that has to be input to the FFT algorithm. The brute

Graph 1. Graph of time to Perform a 5 by 5 dilation on a 864 by 864
image using different values for the size of segment used for the
 overlap-add and overlap-save methods

0

5

10

15

20

25

30

35

40

0 50 100 150 200

Segment Size/ pixels

Time/s

Overlap Add

Overlap Save

Graph 2. Graph of Time to dilate a 864 square imge with various sizes of
octagonal structuring element

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

Structuring Element Size

Time/s

Convolution Method

Overlap Add

Overlap Save

Brute Force

Graph 4 Graph of Time to erode a 864 black square im
Fast Morphology methods with various sizes of octago

element

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300

Time/s

Convolution Meth

Overlap Add
Overlap Save
Windowing
Brute Force

force algorithm is faster than other algorithms for larger
structuring elements. This is purely due to an
optimisation procedure implemented in the algorithm that
allows the brute force to stop scanning through the list of
offsets for the structuring element, once an "off" pixel
has been located in the neighbourhood covered by the
structuring element. For our test image with an even
spread of black and white pixels this means that 50% of
output pixels required only one pixel test to be shown to
be blank. This situation can be shown to be the reverse if
majority of pixels are black as graph 4 shows..

5 . CONCLUSIONS
A versatile approach was discussed for fast computing
morphological dilation and erosion based on the concept
of thresholded convolution. The major advantage of this

approach is that it can deal with any arbitrary shaped
structuring element. Three different implementations of
this approach for erosion and dilation were presented,
namely the fast circular convolution, overlap-add and
overlap-save algorithms. Typical results for erosion and
dilation were discussed and compared against the direct
brute force method. When the structuring element used i s
significantly smaller than the input image then both
overlap-add and overlap-save algorithms are the fastest
with the former being slightly faster than the latter. Once
the structuring element is comparable to the size of the
input image (approximately 25% of the image size) then
the overhead associated with these two techniques makes
them less efficient and the circular convolution is the
fastest method to use.

6 . REFERENCES
[1] J. Serra, “Introduction to Mathematical

Morphology”, Computer Vision, Graphics and
Image Processing, Vol. 35, Pages 283-385,1986.

[2] D. J. DeFatta, J.G. Lucas, W.S. Hodgkiss, "Digital
Signal Processing: A System Design Approach",
pp 305-315, Wiley, 1988.

[3] B. Kisacanin, C. Schonfeld, “A Fast Thresholded
Linear Convolution Representation of
Morphological Operations”, IEEE Transactions on
Image Processing, Vol. 3, No. 4, Pages 455-457,
1994.

[4] A. Peled, B. Liu, “Digital Signal Processing.
Theory, Design and Implementation”, Wiley,
1976.

[5] van Herk, M., “A fast algorithm for local minimum
and maximum filters on rectangular and octagonal
kernels”, Pattern Recognition Letters, Vol. 13, pp
517-521, 1992.

[6] M. Razaz and Hagyard D.M.P. "Morphological
Structuring Element Decomposition:
Implementation and Comparison", Signal
Processing VIII :Theories & Applications, Vol. 1 ,
pp. 288-291, 1996.

[7] D.M.P. Hagyard, M. Razaz and P. Atkin, “A Fast
algorithm for computing morphological image
processing primitives”, Proc. IEEE Nonliner
Signal & Image Processing, Sept. 1997.

[8] J.W. Cooley, J.W. Tukey, “An Algorithm for the
Machine Calculation of Complex Fourier Series”,
Math Comp., Vol. 19, Pages 297-301, 1965.

[9] M. Razaz and Hagyard D.M.P. "Structuring
element decomposition by tree searching", Proc.
IEEE Nonlinear Signal. & Image Processing,
1997.

Graph 3. Graph of Time to erode an 864 square image using various sizes

of octagonal structuring element

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300

Time/s

Convolution Method

Overlap Add

Overlap Save

Brute Force

