HERMES : AN OBJECT-ORIENTED MULTITASKING
SYSTEM FOR CONCURRENT DIGITAL SIGNAL
PROCESSING APPLICATIONS

Antonios Anagnostopoulos and Georgios Kouroupetroglou
Division of Communication and Signal Processing,
Department of Informatics,

University of Athens, Athens GR 15784, Greece
e-mail: koupe@di.uoa.gr

ABSTRACT

This paper presents the design and implementation
of the PC-based multitasking system HERMES,
which supports the development of concurrent
Digital Signal Processing (DSP) applications using
object-oriented programming techniques under the
MS-DOS operating system. The signal abstractions
by Objects of the HERMES system and its
architecture are described along with the software
framework that enables the realization of highly
reusable and modular code for rapid production of
DSP tools and applications that can cooperate in
real-time.

1. INTRODUCTION

Nowadays, the combination of general purpose PCs
with advanced software techniques, such as object
orientation, are used more than ever for real-world
signal acquisition, processing and testing. Although
there is a wide range of commercially available
powerful and attractive digital signal processing
software for rapid algorithm development (e.g.
SRL [1], ISP [2], QuigSig [3], MATLAB [4]) there is
a lack of object oriented software systems for PCs
to handle multiple concurrent processes and
applications.

The development of such a system and its
applications is desirable to conform with the
following requirements: i. Constant and uniform
flow of information: since the input information of
such a system usually consists of a constant and
continuous flow of data (as they are sampled or
monitored by an A/D converter), the applications
that manipulate these data should not fragment or
alter the data flow. ii. Processing-time
optimizationm: architectural decisions can have a
greater impact in the overall throughput of a
system than pure code optimization. iii. Software
reusability. abstract application classes must be
identified to be generic enough in order to fulfill
the requirements of many similar applications’. iv.
Minimization of refinement overhead the abstract

application classes must be easily refined,
overriding the fewest possible methods. v. Re-
entrancy. all the applications must be developed
taking into account that their methods are to be
preempted at arbitrary locations by the
multitasking kernel, and to be called
simultaneously by an arbitrary number of other
applications’ methods.

Although there are a few Object Oriented
Operating Systems available, (some of them
designed for real-time or even distributed
processing), the HERMES system is an MS-DOS
executable, eliminating the need of familiarizing
its users with a new operating system and allowing
for other useful applications/utilities to reside in
the same workstation.

2. SYSTEM ARCHITECTURE

The HERMES system’s architecture consists of
several software layers (Fig. 1) in order to
constitute, along with the underlying hardware, a
platform that efficiently supports and executes
applications. It is a closed architecture, meaning
that each layer is implemented in terms of
operations or classes of each vertically adjacent
lower layer, thus reducing the dependencies and
providing information hiding between layers.

As object orientation is proven to be a sound
basis for the development of DSP systems [3,5], the
HERMES system was designed and developed
using the Object Modeling Technique (OMT) [6].
By using this object oriented methodology, that
supports graphical notations for representing
object-oriented concepts, we can provide a direct
analogy between objects in a design and objects in
the problem domain, making the design more
intuitive and easy to understand. An overview of
the Object Model of the HERMES system is
presented in Fig. 2.

2.1. The Multitasking Extension Layer

This Layer is responsible for providing to the

Application Framework

DSP Objects

Graphical User Interface

Screen Graphics / User events

Multitasking Extention

MS DOS / BIOS

q Screen s
Computer Real-Time Clock Mouse, Keyb(’)ar d Special
Hardware Hardware Hardware
Hardware

Fig. 1. The HERMES’ layered architecture.

HERMES system some essential capabilities that
are not offered to ordinary DOS applications; such
as multitasking operation, linear memory
addressing, shared memory and extended file
handling capacity. This Layer consists of the
following components:

i. The Multitasking Kernel that defines the Task
Object and provides preemptive scheduling of
tasks allowing many applications to operate
concurrently. Task switching is implemented
based on the round robbin scheduling
algorithm. Furthermore, software triggering is
offered in order to allow applications to trigger
the task switching mechanism themselves.

ii. Memory Objects for the management
(allocating, de-allocating and accessing) of the
PCs extended memory. These allow linear
addressing and access to up to 4 Gbytes of
linear memory and provide local storage for
the signal objects’ buffers. The Memory Objects
automatically align the requested memory to a
32bit boundary, for optimizing the system’s
performance in single and double precision
arithmetic.

iii. Signal Objects for storing and editing data
series. These Objects are designed to
manipulate two major signal categories: signals
of fixed or predefined size (such as prerecorded
waveforms, windows, spectrums etc), and
signals of undefined size (such as waveform
generators, continuous data acquisition).
Furthermore, the Signal Objects’ methods
ensure protection of the stored data and
synchronization of tasks that access common
Signal Objects using properly defined
semafores. The synchronization mechanism
exploits the software triggered task switching
mechanism by forcing the tasks that operate on
common Signal objects to use only as much

CPU time as is required to perform an
operation. In this way there is no need to define
different priorities to each task. This poses the
following side-effect: although the maximum
period that each task can be active is
predefined, the resulting task switching
frequency is higher, thus improving the
system’s performance.

2.2. Screen Graphics / User events Layer

This layer is a library of functions and objects
responsible for providing all the basic screen,
mouse and keyboard I/0 operations with respect to
the multitasking extension layer. Since the screen
hardware is not designed to be addressed by a
multitasking environment, the low level graphics
functions are not re-entrant. Therefore, they have
to block the Task Switching Kernel, thus
establishing a temporary non-multitasking
environment, and then to wunblock it after
completion of each screen operation. These
graphics functions are hand-coded in assembly
language ignoring any similar BIOS interrupts, in
order to access the screen hardware directly
ensuring thus fast screen updates. The keyboard
and mouse actions are modeled by the User Event
Object in the form of either the Keyboard Event
or the Mouse Event Object and stored in the Event
Queue.

2.3. Graphical User Interface Layer

The GUI layer provides a set of consistent
graphical objects, with a predefined appearance
and behavior, that serve as interaction components
and as visualization components for graphically
displaying the computational output. One of the
earliest realizations of an object-oriented dialogue-
independent software architecture for GUIs is the

i Graphics Library . Multi-tasking

Static Signal 3

; i
. B ! !
l Application Framework Layer : GUI Layer . and) Extension
‘ 1 , User Event Queue . Layer
) i
. ! !
) i
. .
]
‘ ! ! Graphics !
| : 1 Objects |
‘ | ! ‘ e
) | ! Task
. i ! ! Switcher
: ; Event !
' : Vi 1 Queue |
‘ Application !
‘ Moneger I — 5 [e
‘ 5 | || {Ordered} ' 2
. | ,
) :
‘ | ; ! ‘ {Ordered)
Application list — | ! _ ! .
) pplication lis rdered T AAPb}lfa“ton | ’) SigBuffer 72
' sublist} stract} I A =
| ’ ‘
. o] ‘ .)
' | Keybrd
. | ,
) i
. | ,
) i
. t
) i
!

XA

Spectrum Est.

Dynamic Signal

DSP Window

| Hamming |

- P !
| Signal Editor | | Generator ” TFR l<> T T
| | FFT Spectrum | | Choi-Williams | | Hann
.
‘: LPC Spect:
pectrum
| Sine Gen. | | Square Gen. | | Random Gen. | :‘ E

i
.
i

Cone-Kernel @

Fig. 2. Overview of the Object Model of the HERMES system.

Model-View-Controller (MVC) introduced in
Smalltalk-80 [7]. In HERMES, a modification of
the MVC software architecture is adopted: the
Controller becomes a method of View, thus
reducing the dependencies between application
functionality (Model) and user interface related
actions (View and Controller). Since Views may
contain several sub-Views to implement
complicated interaction structures such as menus,
dialogues, etc., the correct Controller to receive
user actions is automatically invoked; thus, a
situation of having many Views accessing the User
Event Queue simultaneously is avoided.

In this layer several interaction objects are
introduced in order to control and configure each
application (Windows, Buttons, EditBoxes, Menus,
Dialogues etc.) as well as to visualize the Signal
Objects in the form of signal, spectrum or
spectrographic plots.

2.4. DSP Objects Layer

The functionality of the Signal Objects is
specialized in this layer and novel objects are
introduced in order to provide reusable signal
processing objects that simplify the integration of
the DSP applications. These objects implement:
predefined weighting functions (Hamming,

Hanning, Triangular, Rectangular), configurable
weighting functions (Kaizer, Gaussian, weighted
cosine), FIR filters, spectrum analysis (short time
FFT, LPC) and Time-Frequency Representations
(TFR) (Wigner-Ville, Cone-Kernel, Choi-Williams).
In order to enhance the system’s performance, all
the methods that implement DSP operations are
coded in assembly language. Additionally, the DSP
objects provide also the appropriate methods that
implement any necessary dialog to configure their
behavior.

2.5. Application Framework

The Application Framework layer consists of the
Application Manager object and the Application
abstract Class. Only one instance of the
Application Manager is allowed, since this is
responsible for initiating (and terminating the)
multitasking system, the graphics screen, the Event
Queue and for instantiating the applications.

The abstract Application Class is a member of
the Window Class responsible for properly
connecting each application to the Application
Manager, establishing itself as a separate task and
providing the functionality for handling its screen
appearance, initiating menu operations and
terminating the application. An important feature

Spectogram Wigner - Ville Cone Kernel Choi - Williams
Analysis Real Real Analytical Real Analytical Real Analytical
Size (msec) (msec) (msec) (msec) (msec) (msec) (msec)
64 02 02 0.7 0.3 0.8 0.5 12
128 0.4 0.4 15 0.7 19 1.6 3.8
256 0.8 0.9 3.0 18 4.9 5.7 12.6
512 17 19 6.6 54 14.1 18.4 454
1024 3.7 3.9 14.0 17.9 447 70.1 178.3

Table 1. Performance of the assembly language implementations of the Spectogram, Wigner-
Ville, Cone Kernel and Choi-Williams analysis methods.

of the Application Class is that it allows any of its
methods to be established as independent tasks,
thus enhancing the flexibility of the application
development. This class should be refined to
perform the desired operations in order to become
a complete application.

2.6. Applications Layer

A number of Application Objects are currently
available under the HERMES system to perform:
signal editing, window design for Rectangular,
Triangular, Gaussian, Kaizer, Hamming, Hann, and
other weighted cosine windows, windowed FIR
design, Signal generators for sinusoidal,
squarewave and random signals, signal acquisition
through a plugged-in A/D board, spectrum analysis
and spectographic display of TFRs. These are
members of the Application Class and can be used
either as they are to perform experiments, or as a
basis for further refinement to produce custom
applications.

3. RESULTS

Since Signal objects are allowed to be shared
amongst applications, the HERMES system can be
used in a variety of ways: various operations can
be performed either in parallel (for example
various spectrum estimations of a common signal),
or in series in order to cooperatively perform
complex experiments. Furthermore, many
independent experiments can be performed
concurrently exploiting the capabilities of the
workstation.

The HERMES system is capable of producing
results in real time provided that the operations
involved are fast enough. The measurement of the
performance of some analysis methods (including
all necessary operations i.e. windowing and real to
analytical transform) that produce logarithmic
power spectrum estimations are presented in Table
1. Measurements are performed on a PC equipped
with a Pentium @ 75MHz CPU.

4. CONCLUSIONS

Although not a programming language, the
HERMES system by specifying high level
constraints, significantly simplifies the
development of DSP experiments by either
modifying or combining the proposed
objects/applications. The information-hiding of the
object oriented architecture verified that a
potential developer of tools or applications does

not need to be involved with the details of its
structure, beyond a familiarity with the
declarations (statements) provided for

communicating with it. Furthermore, since the
underlying architecture supports multiple threads
and data protection and synchronization,
applications can cooperate to produce results even
in real-time depending on the sampling rate and
the overall calculation complexity.

5. REFERENCES

[1] G. Kopec, “The Integrated Signal Processing
System ISP,” IEEE Transact. ASSP, vol. ASSP-
32, No. 4, pp. 842-851, Aug. 1984.

[2] G. Kopec, “The Signal Representation Language
SRL,” IEEE Transact. ASSP, vol. ASSP-33, No.
4, pp. 921-932, Aug. 1985.

[3] M. Karjalainen, “DSP Software Integration by
Object-Oriented Programming: A Case Study of
QuickSig,” IEEE ASSP Magazine, vol. 7, No. 2,
pp. 21-31, April 1990.

[4] The MathWorks Inc, Natick, MA. Matlab
User’s Guide, Aug. 1992.

[5] P. Daponte, L. Nigro and F. Tisato, “Object-
Oriented Design of Measurement Systems,”
IEEE Transact. Instrum. Meas., vol. IM-41, No.
6, pp. 874-880, Dec 1992.

[6] J. Rumbaugh et al, Object-Orinented Modeling
and Design, Prentice Hall, Englewood, 1991.

[71 G. Krasner and S. Pope, “A Cookbook for Using
the Model-View-Controller User Interface
Paradigm in Smalltalk-80,” Journal of Object-
Oriented Programming, No. 3, Aug./Sep. 1988.

