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ABSTRACT

A knowledge based approach for the interpretation of
aerial images is presented that combines cues from multi-
ple sensors (visual, infrared, SAR). The sensor fusion is
applied at object level. This allows to use prior knowledge
to increase the separability of the classes. The prior knowl-
edge is represented explicitly using semantic nets. Inter-
pretation exploits the semantic net to control the sequence
of sensor fusion mixing bottom–up and top–down strate-
gies. The presented approach addresses the problem of
uncertain and imprecise sensor data by judging the differ-
ent cues based on possibility theory. Competing interpreta-
tions are stored in a search tree. An A*–algorithm selects
the most promising, i.e. best judged, interpretation for fur-
ther investigation.

1. INTRODUCTION

The recognition of land use changes for map updating and
environmental and agricultural monitoring represents a
major topic of remote sensing. For this task sensors such as
optical, thermal, and radar (SAR) have been developed.
which collect different image data from the observed
scene. The wish to extract more information from the data
than is possible from a single sensor system alone raises the
question of sensor fusion. Several parameters influence the
data fusion: the different platform locations, the different
spectral bands (optical, thermal, or microwave), the sens-
ing geometry (e.g. perspective projection or SAR geome-
try), the spatial resolution, and the day and season or
weather at image acquisition.

Data fusion can take place at pixel or at object level. Pixel
level fusion processes directly the image data. Prerequisite
for the pixel based image fusion is the perfect  co–registra-

tion of the individual images. The resulting superimposed
images provide multispectral vector data per pixel to which
a numeric classifier can be applied directly.

The fusion at object level extracts features like regions and
lines from the different images and combines the result to
obtain the most reliable interpretation. The features can be
grouped to extract complex structures. Furthermore, the
interpretation allows to increase the separability of the
classes by exploiting domain knowledge which is related to
objects and not to pixels. Hence, here the fusion is applied
at object level. The used prior knowledge includes com-
mon knowledge about the objects and scene specific
knowledge which is provided by a geographic information
system (GIS).

In the literature various approaches to sensor fusion have
been presented. Only a few authors try to formalize the rep-
resentation of the objects and sensors, and the control of the
information integration. To ease  the adaptation of the sys-
tems to new tasks the domain knowledge should be repre-
sented explicitly and be independent from the control of the
analysis. Most interpretation systems like SPAM [1] and
SIGMA [2] use a hierarchic control and construct the
objects incrementally using multiple levels of detail. The
system MESSIE [3] models the objects explicitly distin-
guishing four views: geometry, radiometry, spatial context,
and functionality. It employs frames and production rules.
ERNEST [4], uses semantic nets to exploit the object struc-
ture for interpretation. The presented system AIDA [5]
adopts the idea to formulate prior knowledge about the
scene objects with semantic nets. In addition the control
knowledge is represented explicitly by rules. The system
combines cues from different sensors and structural rela-
tionships of the objects to increase or decrease the reliabil-
ity of competing interpretations.
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2. STRATEGIES FOR SENSOR FUSION

According to the control of the fusion three approaches are
distinguished:

Bottom–up fusion: The sensor data is grouped bottom–up.
For example, the corresponding pixels or primitives from
different sensor images are composed to form a feature
vector for classification.

Top–down fusion: The scene is observed by various sen-
sors. Fusion consists of selecting the most  appropriate sen-
sor.

Mixed fusion: Analysis proceed mixing successively top–
down and bottom–up fusion techniques to accomplish the
interpretation. Interpretation can focus on salient objects
first and start evaluation with the most reliable sensor.

The mixed fusion is the most adaptive and general for
scene analysis and is used in the following.

Sensor fusion has to deal with uncertainty and imprecision
of the data. A proposition is uncertain if it can not be classi-
fied clearly as true or false. (E.g.: The segmented line is a
road with a probability of eighty percent.) A proposition is
imprecise if it possesses no accurate value but a range of
several values. (E.g.: The road has a width between five
and ten meters.) Several schemes have been suggested to
represent and combine uncertainty, like possibility theory,
bayes nets, and evidence theory, and to model imprecision
by fuzzy sets or linguistic variables. The presented

approach uses possibility theory [6] to model both uncer-
tainty and imprecision.

According to the mutual dependencies the sensors are
redundant or complementary. In the first case the sensory
information support each other and can be combined inde-
pendently. In the second case interpretation depends on all
sensors and fails if the evaluation of one sensor does not
succeed.

The uncertainty and imprecision are combined accord-
ingly. Possibility theory models uncertainty by the differ-
ence between possibility P and necessity N of an interpreta-
tion and imprecision by fuzzy sets.

If no knowledge about a proposition e exists the necessity
N(e) is zero and the possibility P(e) is one. The same is true
for the contrary proposition ¬e because

N(�e)� 1� P(e) (1)

The difference between possibility and necessity is called
uncertainty. The comparison of a proposition, i.e. hypothe-
sis, with the sensor data, i.e. evidence, reduces the uncer-
tainty by increasing the necessity of e or its opposite ¬e.

The joint necessity N(e) and joint possibility P(e) from the
cues of complementary sensor  information result to:

N(e)� min
i

N(ei) (2)

P(e)� min
i

P(ei) (3)

The corresponding approach to compute the joint necessity
N(e) of redundant sensors from the maximum of the cues
fails if the sensory information is in conflict, i.e. one sug-
gests e and the other ¬e. In this case N(e) + N(¬e) ≤ 1 is not



guaranteed. To consider contrary information the cues of
redundant sensors are combined similar to Dempster’s rule
of combination. All combinations of sensor information
that support the proposition e are summed up. The sum is
normalized by the sum in the denominator of all combina-
tions that are not contradictory. The combination is
associative and commutative.

N(e)�
N1(e) P2(e)� N2(e) P1(e)� N1(e) N2(e)

1� N1(e) N2(�e)� N1(�e) N2(e)

3. KNOWLEDGE REPRESENTATION

The knowledge base has to represent the knowledge about
the sensors and the objects with their spatial relationships.
The knowledge can be classified into 3D scene domain and
2D image domain knowledge. The latter is sensor related.
The sensor coordinate system is referred to the image raster
while the scene domain uses a cartographic coordinate sys-
tem (e.g. Gauss–Krueger). The 3D scene domain can be
subdivided into three aspects, the scene specific semantic
or functionality (e.g. road), the 3D geometry (e.g. 3D
stripe), and the material with its reflectance properties (e.g.
asphalt).

The knowledge about the object structure and its relation-
ship to the sensor specific appearance is represented effi-
ciently by semantic nets. Semantic nets consist of nodes
and edges in between. The edges or links of the semantic
net form the relations between the objects.

Figure 1 shows a simplified semantic net for landscape
analysis. The different aspects of the domain knowledge
are modelled by conceptual layers, namely the scene,
geometry, material, and sensor layer. If more than one sen-
sor is available the sensor layer is duplicated (e.g. visual,
infrared, and SAR layer). The GIS can be regarded as a
symbolic sensor that is directly connected to the top scene
layer.

The layer specific level of abstraction is modelled by the
concrete–of link, abbreviated con–of. The decomposition
of an object into its parts is described by the part–of link.
The specialization of an object is described by the is–a link.
that introduces the concept of inheritance. Spatial relations
between objects are represented explicitly by attributed–
relations like the close–to link.

4. INTERPRETATION

In AIDA a problem independent control mechanism
exploits  the semantics of the network language to control
the interpretation. It uses the generic model in figure 1 to
generate, i.e. instantiate, a specific semantic net describing
the scene observed by the remotely sensed images. While,
for example, the knowledge base contains only one generic
model of a road, the scene description includes as many
roads as detected in the sensor data. The control knowl-
edge, i.e. the knowledge how and in which order scene in-
terpretation has to proceed, is formulated in a set of prede-
fined rules. An inference engine determines the sequence
of rule execution. If competing interpretations occur they
are judged using possibility theory. An A*–algorithm se-
lects the most promising interpretation for further inves-
tigation.

The interpretation distinguishes the following types of sen-
sor fusion:

Sensor selection: The object can be extracted completely
using only one sensor. For example, rivers show up clearly
in infrared images (fig. 2b) due to their cold temperatures.

Composite feature: This fusion type exploits several
con–of links to combine redundant sensors. The extraction
of the feature from only one sensor is erroneous like the
road extraction from the visual sensor or infrared sensor
alone. Hence the extraction combines the measured feature
properties to improve the road detection (see fig. 2).
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Composite object: The object is composed of several
complementary parts, indicated by part–of links, which
can be extracted from different sensors. The purification
plant in figure 2c consists of sedimentation tanks and build-
ings (fig. 1). The complex task of detecting a purification
plant is simplified to the extraction of the building from the
visual and the sedimentation tank from the infrared image.
Furthermore, the plant has a road access and is located
close–to a river to drain off cleaned water.

Composite context: The object may be only detectable in
a certain context. For  example, the  roads in urban areas are
usually accompanied by building rows along their sides
which show up as bright lines in a SAR image. In figure 3
only those segmented dark stripes in the aerial image are
interpreted as roads which are supported by parallel bright
lines in the SAR image.

If a GIS is available the object location can be constrained
further. However, the GIS may be out of date and incom-
plete. Hence the GIS is used to hypothesize an initial scene
description to be tested in the remote sensing data. The use
of a GIS is described in [7].

5. CONCLUSION

A knowledge based approach for the interpretation of
aerial images from multiple sensors was presented. The
sensor fusion is applied at object level. This allows to use
prior knowledge to increase the separability of the classes.

The prior knowledge is represented explicitly using
semantic nets. Interpretation exploits the semantic net to
control the sequence of sensor fusion mixing bottom–up
and top–down strategies.
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