Reliable Learning Using Post Classes

Ilya Shmulevich and Moncef Gabbouj
Signal Processing Laboratory
Tampere University of Technology
P.O. Box 553, Tampere, Finland
{ilya,moncef}@cs.tut.fi

ABSTRACT

The complexity of the consistency problem for several
important classes of Boolean functions is analyzed. The
classes of functions under investigation are those which
are closed under function composition or superposition.
Several of these so called Post classes are considered
within the context of machine learning with an appli-
cation to breast cancer diagnosis. The considered Post
classes furnish a user-selectable measure of reliability.
It is shown that for realistic situations which may arise
in practice, the consistency problem for these classes of
functions is polynomial-time solvable.

1 Introduction

The consistency problem is an important problem in
computational learning theory [2], [13] and can be
thought of as a search of a rule from examples. That is,
given some sets T and F of “true” and “false” vectors,
respectively, we aim to discover a Boolean function f
which takes on the value 1 for all vectors in 7" and the
value 0 for all vectors in F. We may also assume that
the target function f is chosen from some class of possi-
ble target functions. One important reason for studying
the complexity of the consistency problem is its rela-
tion to the PAC approximate learning model of Valiant
[13]. If the consistency problem for a given class is NP-
hard, then this class is not PAC-learnable. Moreover,
this would also imply that this class cannot be learned
with equivalence queries [1].

In practice, it is often reasonable to require f to pos-
sess certain properties, known a priori, or equivalently,
to belong to some specific class of functions. For ex-
ample, the class of monotone Boolean functions is often
representative of real-life phenomena and has been stud-
ied in the context of learning in such fields as medical
diagnosis [6], manufacturing and reliability analysis [7],
as well as signal processing [15]. In [3], the consistency
problem was considered for various classes of Boolean
functions, such as positive (monotone), k-DNF, h-term-
DNF, self-dual, and many others. Specifically, the ques-
tion of the existence of polynomial-time algorithms for
various classes of functions was investigated. In this

paper, we consider the consistency problem for several
important classes of Boolean functions, known as Post
classes.

In 1921, the American mathematician Emil Post de-
scribed the structure of all classes of Boolean functions
which are closed under superposition [11]. The results
of Post have been applied outside the field of algebra
of logic, for example, in the synthesis [10] and reliabil-
ity [9] of control systems. For example, the class M of
monotone Boolean functions is a Post class, since a su-
perposition of monotone Boolean functions results in a
monotone Boolean function. The consistency problem
for M was shown to be polynomial-time solvable in [3].
In fact, this was shown to be the case for all transitive
classes. In this paper, the classes under consideration
are FY Fy, FY, Fi and Fg°, F{°, F°, F5°, using
the notation of Yablonsky [14]. This and other nota-
tion is established in Section 2. The above classes have
practical relevance in the context of learning. This is
discussed in Section 3 where an example of breast can-
cer diagnosis is considered. Finally, Section 4 contains
the main results concerning the complexity of the con-
sistency problem for these classes of Boolean functions.

2 Definitions and notation

Let E™ denote the n-cube {0,1}". A Boolean function
is a mapping f : E” — E'. The elements v € E™ will be
referred to as vectors. The relation a < (3 holds for two
vectors « = (aq,...,ap) and 8 = (84,...,06,) if aq <
Bis-oyan < B,. A Boolean function f is monotone
(also called positive) if for any two vectors o and (3 such
that o < [, the inequality f(«) < f(8) holds. The
notation for various Post classes chosen here coincides
with that used by Post as well as that in [14].

We now proceed to define several important Post
classes.

Definition 1 A function f satisfies condition (AH)
(resp. (a*)), w > 2, if for any collection of u vec-
tors v v o) € E™ for which f (v(l)) ==

F (o) =1 fresp. [ (o) == f (1) =0), there
(1) @ _ ... _

exists an i € {1,...,n} such that v;”’ = v,



vl(“) =1 (resp. vgl) = 1)1(2) =---=0v"=0).

Let T(f) = {veFE™:f(v)=1} be called the
on-set of function f. Similarly, let F(f) =
{v e E™: f(v) =0} be the off-set of f.

Definition 2 A  function f  satisfies condition
(A (resp. (a®°)) if there exists ani € {1,...,n} such
that v; = 1 (resp. v; = 0) for all vectors v € T (f),
(resp. v € F(f)).

It is clear that if a function satisfies (A#1), then it
also satisfies (A#2) for 2 < uy < py. Also, the condition
(A%°) implies (A*) for any p > 2. Similar statements
can be made for (a*) and (a*). Let FY{ and F} be
the sets of all functions satisfying conditions (A*) and
(at), respectively. Similarly, let F§® and F{° be the set
of functions satisfying (A*°) and (a*). Finally, let F¥
(resp. FI') and F2° (resp. F§°) be the classes of mono-
tone functions satisfying conditions (A#) (resp. (a*))
and (A°°) (resp. (a™®)).

Given sets T C E"™ and F C E", such that TNF = 0,
the partially defined function g7 5 is defined as

1, veT
grr(v)=4¢ 0, wveF
%, otherwise

A function f is called an extension of gr p if T C T'(f)
and F' C F (f) [3]. The consistency problem (also called
the extension problem) can be posed as: given some
class C of functions and two sets T and F', is there an
extension f € C of g7, 7?7 The problem for class C will be
denoted as EXTENSION(C) [3] and the question of its
polynomial-time solvability is central in the PAC theory
of learning.

3 Post classes and breast cancer diagnosis

In [8], a breast cancer diagnosis problem is considered
within a learning framework. The goal is to find a set of
rules, using some specific set of features, to determine
whether or not an individual case is highly suspicious for
malignancy. Another goal may be to determine whether
or not a biopsy or short term follow-up is necessary. A
radiologist studying a breast tumor may use a number
of different features or attributes to make the decision
regarding malignancy or biopsy. Some such attributes
might be: number of calcifications per ¢m?, total num-
ber of calcifications, variation in the shape of the calci-
fications, approximate volume of the lesion, and many
others [16].

Each such attribute can be encoded by an appropriate
number of binary valued variables. For example, sup-
pose the total number of calcifications can be A: < 10,
B: 10 to 30, or C: > 30. Thus, two binary variables
would be needed to represent each case, e.g. (0,0) for
A, (0,1) for B, and (1,0) for C. Accordingly, a binary

vector = (z1,---,x,) of the necessary length to en-
code all attributes represents any given breast tumor
case. The goal then becomes to find a Boolean function
f that would classify each example vector = according
to the rules that are used by the expert, or radiologist.
For example, f (x) = 1, if the tumor encoded by =z is be-
lieved to be malignant, and f (z) = 0, otherwise. This
can be considered to be a form of knowledge discovery
from examples. In [8], it was assumed that the func-
tions underlying the patterns are monotone, or in other
words, f € M. One reason for this seemingly restric-
tive assumption is rooted in the fact that any Boolean
function can be expressed in terms of several increasing
and decreasing monotone Boolean functions [12]. An-
other reason is that the direction of the variables that
cause the phenomenon to occur or indicate its presence
is known (i.e. x; = 1 “causes” the phenomenon and
x; = 0 doesn’t). In that case, the polarities of variables
can be changed appropriately so as to make the function
monotone without loss of any generality.

With the intention of adding a certain degree of relia-
bility, it is natural to expect, or rather, demand, that a
given number of positive examples, that is, those which
are classified as being malignant, should exhibit some
agreement or concord among their attributes. We note
here that what is meant by the term reliability is not
the traditional confidence in the PAC learning sense.
Accordingly, reliability does not refer to the process of
learning itself, but rather to the constraints imposed on
the hypothesis space.

The weakest such requirement of reliability is that any
two malignant cases must necessarily agree on at least
one attribute, be it the total number of calcifications,
approximate volume of the lesion, or any other. Of
course, this attribute can be different depending on the
two examples selected. For instance, malignant cases
M1 and M2 might agree on attribute A, whereas ma-
lignant cases M3 and M4 might agree on attribute B,
and so on. One way to strengthen this requirement is to
increase the number p of positive examples all of which
must possess one or more common attributes. That is,
any p malignant cases must share at least one common
attribute. Such a condition is equivalent to restricting
the function f to be in the class F§ or FF, if f is ad-
ditionally assumed to be monotone. The strongest, and
perhaps unreasonably restrictive, versions of this notion
of reliability are captured by the classes Fg© and F3°,
which call for all malignant cases to agree on at least
one attribute.

The restriction to such classes, however, necessitates
the use of more bits for the encoding of the cases. That
is, one bit is required for every value of an attribute.
So, for example, an attribute that can take three values
A: < 10, B: 10 to 30, or C: > 30 should be coded as
(1,0,0), (0,1,0), and (0,0,1) respectively. Such an en-
coding scheme would then allow one to check whether
or not two or more malignant cases agree on the value



of any given attribute. Having discussed the possible
practical aspects of the above mentioned Post classes in
the context of learning theory, we now move on to the
main results in which we consider the complexity of the
consistency problem for these classes.

4 Extensions in Fg, F%, Fy, and F3

We first consider the problems EXTENSION(FY') and
EXTENSION(F¥) for a fized constant p. The results
for F}' and Fi' are identical and can be obtained using
the duality principle. The question of polynomial-time
solvability is posed in terms of n, |T|, and |F]|.

Theorem 3 EXTENSION(FY) and EXTENSION(FY)

are polynomial-time solvable for a fized constant p.

Proof. For the case of F{', we first must show that
checking whether there exists an i € {1,...,n} such
that 1)1(1) = %@) =... = UZ(M) = 1 for a collection of
vectors, takes time O (i - n). This is because we require
n passes through all u vectors, once for each coordinate,
keeping a flag set if the coordinate is equal to 1. This
condition is equivalent to saying that the conjunction of
all u vectors has non-zero Hamming weight.

For a fixed constant pu, checking the above condition
for all possible p-collections takes O (p-n - |T|") time,
which is polynomial in |T'| and n. If this condition is
satisfied for all p-collections of vectors from T, then as
an extension in F}', we provide

0 ={ 0 et 1)

otherwise

For the case of F!, the above steps must be pre-
ceded by a check for monotonicity. This entails checking
whether there is no pair of vectors v € T'and u € F such
that v < u, which takes O (n-|T|-|F|) time. Only if
this condition is satisfied can an extension in F¥' possibly
exist. Thus, EXTENSION(FY') and EXTENSION(F¥)
are both polynomial-time solvable in n, |T'|, and |F|. =

We now examine the case in general, when p < |T|
is part of the input to the problems EXTENSION(FY')
and EXTENSION(F¥).

Theorem 4 EXTENSION(FL) and EXTENSION(F")

are co-NP-complete.

Proof. The problem EXTENSION(F{') has a neg-
ative answer if there exists an 7-collection of vectors
V CT,(|V] = nand n < p), such that for all co-
ordinates i € {1,...,n}, there is at least one vector
v € V for which v; = 0. Thus, it is easy to see that
EXTENSION(F{') € co-NP, since a nondeterministic al-
gorithm need only guess the correct collection of 7 vec-
tors v ... (M e T that satisfy the above property,
and check this fact in polynomial time as in Theorem 3.

We show that EXTENSION(FY') is co-NP-hard by
a reduction from the well-known MINIMUM-COVER

problem [4], which is known to be NP-complete. The
instance of the MINIMUM-COVER problem is a collec-
tion C of subsets of a finite set S and a positive integer
p < |C|. The question is: does C' contain a cover for S
of size p or less, that is, a subset C/ C C with |C'] < p
such that every element of S belongs to at least one
member of C'?

Consider a finite set S = {z1,...,2,} and an arbi-
trary collection of subsets C' C 2%. Let us associate a
set T to C' by defining

T:{W:CEC}

where T denotes the bit-wise complement of vector v
and v° is the characteristic vector of set ¢ € C, that is,
x; € ¢c <= v = 1. This set can be constructed from C
in polynomial time in n and |C|. It is easy to see that C
contains a cover for S if and only if EXTENSION(FY')
has a negative answer.

Turning to F%, we note that the added constraint
of monotonicity does not make the problem any easier.
We have seen that the “hardness” of the problem lies
entirely within the set T of true vectors, whereas mono-
tonicity is concerned with the relationship between the
sets T and F. So, even if we were furnished with a
guarantee of monotonicity a priori, we would still have
to solve the same exact problem as above, namely, to
check whether condition (A*) is satisfied within set T
Thus, we can conclude that EXTENSION(F}) is also
co-NP-complete. m

Now, let us turn to the problem of finding an exten-
sion in Fg° and F7°, with F° and F5° again being iden-
tical by duality. It is easy to see that checking whether
all vectors v € T have at least one common unit compo-
nent takes O (n - |T|) time. The question of monotonic-
ity can be answered beforehand in O (n - |T| - |F|) time,
as in Theorem 3. In that case, an extension in Fg° or
F$° can be constructed as in (1), in polynomial time,
giving us the following result.

Theorem 5 EXTENSION(FS®) and EX TENSION(FS°)

are polynomial-time solvable.

Having considered the complexity of the consistency
problem for the above Post classes, it is worthwhile to
ask just how restrictive, in the cardinality sense, are
the hypotheses spaces (F§', Fg°) and (F¥, F£°), rela-
tive to the classes of all Boolean functions and mono-
tone functions, respectively. After all, if the imposed
requirement of reliability, the degree of which is con-
trolled by p, would significantly restrict the hypothe-
sis space, then their use in a practical setting would
be questionable. Partial answers to these questions can
be found in the work of Korshunov [5], who considered
asymptotic formulae for the cardinality of the above
classes of functions. Due to space limitations, we will
not attempt to reproduce all the asymptotic results,



many of which are different for even and odd n, and
refer the interested reader to the original paper. How-
ever, it is worth mentioning that the cardinalities of the
classes of functions considered here grow very quickly as
n — oo. For example, for any fixed g > 3 and n — oo,
|FY| ~ |Fg°| ~n22"", while for p = 2,

|F2| > 22" (3/2)(n )
|F2| > 22" (3/2)3072),

for odd n >3

for even n > 3.

Similar asymptotic relationships exist between (F%', Fi°)
and the cardinality of the class of monotone functions.
These facts are somewhat reassuring in that the imposed
reliability constraints do not seem to lead to an overly
restrictive hypothesis space.

5 Conclusion

We have analyzed the complexity of the consistency
problem for several important Post classes, which have
shown to be relevant in the study of reliability of con-
trol systems. Additionally, we discussed a possible ap-
plication of the considered classes to diagnosis of breast
cancer. The positive result obtained here is that if p is
known a priori and fixed, which would reflect the case
in practice, the consistency problem in classes FY', Fi',
F¥ and FY' is solvable in polynomial time. In the con-
text of breast cancer diagnosis, the parameter p would
reflect the user-settable degree of required reliability for
the rules being inferred. The higher the value of u, the
more strict this requirement becomes.

Additionally, the consistency problem for classes F§°,
Efe, F2° and F5° is also polynomial time solvable. As
part of future work, it would be worthwhile to consider
best-fit extensions in the above classes of Boolean func-
tions, especially for high values of p, when a fewer num-
ber of possible rules is expected.
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