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ABSTRACT
Differential matrix modulation is an attractive alternative for
MIMO transmission since it does not require channel esti-
mation at the receiver. Most proposals are based on unitary
matrices. Assuming a receiver with relatively low complex-
ity, we will show that the performance at higher bandwidth-
efficiency can be improved by using non-unitary matrix con-
stellations. We compare different non-unitary schemes and
their soft-output detectors.

1. INTRODUCTION
Differential matrix modulation schemes which enable
MIMO capacity gains and transmit antenna diversity with-
out the need for MIMO channel estimation at the receiver
have been proposed in [TJ00], [Hug00], [HS00]. In general,
those schemes can be viewed as differential matrix modula-
tion methods where the constellation consists of unitary ma-
trices. The requirement of the constellation elements to be
unitary matrices limits the achievable data rate and perfor-
mance.

In order to increase the bandwidth-efficiency, we give up
the restriction to unitary matrix constellations. Earlier pro-
posals for non-unitary differential matrix modulation include
the extension of unitary matrix modulation by an additional
amplitude modulation [Xia02], [Bau03], [Bau04a]. Non-
unitary differential matrix modulation based on orthogonal
designs with QAM modulation was presented in [TC01],
[CZSL03], [HNCT03b], [HNCT03a]. For those schemes,
we propose novel soft-output detectors. Furthermore, we dis-
cuss the possibility of increasing the bandwidth-efficiency by
a kind of differential spatial multiplexing scheme. Finally,
we will compare the performance of those differential matrix
modulation schemes.

2. CHANNEL MODEL
We consider a flat fading multiple-input multiple-output
(MIMO) channel with nT transmit and nR receive antennas.
The channel coefficients h(i j)

k are collected in the matrix Hk

where h(i j)
k is the channel coefficient from transmit antenna i

to receive antenna j at time k. At the receiver, we observe

Yk = HkXk +Nk, (1)

where Xk and Yk contain the transmitted and received
symbols, respectively, and Nk contains the noise samples
which are assumed to be independent and Gaussian with vari-
ance σ 2 = N0

2 per real dimension.

3. DIFFERENTIAL UNITARY MATRIX
MODULATION

Differential unitary matrix modulation was introduced simul-
taneously in [HS00] and [Hug00]. The info bits are mapped
on an L×L info matrix Ck. The nT ×L transmit matrix Xk

is determined by Ck and the previously transmitted matrix
Xk−1 according to the differential encoding rule

Xk = Xk−1Ck. (2)

In order to allow simple non-coherent detection, Ck must
be unitary, i.e.

CkC
H
k = IL, (3)

where CH denotes the conjugate transpose of C and IL
is the L×L identity matrix. A unitary reference matrix X0
has to be transmitted first. All transmit matrices Xk are
unitary. A suitable construction of unitary matrices is us-
ing orthogonal designs [TJC99] with PSK symbols ck,l . E.g.
for nT = 2 transmit antennas, we have the Alamouti scheme
where K = 2 symbols are mapped to the matrix

Ck =

[
ck,1 ck,2
−c∗k,2 c∗k,1

]
. (4)

Since unitary space-time modulation is based on PSK
symbols, the performance will be poor for more bandwidth-
efficient transmission, i.e. when the unitary matrix is based
on M-PSK symbols for M > 8.

4. EXTENSIONS OF DIFFERENTIAL UNITARY
MATRIX MODULATION

For more bandwidth-efficient differential matrix modulation,
we propose to give up the restriction to unitary transmit ma-
trices. We consider three approaches, where the differential
encoding can be written as

Xk =
1
Ak

Xk−1Ck. (5)

The three proposals differ in the design of the info matrix
Ck and in the meaning of the factor 1/Ak: First, we describe
differential amplitude and unitary matrix modulation in Sec-
tion 4.1, where Ck is still an unitary matrix and 1/Ak is an ad-
ditional amplitude or matrix norm modulation, i.e. 1/Ak car-
ries information. In Section 4.2, we introduce two schemes,
where the matrix Ck is not unitary any more and 1/Ak is just
a transmit energy normalization factor which does not carry
information.

4.1 Differential Amplitude and Unitary Matrix Modula-
tion
Extensions of unitary matrix modulation by an additional
amplitude or matrix norm modulation for higher bandwidth-
efficiency with improved performance have been proposed
in [Xia02], [Bau03], [Bau04a], [Bau04b]. The general ap-
proach according to [Bau04a], [Bau04b] which can be ap-
plied as an extension of any differential unitary matrix mod-
ulation scheme is depicted in Figure 1. Here, the input
bits of the differential matrix modulator are grouped into
two sets. The first log2 M1 bits are mapped on a uni-
tary matrix Ck as it is done in unitary differential ma-
trix modulation. The last log2 M2 bits and the previously
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Figure 1: Differential Amplitude and Unitary Matrix Modu-
lation. Transmitter.

transmitted matrix Xk−1 determine the amplitude modu-
lation factor aqk , where a is a real constant and qk ∈
{−M2 + 1,−M2 + 2, ...,−1,0,1, ...,M2−1}. The transmit
matrices are not unitary any more but satisfy

XkX
H
k = azkInT , (6)

where azk can take the discrete real values azk ∈{
1,a,a2, ...,aM2−1}. Depending on the log2 M2 last input

bits, the amplitude azk as defined in (6) is cyclic increased
compared to the previously transmitted matrix by a factor of
1,a,a2, ..., or aM2−1.

The amplitude difference exponent is given by

qk = zk−1−M2 b(zk−1 + dk)/M2c , (7)

where b.c is the floor function. The input bits u
(2)
k are

mapped on an integer dk ∈ {0,1, ...,M2−1} and zk−1 denotes
the amplitude exponent of the previously transmitted matrix
Xk−1 which is determined by

zk = zk−1 + qk (8)

with the arbitrary choice z0 = q0 = 0.
A disadvantage of this scheme is that the amplitude mod-

ulation is performed per matrix rather than per symbol which
means a limited improvement in bandwidth-efficiency espe-
cially for larger matrices.

4.2 Non-Unitary Orthogonal and Non-Orthogonal Dif-
ferential Matrix Modulation
Another idea is to increases the bandwidth-efficiency by us-
ing non-unitary differential space-time modulation. In con-
trast to the scheme described in the previous section, we do
not perform separate unitary matrix modulation and ampli-
tude modulation. Instead, a differential matrix modulation
with non-unitary matrices is performed. The transmitter is
depicted in Figure 2. The input bits for the transmit matrix
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Figure 2: Non-unitary differential matrix modulation. Trans-
mitter

Xk are mapped on a matrix Ck with complex entries ck,i j.
One possibility is, to choose the mapping rule according to
an orthogonal design. In contrast to unitary differential ma-
trix modulation where the entries ck,i j are restricted to PSK
symbols, we allow ck,i j to be taken from a QAM constella-
tion. We refer to this approach as non-unitary orthogonal
matrix modulation.

Another approach is to fill the L×L matrix Ck with in-
dependent symbols of a PSK or QAM constellation. This is
similar to spatial multiplexing in coherent MIMO transmis-
sion. If the cardinality of the modulation scheme is M, we
can transmit log2 M ·L ·L bits per matrix. However, care has
to be taken that the differential encoding does not cause a
zero sequence. In order to avoid this, we propose to rotate
the constellation of each entry of the matrix by multiplica-
tion with a different phase factor. We call this approach non-
orthogonal differential matrix modulation.

In unitary differential matrix modulation, the differential
encoding (2) does not change the transmit energy since Ck
and Xk−1 are unitary. However, in case of non-unitary ma-
trices Ck, we need to normalize the transmit matrix by muli-
plication with the normalization factor 1/Ak, i.e.

Xk =
1
Ak

Xk−1Ck, (9)

in order to meet the power constraint

Ek,l

{
nT

∑
n=1
|x(n)

k,l |2
}

= Es, (10)

where Ek,l denotes expectation with respect to k and l and Es
is the total average transmit energy per time slot, i.e. for a
hypersymbol

[
x(1)

k,l , · · · ,x
(nT )
k,l

]
which consists of the symbols

which are transmitted simultaneously from different anten-
nas. Normalization avoids blowing up the transmit power as
well as a vanishing signal.

The power constraint (10) is met if the normalization fac-
tor is determined by the energy of the previously transmitted
matrix, i.e.

Ak =

√
1
L

trace
{
Xk−1X

H
k−1

}
. (11)

If Ck is an orthogonal design, we have

CkC
H
k = akIL, (12)

where IL is the L×L identity matrix. Consequently, the am-
plitude of the matrix Ck can easily be defined as ak. Then,
condition (11) is equivalent to choosing the normalization
factor

Ak =
√

ak−1. (13)

4.3 Receiver
We consider a simple non-coherent receiver which takes into
account two successively received matrices

Yk−1 = Hk−1Xk−1 +Nk−1 (14)

Yk = HkXk +Nk =
1

Ak
HkXk−1Ck +Nk, (15)

where the channel is assumed to be constant during transmis-
sion of two matrices, i.e.

Hk−1 ≈Hk. (16)

Plugging (14) into (15) yields

Yk =
1

Ak
Yk−1Ck−

1
Ak

Nk−1Ck +Nk

=
1

Ak
Yk−1Ck + Ñk. (17)



This describes the transmission of the info matrix Ck over
an equivalent channel with L transmit and nR receive anten-
nas, channel coefficients H̃ = 1

Ak
Yk−1 and additive Gaussian

noise with variance

σ̃2 = σ 2
(

1 +
1

A2
k

trace
{
CkC

H
k
})

(18)

per real dimension at each virtual receive antenna, where σ 2

is the noise variance per real dimension at each physical re-
ceive antenna.

For detection, we need an estimate on the effective chan-
nel tap, i.e. we need an estimate on 1/Ak. For soft-output
detection, we even need an estimate on the effective noise
variance according to (18). As long as Ck is chosen as or-
thogonal design, the parameter

νk =
trace

{
YkY

H
k

}

trace
{
Yk−1Y

H
k−1

} ≈ 1
LA2

k
trace

{
CkC

H
k
}

(19)

can be used as an approximation of the last term in
(18). In case of noiseless transmission, νk is exactly

1
LA2

k
trace

{
CkC

H
k

}
. For differential amplitude and unitary

matrix modulation, Ck is unitary and hence νk can also be
used as approximation for the effective channel coefficient in
(17). Moreover, νk is a direct estimate on the data part which
is transmitted via amplitude modulation. For more details we
refer to [Bau04a].

In case of non-unitary orthogonal matrix modulation, νk
can be used for estimating the effective noise variance (18).
However, we also need to know the effective fading coeffi-
cient which requires an estimate on 1/Ak. We propose three
methods for estimation of 1/Ak:
1. A first solution is to ignore the normalization factor 1 /Ak

at the receiver by assuming 1/Ak = 1. This works surpris-
ingly well particularly in time varying channels, where
the channel is not exactly constant during transmission
of two successive matrices.

2. Another possibility is to estimate 1/Ak from the hard de-
cisions up to matrix k. Since the first transmitted matrix
X0 is a known reference matrix, estimates Âk on all nor-
malization factors Ak can be obtained based on the hard
decisions Ĉt , t < k taking into account the differential
encoding rule (9). More precisely: Knowing Xk−1 yields
Âk for detection of Ck. From the hard decision Ĉk, we
obtain an estimate for Xk which yields Âk+1 etc.. The
problem with this approach is that it imposes error prop-
agation.

3. Error propagation can be avoided on the expense of ne-
glecting noise if 1/Ak is estimated using (19) and (12),
i.e.

νk =
trace

{
YH

k Yk
}

trace
{
YH

k−1Yk−1
} ≈ ak

A2
k
, (20)

where ak is the amplitude of the orthogonal design as de-
fined in (12). From (13), we know that

A2
k+1 = ak. (21)

Since the first transmitted matrix X0 is a known refer-
ence matrix, A1 is known at the receiver. Typically, the
reference matrix will be the identity matrix and, hence,
A1=1. For k > 1, an estimate Âk is obtained using (20)
and (21) from

Â2
k+1 = νkÂ2

k . (22)

Method 3 turns out to be advantageous in quasistatic fad-
ing channels, whereas method 2 performs better in time vary-
ing channels, where the condition (16) is violated. In case
of non-orthogonal unitary designs, the approximation (19)
doesnot hold true and, hence, only method 1 is appropriate.

Using those estimates on 1/Ak and the noise variance
σ̃2, the computation of soft-output decisions in the form of a
max-log approximation of log-likelihood ratios

L(ûk,t)≈max
Ck

uk,t =+1

log p(Ck|Yk−1Yk)−max
Ck

uk,t=−1

log p(Ck|Yk−1Yk)

(23)
is straight forward (see [Bau04a] for details). In order to

avoid estimation of the noise variance σ 2, we propose to sim-
ply multiply all log-likelihood ratios by σ 2 in order to make
the right hand side of (23) independent of σ 2. If the noise
variance is constant over a frame, which is a reasonable as-
sumption, all log-likelihood ratios are scaled by the constant
factor σ 2. This has no effect on the hard output of an outer
Viterbi or Max-Log-type APP decoder. However, the log-
likelihood ratios of the outer decoder will also be scaled by
the same factor.

5. SIMULATION RESULTS

We compare the performance of the schemes mentioned
above for nT = 2 transmit and nR = 2 receive antennas in a
spatially uncorrelated quasistatic channel, i.e. the channel is
constant during transmission of a coded block and changes
independently from one block to the next. For forward er-
ror control (FEC) coding, we use a rate R = 1/2 convolu-
tional code with constraint length 5 and generators [23,35].
We consider transmission of 8 bits per matrix. This can be
achieved with unitary differential matrix modulation based
on 16-PSK, with non-unitary orthogonal matrix modulation
based on 16-QAM or with non-orthogonal differential matrix
modulation based on rotated QPSK. Alternatively, we can
use the differential amplitude and unitary matrix modulation
scheme described in Section 4.1 based on 8-PSK modulation
plus 4-ary amplitude modulation (M1 = 8, M2 = 4).

BER results for uncoded transmission are depicted in
Figure 3.
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Figure 3: BER for uncoded transmission over quasistatic
channel. 8 bits per matrix, nT = 2, nR = 2.

The performance of the non-unitary schemes depends on
the estimation method for the effective channel parameters
as discussed in Section 4.3. For comparison, we include the
performance of a genius detector which perfectly knows the
otherwise estimated effective channel parameters.

For non-unitary orthogonal matrix modulation (non-
unitary DMM), estimation method 3 of Section 4.3 (IV.C-
3) virtually achieves the performance of the genius detector,
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Figure 4: BER for coded transmission over quasistatic chan-
nel. 8 bits per matrix, nT = 2, nR = 2, convolutional code
[23,35] with R = 1/2.

whereas method 2 performs 0.6 dB worse. Method IV.C-
1 results in an error floor (not shown). It is noticeable that
with the optimum detector according to IV.C-3, non-unitary
DMM performs 2.4 dB better than differential amplitude and
unitary matrix modulation which shows similar performance
as differential unitary matrix modulation.

For non-orthogonal differential matrix modulation,
method IV.C-2 shows the best performance. Here, method
IV.C-3 fails since (19) is not true. However, even with a
genius detector, non-orthogonal DMM shows poorer perfor-
mance than the other schemes. This is expected since as a
kind of spatial multiplexing method, it does not provide di-
versity in uncoded transmission.

The respective BER results for FEC coded transmission
are depicted in Figure 4. Here, the performance advan-
tage of non-unitary orthogonal differential matrix modula-
tion over differential amplitude and unitary matrix modu-
lation reduces to 0.5dB which indicates that due to inaccu-
rate estimation of the effective channel parameters, the qual-
ity of the soft-output log-likelihood ratios of the non-unitary
scheme is worse than for differential amplitude and unitary
matrix modulation resulting in a performance degradation of
the FEC decoder. In the FEC coded scheme, differential
amplitude and unitary matrix modulation outperforms uni-
tary matrix modulation by 0.4 dB even though both schemes
showed similar uncoded average BER. This can be explained
by the fact that the bits which are transmitted in the unitary
part of differential amplitude and unitary matrix modulation
have a lower BER than those which determine the ampli-
tude modulation. In FEC decoding, the larger number of bits
transmitted with lower BER helps to correct errors in the am-
plitude modulation bits.

Even with a genius detector, non-orthogonal differential
matrix modulation shows significantly poorer performance
than the orthogonal schemes. This is due to the fact that
the effective channel matrix Yk−1 might be ill conditioned
due to differential encoding and, thus, the effective channel
does not support spatial multiplexing but rather pure transmit
diversity which is exploited by the orthogonal schemes. In-
terestingly, with FEC coding, method IV.C-1 shows the best
performance and clearly outperforms IV.C-2. This demon-
strates that not only the uncoded BER but also the quality of
the log-likelihood ratios is decisive for the performance of an
outer FEC decoder.

6. CONCLUSIONS

We have presented several non-unitary differential matrix
modulation schemes with various novel versions of non-

coherent soft-output detectors. In quasistatic fading chan-
nels, non-unitary orthogonal matrix modulation shows the
best performance and outperforms standard unitary matrix
modulation by 2.4 dB in uncoded transmission and 0.9 dB in
FEC coded transmission at a rate of 8 bits per matrix. Non-
orthogonal matrix modulation appears to be less suitable for
non-coherent detection since the differential encoding causes
the effective channel to be ill conditioned.
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