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ABSTRACT
Stereo vision algorithms are usually designed to run on stan-
dard PCs or PC-based systems. Up to now and due to the
limited resources (e.g. internal and external RAM size, CPU
power, power consumption, etc.) no general embedded hard-
ware exists, where different algorithms can be implemented
and run properly. The presented test platform aims to close
this gap and implement a convenient platform for the evalua-
tion of different high level vision algorithms used for embed-
ded systems. Furthermore, it offers an excellent opportunity
for testing and evaluating automatic code generation tools
(e.g. MathWorks Real-Time Workshop Embedded Coder).
In this paper the complete system concept, the automotive
application, a stereo vision example algorithm and experi-
mental results are presented.

1. INTRODUCTION

It is nontrivial to identify suitable algorithms for a specific
embedded real-time application. To approach this task a plat-
form was developed, which enables the embedding of differ-
ent computer vision algorithms on a real-time system. The
evaluation of the performance was based on an automotive
application, namely platooning [3]. The advantage of the
platform is the possibility to easily embed different com-
puter vision algorithms and compare the performance of each
other. Since model-cars have been used in this testbed, small,
lightweight, and power-aware solutions were used, because
of the apparent limitations. Furthermore, it is cheap and easy
to maintain, compared to real cars. In the presented proto-
type, it had to be dealt with real-time and embedded systems
requirements, otherwise the algorithms – and therefore the
platooning application – would not work properly at all.

In the following sections the configuration of the platoon-
ing testbed will be presented. The whole concept of the test
platform will be described and the achieved results of the
realized experiments will be discussed. The paper will con-
clude with a discussion on future work.

2. SYSTEM CONCEPT

2.1 Platooning Testbed
An overview of the testbed is shown in Fig. 1. It consists of a
leading car (car A) and a trailing car (car B). Car A is built by
using the Lego Mindstorm series and can be programmed to
travel a pre-programmed or random path. The main purpose
of car B is to follow car A by keeping the distance between
both cars constant. This behavior is called platooning [3].
Fig. 1 also shows the definitions of the reference coordinate
system, distance r and angle ϕ . The task of the platooning
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Figure 1: Overview of the platooning testbed

car B is to keep the pre-defined distance r constant and to
minimize the angle ϕ .

2.2 Test Platform
The test platform is based on a model truck with a Direct Cur-
rent (DC) drive and steering mechanism. The remote con-
trol, which is normally used to control the truck, has been
replaced by an on-board embedded system. The system is
responsible for monitoring and steering the test platform (re-
spectively the model truck).

The model truck (see Fig. 3) is equipped with a pair of
Basler 601fc IEEE1394 “FireWire” Complementary Metal
Oxide Semiconductor (CMOS) cameras. The cameras are
mounted at the front leftmost and the rightmost side of the
model truck to obtain the desired stereo effect.

Fig. 2 represents the design of the on-board embedded
system. It reflects a distributed embedded system solution,
consisting several nodes for battery-powered operations. The
core of the system is a TTP/C-cluster [7] composed of the
following three different nodes:
• The ControlNode (CN) is a TTTech PowerNode [7],

running under TTP/OS, and is responsible for accelera-
tion/deceleration and steering servo drives.
• The SensorNode (SN) is also a TTTech PowerNode,

running under TTP/OS. It interfaces all sensors except the
cameras. Two acceleration sensors are responsible for crash
warning. A magnetic cavity has been used as a speed sen-
sor. The steering angle sensor has been realized by using a
potentiometer.
• The core of the VisionNode (VN) is a high performance

Digital Signal Processor (DSP) based on a platform by the
Orsys GmbH [5]. It triggers and receives images from the
stereo digital camera system. The stereo head is connected
to the VN by a 400 Mbit/s IEEE1394 “FireWire”-bus, using
the isochronous frame transmission mode [5]. Furthermore,
the computer vision algorithms are executed on this node.
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Figure 3: Model truck

2.3 Stereo Vision Sensor
The stereo vision sensor is based on two IEEE1394
“FireWire” cameras, which are connected to the VN. To
guarantee a synchronized acquisition of both images from
the left and the right camera, the same hardware-trigger sig-
nal is used.

Each camera delivers a 2D-image of the scene. The main
task of a 3D-reconstruction algorithm is to map the original
3D position of the point of interest from the 2D information.
For the successful reconstruction of a point in 3D, it is nec-
essary to know the spatial coordinates of the same point in
the left and in the right camera image. Therefore, the first
step is the extraction of corresponding points from these two
images.

For the calculation of the 3D coordinates of a point, stan-
dard geometry is used, as shown in Fig. 4. The transfor-
mation between the spatial (u,v) and the image coordinate
system (x,y) is done by using the following equation:(

u
v

)
=
(

x
y

)
−
(

xm
ym

)
where (xm,ym) denotes the intersection point between plane
and optical axis.

A method called 3D-triangulation [1] has been used to
calculate the 3D-position of the point of interest. The main
advantage of standard geometry is that equations for calculat-
ing the 3D coordinates of any point in the camera coordinate
system are become simple. The method starts with the cal-
culation of the disparity ds = uL−uR, which is a measure for
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Figure 4: Standard geometry and related coordinate systems

the distance between the point of interest to the camera sys-
tem. Based on this disparity and the assumption that vL = vR,
the 3D position of the point of interest in camera coordinates
can be calculated by:

X = b ·
(

uL

ds
− 1

2

)
, Y = b · vL

ds
, Z = b · f

ds

The main goal for platooning is to keep the distance between
the two cars constant and to minimize the relative angle of
car A with respect to car B. Therefore, a polar coordinate
description in the X-Z-plane has been used (shown in Fig. 4).
Distance r and angle ϕ are calculated as follows:

r =
√

X2 +Z2, ϕ =
180
π

· arcsin
(
−X

r

)
The distance r describes the distance between the center of
the stereo head and the rear light of leading car A. ϕ is the
angle between the Z-axis and the current position of the lead-
ing car, since the algorithm detects both rear lights of car A.
If rL and ϕL denote the distance and angle of the left rear
light, and rR and ϕR denote the distance and angle of the right
rear light, the distance r and the angle ϕ can be calculated as
given below:

r =
rL + rR

2
, ϕ =

ϕL +ϕR

2

3. EXAMPLE: STEREO VISION ALGORITHM

Based on a simple color-based tracking of the rear lights the
capabilities of the test platform are described. As already
mentioned, the stereo vision system of car B is used to detect
the position of the leading car A. This is done by extrac-
tion of the red lights from both camera images. A principle
schematic of the left camera image is presented in Fig. 5. The
goal is to track both rear lights of car A by moving a so-called
tracking window, where the red light is approximately in the
center of the tracking window. To gain some robustness, both
rear lights are tracked simultaneously.

The initial values for the algorithm (xc, yc, T1L, T1H , T2L
and T2H ) are obtained by a calibration procedure. Here, one
image from each camera has to be grabbed and both images
are searched for red lights. After finding the lights in both
images, the initial values are extracted from the images. This
routine is also used for a re-initialization of the algorithm
after tailing off the red lights (e.g. after an occlusion). The
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Figure 5: Schematic image of car A in left camera image

tracking algorithm itself will be described in detail as fol-
lows:

1. First, Regions Of Interest (ROIs) are calculated from
both images. The coordinates for these regions are given by
the equations:

(xcLL −dw,ycLL −dh,xcLL +dw,ycLL +dh)
(xcRL −dw,ycRL −dh,xcRL +dw,ycRL +dh)
(xcLR −dw,ycLR −dh,xcLR +dw,ycLR +dh)
(xcRR −dw,ycRR −dh,xcRR +dw,ycRR +dh)

where (xcLL ,ycLL) , (xcLR ,ycLR) , (xcRL ,ycRL) , (xcRR ,ycRR)
describe the centers of the four tracking windows for the four
rear lights, two in the left and two in the right image. The fol-
lowing operations are described only for one rear light in one
camera image.

2. Since the cameras use a Bayer RGB primary color filter
for generation of color information, special care has to be
taken with the calculation of the color information for each
pixel. Each individual pixel is covered by a micro-lens which
only allows enough light of only one color to strike the pixel.
The color information of each pixel P

P(x,y) =

( R(x,y)
G(x,y)
B(x,y)

)

is calculated using an interpolation technique based on a 2x2
operator [2]. R(x,y) denotes the red component of the pixel
P(x,y), G(x,y) the green, and B(x,y) the blue component.

3. In the next step the pixels of the tracking window are
converted to a more useful color representation. The YT1T2
color space has been used, also know as L1-normalized
colors [4]. Only the chromatic part of the color space model
(which are T 1 and T 2) has been used, because it is more
robust against variations in the light intensity. Under the
supposition that the gamma correction circuit of the camera
is deactivated and the response of the CMOS sensor cells to
the incoming light is linear, the color space conversion can
be realized as follows:

If
R(x,y)+G(x,y)+B(x,y) = 0

Then
T 1(x,y) = T 2(x,y) = 255

3 = 85
Else

T 1(x,y) = 255 · R(x,y)
R(x,y)+G(x,y)+B(x,y)

T 2(x,y) = 255 · G(x,y)
R(x,y)+G(x,y)+B(x,y)

4. Segmentation of the image has to be performed next.
Thus, each pixel is checked if it is part of the rear light of
car A or not. That is done by a membership test. This test
calculates if either the color of the pixel is inside the color
class and associated with the rear light or not. The result
of this member test is a binary image I with the size of the
tracking window. In this membership test, only the chromatic
part

Pcc(x,y) =
(

T 1(x,y)
T 2(x,y)

)
is used. Inside the tracking window, the following test pro-
cedure is applied to each pixel [6]:

If
(T 1L ≤ T 1(x,y) ≤ T 2H) and (T 2L ≤ T 2(x,y) ≤ T 2H)

Then
I(x,y) = 1

Else
I(x,y) = 0

A one denotes that this pixel has been classified as part of
the rear light. A zero means that this pixel is not part of the
rear light. The color class associated with the rear light is es-
tablished during the initialization procedure. A good balance
between under- and over-segmentation must be found by a
careful evaluation of experimental test results. This prob-
lem has been solved during initialization procedure by cal-
culating the mean values of T 1 and T 2 of the rear light. For
the size of the color class, 10% of the full scale range has
been used. This range has been verified experimentally (see
Fig. 6).

5. Next, the center of gravity of the binary image I is cal-
culated. The following two values are calculated using all the
segmented pixels:

fx =
k

∑
i=1

xi, fy =
k

∑
i=1

yi

Here k denotes the number of segmented pixels in the binary
image I. Furthermore, xi and yi are the spatial coordinates of
the segmented pixels. The center of gravity cog is calculated
using the following formula:

cog =
(

xc
yc

)
=

(
fx
k
fy
k

)
An example of such a segmented image is given in Fig. 6.

6. Steps 2 to 5 are repeated for the second rear light. Fol-
lowed by repeating the same procedure for the image of the
right camera.

7. The continuous tracking of a rear light of car A is as
follows. The two calculated centers of gravity, cogL for the
left image and cogR for the right image, are the basis for grab-
bing the next stereo camera image pair. Then the algorithm
starts over with step 1 for the next cycle.



Figure 6: Segmentation of color image (only gray values are
shown, segmented pixels are marked with white dots): Left –
original tracking window; Middle – segmentation with T1H −
T1L = T2H −T2L = 12; Right – segmentation with T1H −T1L =
T2H −T2L = 25.

The result of this tracking algorithm is a pair of coordinates
(x,y) for each stereo camera image, describing the detected
position of the rear light of car A. Based on this calculation,
the 3D position of car A with respect to car B can be calcu-
lated.

4. EXPERIMENTAL RESULTS

Many indoor trials were performed in the lab. The algorithm
is robust and works under varying light conditions and car B
was able to follow car A with a speed of 5km/h.

4.1 Real world test example
For this specified test, leading car A was manually pulled in
front of the model truck (platooning car B). The speed con-
troller was a semi analog Discrete PI, and the angle controller
was a Proportional Integral and Derivative (PID) controller.
Both controllers were coded by using the MATLAB Embed-
ded Coder. Fig. 7 shows an example of a test run.

Curve No.1 represents the distance r between the cars.
The engine voltage (curve No.3) and the pulse width modu-
lation (PWM) value of the servo drive (curve No.4) follows
the input exactly. The speed (curve No.2) follows the input
poorly, since the speed sensor used is very slow and not pre-
cise enough for this application.
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Figure 7: Experimental results

4.2 Performance
Four performance characteristics are relevant for the evalua-
tion of the algorithm. There is the maximal framerate speci-
fying the time difference between two subsequent frames to

be processed, the latency specifying the time delay between
the starting of the image acquisition and the action of the
controller, and the usage of internal RAM and the Code Size.
An internal RAM-usage of 2.3 kBytes and a code size of
78kBytes were achieved for the implementation of the stereo
tracking algorithm. In addition, a framerate of 125ms and
a latency of 200ms were obtained. The power consumption
was 2.5W for the VisionNode and 3.4W for the stereo cam-
era head. Latency and framerate were constant, because a
time-triggered control cluster was used. This is especially
advantageous for control applications, because time varia-
tions in either of the values would degrade the performance
significantly.

Eight frames per second image processing is a very good
performance for a non PC-based embedded real-time system
of that size.

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper a test platform for the evaluation of different
embedded vision algorithms for automotive applications was
presented. Furthermore, an example stereo vision algorithm
was implemented, verified and tested. Performance measure-
ments have been made and the results have been discussed.
After that, the implementation feasibility of so called proces-
sor & resources ravening algorithms on embedded systems
has been shown. These results are very important for future
embedded vision applications with limited resources.

In the future, more complex embedded computer vision
algorithms will be evaluated and compared. A significant
reduction of the cycle time of the embedded vision system
is also planned. The goal is an image processing time of
25fps (40ms), which is the maximum speed possible using
the manual triggering of the used cameras.
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