
PLATFORM FOR EVALUATION OF EMBEDDED COMPUTER VISION
ALGORITHMS FOR AUTOMOTIVE APPLICATIONS

Wilfried Kubinger, Stefan Borbely, Hannes Hemetsberger and Richard Isaacs

seibersdorf research, Dependable Embedded Systems Group
Donau-City-Str. 1, A-1220 Vienna, Austria

phone: + (43) 50550 3127, fax: + (43) 50550 4150
{wilfried.kubinger | stefan.borbely | hannes.hemetsberger | richard.isaacs}@arcs.ac.at, web: www.arcs.ac.at

ABSTRACT
Stereo vision algorithms are usually designed to run on stan-
dard PCs or PC-based systems. Up to now and due to the
limited resources (e.g. internal and external RAM size, CPU
power, power consumption, etc.) no general embedded hard-
ware exists, where different algorithms can be implemented
and run properly. The presented test platform aims to close
this gap and implement a convenient platform for the evalua-
tion of different high level vision algorithms used for embed-
ded systems. Furthermore, it offers an excellent opportunity
for testing and evaluating automatic code generation tools
(e.g. MathWorks Real-Time Workshop Embedded Coder).
In this paper the complete system concept, the automotive
application, a stereo vision example algorithm and experi-
mental results are presented.

1. INTRODUCTION

It is nontrivial to identify suitable algorithms for a specific
embedded real-time application. To approach this task a plat-
form was developed, which enables the embedding of differ-
ent computer vision algorithms on a real-time system. The
evaluation of the performance was based on an automotive
application, namely platooning [3]. The advantage of the
platform is the possibility to easily embed different com-
puter vision algorithms and compare the performance of each
other. Since model-cars have been used in this testbed, small,
lightweight, and power-aware solutions were used, because
of the apparent limitations. Furthermore, it is cheap and easy
to maintain, compared to real cars. In the presented proto-
type, it had to be dealt with real-time and embedded systems
requirements, otherwise the algorithms – and therefore the
platooning application – would not work properly at all.

In the following sections the configuration of the platoon-
ing testbed will be presented. The whole concept of the test
platform will be described and the achieved results of the
realized experiments will be discussed. The paper will con-
clude with a discussion on future work.

2. SYSTEM CONCEPT

2.1 Platooning Testbed
An overview of the testbed is shown in Fig. 1. It consists of a
leading car (car A) and a trailing car (car B). Car A is built by
using the Lego Mindstorm series and can be programmed to
travel a pre-programmed or random path. The main purpose
of car B is to follow car A by keeping the distance between
both cars constant. This behavior is called platooning [3].
Fig. 1 also shows the definitions of the reference coordinate
system, distance r and angle ϕ . The task of the platooning

Car A
r

phi

z y

x

Cam1

Cam2

TTP/C-
Cluster

Power
electronics
(speed &

steer)

Batteries

Acceleration
sensors (2D)

Platooning car (B)rear lights

Leading car (A)

Figure 1: Overview of the platooning testbed

car B is to keep the pre-defined distance r constant and to
minimize the angle ϕ .

2.2 Test Platform
The test platform is based on a model truck with a Direct Cur-
rent (DC) drive and steering mechanism. The remote con-
trol, which is normally used to control the truck, has been
replaced by an on-board embedded system. The system is
responsible for monitoring and steering the test platform (re-
spectively the model truck).

The model truck (see Fig. 3) is equipped with a pair of
Basler 601fc IEEE1394 “FireWire” Complementary Metal
Oxide Semiconductor (CMOS) cameras. The cameras are
mounted at the front leftmost and the rightmost side of the
model truck to obtain the desired stereo effect.

Fig. 2 represents the design of the on-board embedded
system. It reflects a distributed embedded system solution,
consisting several nodes for battery-powered operations. The
core of the system is a TTP/C-cluster [7] composed of the
following three different nodes:
• The ControlNode (CN) is a TTTech PowerNode [7],

running under TTP/OS, and is responsible for accelera-
tion/deceleration and steering servo drives.
• The SensorNode (SN) is also a TTTech PowerNode,

running under TTP/OS. It interfaces all sensors except the
cameras. Two acceleration sensors are responsible for crash
warning. A magnetic cavity has been used as a speed sen-
sor. The steering angle sensor has been realized by using a
potentiometer.
• The core of the VisionNode (VN) is a high performance

Digital Signal Processor (DSP) based on a platform by the
Orsys GmbH [5]. It triggers and receives images from the
stereo digital camera system. The stereo head is connected
to the VN by a 400 Mbit/s IEEE1394 “FireWire”-bus, using
the isochronous frame transmission mode [5]. Furthermore,
the computer vision algorithms are executed on this node.

TTP/C-network

S
en

so
rN

od
e

(S
N

)

V
is
io

n
N

o
de

 (
V

N
)

C
o
n
tr

o
lN

o
d
e

(C
N

)

Camera 2

accelerate/
decelerate

steer

Start / Off

Camera 1

2D acceleration
sensor (10g)

2D acceleration
sensor (2g)

Speed sensor
magnetic cavity

Steering angle
sensor

Figure 2: Cluster design

Figure 3: Model truck

2.3 Stereo Vision Sensor
The stereo vision sensor is based on two IEEE1394
“FireWire” cameras, which are connected to the VN. To
guarantee a synchronized acquisition of both images from
the left and the right camera, the same hardware-trigger sig-
nal is used.

Each camera delivers a 2D-image of the scene. The main
task of a 3D-reconstruction algorithm is to map the original
3D position of the point of interest from the 2D information.
For the successful reconstruction of a point in 3D, it is nec-
essary to know the spatial coordinates of the same point in
the left and in the right camera image. Therefore, the first
step is the extraction of corresponding points from these two
images.

For the calculation of the 3D coordinates of a point, stan-
dard geometry is used, as shown in Fig. 4. The transfor-
mation between the spatial (u,v) and the image coordinate
system (x,y) is done by using the following equation:(

u
v

)
=
(

x
y

)
−
(

xm
ym

)
where (xm,ym) denotes the intersection point between plane
and optical axis.

A method called 3D-triangulation [1] has been used to
calculate the 3D-position of the point of interest. The main
advantage of standard geometry is that equations for calculat-
ing the 3D coordinates of any point in the camera coordinate
system are become simple. The method starts with the cal-
culation of the disparity ds = uL−uR, which is a measure for

X
Y

Z
optical axis of
right camera

optical axis of
left camera

uLvL

uRvR
f

b/2 b/2

f

image plane
of left
camera

image plane
of right
camera

uL, vL .. image coordinate
system, left camera

uR, vR .. image coordinate
system, right camera

X,Y,Z .. camera coordinate
system

b .. base

f ... focal length

P

P ... Point

r

phi

Figure 4: Standard geometry and related coordinate systems

the distance between the point of interest to the camera sys-
tem. Based on this disparity and the assumption that vL = vR,
the 3D position of the point of interest in camera coordinates
can be calculated by:

X = b ·
(

uL

ds
− 1

2

)
, Y = b · vL

ds
, Z = b · f

ds

The main goal for platooning is to keep the distance between
the two cars constant and to minimize the relative angle of
car A with respect to car B. Therefore, a polar coordinate
description in the X-Z-plane has been used (shown in Fig. 4).
Distance r and angle ϕ are calculated as follows:

r =
√

X2 +Z2, ϕ =
180
π

· arcsin
(
−X

r

)
The distance r describes the distance between the center of
the stereo head and the rear light of leading car A. ϕ is the
angle between the Z-axis and the current position of the lead-
ing car, since the algorithm detects both rear lights of car A.
If rL and ϕL denote the distance and angle of the left rear
light, and rR and ϕR denote the distance and angle of the right
rear light, the distance r and the angle ϕ can be calculated as
given below:

r =
rL + rR

2
, ϕ =

ϕL +ϕR

2

3. EXAMPLE: STEREO VISION ALGORITHM

Based on a simple color-based tracking of the rear lights the
capabilities of the test platform are described. As already
mentioned, the stereo vision system of car B is used to detect
the position of the leading car A. This is done by extrac-
tion of the red lights from both camera images. A principle
schematic of the left camera image is presented in Fig. 5. The
goal is to track both rear lights of car A by moving a so-called
tracking window, where the red light is approximately in the
center of the tracking window. To gain some robustness, both
rear lights are tracked simultaneously.

The initial values for the algorithm (xc, yc, T1L, T1H , T2L
and T2H) are obtained by a calibration procedure. Here, one
image from each camera has to be grabbed and both images
are searched for red lights. After finding the lights in both
images, the initial values are extracted from the images. This
routine is also used for a re-initialization of the algorithm
after tailing off the red lights (e.g. after an occlusion). The

x

y

dw dw

dh

dh
yc

xc01

1
0

width-
1

height-1

Leading
car A

Tracking
window

rear lights

x
0

y
0

Figure 5: Schematic image of car A in left camera image

tracking algorithm itself will be described in detail as fol-
lows:

1. First, Regions Of Interest (ROIs) are calculated from
both images. The coordinates for these regions are given by
the equations:

(xcLL −dw,ycLL −dh,xcLL +dw,ycLL +dh)
(xcRL −dw,ycRL −dh,xcRL +dw,ycRL +dh)
(xcLR −dw,ycLR −dh,xcLR +dw,ycLR +dh)
(xcRR −dw,ycRR −dh,xcRR +dw,ycRR +dh)

where (xcLL ,ycLL) , (xcLR ,ycLR) , (xcRL ,ycRL) , (xcRR ,ycRR)
describe the centers of the four tracking windows for the four
rear lights, two in the left and two in the right image. The fol-
lowing operations are described only for one rear light in one
camera image.

2. Since the cameras use a Bayer RGB primary color filter
for generation of color information, special care has to be
taken with the calculation of the color information for each
pixel. Each individual pixel is covered by a micro-lens which
only allows enough light of only one color to strike the pixel.
The color information of each pixel P

P(x,y) =

(R(x,y)
G(x,y)
B(x,y)

)

is calculated using an interpolation technique based on a 2x2
operator [2]. R(x,y) denotes the red component of the pixel
P(x,y), G(x,y) the green, and B(x,y) the blue component.

3. In the next step the pixels of the tracking window are
converted to a more useful color representation. The YT1T2
color space has been used, also know as L1-normalized
colors [4]. Only the chromatic part of the color space model
(which are T 1 and T 2) has been used, because it is more
robust against variations in the light intensity. Under the
supposition that the gamma correction circuit of the camera
is deactivated and the response of the CMOS sensor cells to
the incoming light is linear, the color space conversion can
be realized as follows:

If
R(x,y)+G(x,y)+B(x,y) = 0

Then
T 1(x,y) = T 2(x,y) = 255

3 = 85
Else

T 1(x,y) = 255 · R(x,y)
R(x,y)+G(x,y)+B(x,y)

T 2(x,y) = 255 · G(x,y)
R(x,y)+G(x,y)+B(x,y)

4. Segmentation of the image has to be performed next.
Thus, each pixel is checked if it is part of the rear light of
car A or not. That is done by a membership test. This test
calculates if either the color of the pixel is inside the color
class and associated with the rear light or not. The result
of this member test is a binary image I with the size of the
tracking window. In this membership test, only the chromatic
part

Pcc(x,y) =
(

T 1(x,y)
T 2(x,y)

)
is used. Inside the tracking window, the following test pro-
cedure is applied to each pixel [6]:

If
(T 1L ≤ T 1(x,y) ≤ T 2H) and (T 2L ≤ T 2(x,y) ≤ T 2H)

Then
I(x,y) = 1

Else
I(x,y) = 0

A one denotes that this pixel has been classified as part of
the rear light. A zero means that this pixel is not part of the
rear light. The color class associated with the rear light is es-
tablished during the initialization procedure. A good balance
between under- and over-segmentation must be found by a
careful evaluation of experimental test results. This prob-
lem has been solved during initialization procedure by cal-
culating the mean values of T 1 and T 2 of the rear light. For
the size of the color class, 10% of the full scale range has
been used. This range has been verified experimentally (see
Fig. 6).

5. Next, the center of gravity of the binary image I is cal-
culated. The following two values are calculated using all the
segmented pixels:

fx =
k

∑
i=1

xi, fy =
k

∑
i=1

yi

Here k denotes the number of segmented pixels in the binary
image I. Furthermore, xi and yi are the spatial coordinates of
the segmented pixels. The center of gravity cog is calculated
using the following formula:

cog =
(

xc
yc

)
=

(
fx
k
fy
k

)
An example of such a segmented image is given in Fig. 6.

6. Steps 2 to 5 are repeated for the second rear light. Fol-
lowed by repeating the same procedure for the image of the
right camera.

7. The continuous tracking of a rear light of car A is as
follows. The two calculated centers of gravity, cogL for the
left image and cogR for the right image, are the basis for grab-
bing the next stereo camera image pair. Then the algorithm
starts over with step 1 for the next cycle.

Figure 6: Segmentation of color image (only gray values are
shown, segmented pixels are marked with white dots): Left –
original tracking window; Middle – segmentation with T1H −
T1L = T2H −T2L = 12; Right – segmentation with T1H −T1L =
T2H −T2L = 25.

The result of this tracking algorithm is a pair of coordinates
(x,y) for each stereo camera image, describing the detected
position of the rear light of car A. Based on this calculation,
the 3D position of car A with respect to car B can be calcu-
lated.

4. EXPERIMENTAL RESULTS

Many indoor trials were performed in the lab. The algorithm
is robust and works under varying light conditions and car B
was able to follow car A with a speed of 5km/h.

4.1 Real world test example
For this specified test, leading car A was manually pulled in
front of the model truck (platooning car B). The speed con-
troller was a semi analog Discrete PI, and the angle controller
was a Proportional Integral and Derivative (PID) controller.
Both controllers were coded by using the MATLAB Embed-
ded Coder. Fig. 7 shows an example of a test run.

Curve No.1 represents the distance r between the cars.
The engine voltage (curve No.3) and the pulse width modu-
lation (PWM) value of the servo drive (curve No.4) follows
the input exactly. The speed (curve No.2) follows the input
poorly, since the speed sensor used is very slow and not pre-
cise enough for this application.

0

200

400

600

800

1000

1200

1400

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Time (100 ms Steps)

1
2

3

4

Figure 7: Experimental results

4.2 Performance
Four performance characteristics are relevant for the evalua-
tion of the algorithm. There is the maximal framerate speci-
fying the time difference between two subsequent frames to

be processed, the latency specifying the time delay between
the starting of the image acquisition and the action of the
controller, and the usage of internal RAM and the Code Size.
An internal RAM-usage of 2.3 kBytes and a code size of
78kBytes were achieved for the implementation of the stereo
tracking algorithm. In addition, a framerate of 125ms and
a latency of 200ms were obtained. The power consumption
was 2.5W for the VisionNode and 3.4W for the stereo cam-
era head. Latency and framerate were constant, because a
time-triggered control cluster was used. This is especially
advantageous for control applications, because time varia-
tions in either of the values would degrade the performance
significantly.

Eight frames per second image processing is a very good
performance for a non PC-based embedded real-time system
of that size.

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper a test platform for the evaluation of different
embedded vision algorithms for automotive applications was
presented. Furthermore, an example stereo vision algorithm
was implemented, verified and tested. Performance measure-
ments have been made and the results have been discussed.
After that, the implementation feasibility of so called proces-
sor & resources ravening algorithms on embedded systems
has been shown. These results are very important for future
embedded vision applications with limited resources.

In the future, more complex embedded computer vision
algorithms will be evaluated and compared. A significant
reduction of the cycle time of the embedded vision system
is also planned. The goal is an image processing time of
25fps (40ms), which is the maximum speed possible using
the manual triggering of the used cameras.

REFERENCES
[1] S. Bahadori, L. Iocchi, “A Stereo Vision System for

3D Reconstruction and Semi-Automatic Surveillance
of Museum Areas,” Workshop Intelligenza Artificiale
per i Beni Culturali, AI-IA-03, Pisa, Italy, 2003.

[2] D. Brainard, “Bayesian Method for Reconstructing
Color Images from Trichromatic Samples”, Proceed-
ings of the IS&T 47th Annual Meeting, Rochester, NY,
pp. 375–380, 1994.

[3] L. Fletcher, N. Apostoloff, L. Petersson, A. Zelinsky,
“Vision in and out of Vehicles,” IEEE Intelligent Sys-
tems, pp. 12–17, May-June 2003.

[4] R. Nevatia, “A Color Edge Detector and Its Use in
Scene Segmentation,” IEEE Trans. on Systems, Man,
and Cybernetics, Vol.7(11), pp. 820–826, 1977.

[5] Orsys Orth System GmbH, Hardware Reference Guide
micro-line C6713Compact High performance DSP /
FPGA / IEEE 1394 board, V1.1, www.orsys.de, 2003.

[6] C. Rasmussen, G. D. Hager, “An Adaptive Model for
Tracking Objects by Color,” Proc. of the IEEE Inter-
national Conference on Computer Vision and Pattern
Recognition, 1997.

[7] TTTech Computertechnik AG, TTP PowerNode – A
TTP Development Board for the Time-Triggered Ar-
chitecture based on the AS8202NF TTP network con-
troller, V2.01, www.tttech.com, 2002.

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Richard Isaacs
	Hannes Hemetsberger
	Stefan Borbely
	Wilfried Kubinger

