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ABSTRACT 
Segmentation and visualisation of the hippocampus can as-
sist with early detection and intervention for a number of 
brain diseases. This paper describes a semi-automatic seg-
mentation approach that produces accurate results with a 
significant reduction in operator effort compared with man-
ual segmentation. A Geometric Deformable Model incorpo-
rates global constraints to solve many of the problems asso-
ciated with previous methods. The results of our hybrid seg-
mentation model show a good correspondence with manual 
segmentation by an expert operator.  

 

1. Introduction 
Magnetic Resonance Imaging (MRI) is a non-invasive medical 
imaging technology which allows physicians to examine hu-
man brain structures. With the rapidly increasing power and sophis-
tication of computer processing, segmentation of brain structures 
from MR images has become more feasible.  

The practical difficulties encountered in segmenting these datasets 
can be partitioned into “internal” and “external” categories. Internal 
difficulties arise from the natural complexity of brain topology. 
Although each MR brain image has a similar and recognizable 
shape, individual brains vary in size, features and other characteris-
tics. External difficulties include image sampling artifacts, noise, 
and problems emanating from head movement during brain scan-
ning.  All of these make the design of an ideal segmentation method 
difficult to achieve, when that method should be automatic, simple, 
accurate, efficient, robust, repeatable, non-invasive and well- toler-
ated by patients. 

The application of segmentation methods to specific brain anatomi-
cal structures offers the opportunity to discover abnormalities by 
non-invasive means. For example, various diseases may be evi-
denced by changes to the shape of a particular structure. Conse-
quently, segmentation methods have potential  as an aid to the diag-
nosis and monitoring of such diseases as multiple sclerosis, epilepsy 
and dementia, and may also be a tool in the development of drugs to 
cure such di seases. 

For patients with Alzheimer’s disease, it is believed that the hippo-
campus is one of the first regions of the brain to suffer attack. Each 
brain has two hippocampi. They are part of the brain’s grey matter, 
located inside the temporal lobe and forming part of the limbic sys-
tem, and they play an important part in memory. 

A characteristic of the hippocampus structure is that it is surrounded 
by different kinds of tissue and so, in some places, it has an ill-
defined border with neighbouring regions. In addition it is recog-
nized as having a high surface to volume ratio.  As a consequence of 

the challenges posed by these features, to date, in clinical practice, 
hippocampus volume analysis is still performed manually by a radi-
ologist on a slice by slice basis. Such an approach has many draw-
backs, for example, the process is labour-intensive and time con-
suming and the results lack consistency due to intra and inter-
observer errors. 

1.2 Paper overview  
This paper starts with a review of current segmentation approaches 
and of the background to the Deformable Model method (since this 
is the main model in our hybrid segmentation approach). Then there 
is a review of previous approaches that had been proposed for hip-
pocampus segmentation. There follows a description of the Geomet-
ric Deformable Model (GDM) that we have developed, together 
with a short explanation of how volume is measured from the GDM. 
Some initial results are presented and finally the results are dis-
cussed and future work is described.  

2. Previous and Related work  
Current proposed segment ation methods can be divided into 3 cate-
gories:   

a) Low level segmentation - T hese methods are carried out by: (i) 
looking for similarity in brain intensity in order to detect brain re-
gions (ii) looking for differences in brain intensity in order to detect 
structural boundaries.This type of segmentation includes techniques 
such as thresholding, region growing, edge detection, etc.                                      

b) High level segmentation - The high level technique is an integra-
tion of geometry, physics and approximation theory and is capable 
of incorporating prior knowledge about the shape, location and ori-
entation of target structures. Examples of this approach are deform-
able contour/curve(2D) [1] or surface/solid (3D) [2] models.  

c) Hybrid segmentation - This segmentation method uses a combi-
nation of the above methods in a sequential pipeline. Previous re-
search using this approach includes  [4, 5]. 

2.1 Deformable Surface Model 
Applications of Deformable Surface Models to segment a  target 
object fall into two categories:  a) “contour stiching” of the results of 
2D deformable contours [3] and b) direct application to segment a 
target structure [2]. The former category suffers from branching 
problems due to adjacent contours having the potential for differ-
ent control points on the contour. The latter category does not have 
these problems since it treats the dataset as a complete volume as 
opposed to a series of slices. The advantages of these methods in-
clude: i) the ability to incorporate a priori structural knowledge 
(such as the continuous nature of the brain and constraints on brain 
geometry), ii) accuracy to sub-voxel levels and iii) robustness in the 
presence of image intensity changes.  The disadvantages of these 



methods include:  i) the possibility of the model being trapped by 
local minima and ii) gap and model convergence problems.  

Generally, Deformable Surface Models can be sub-divided accord-
ing to two kinds of surface, namely Parametric and Dis-
crete. Parametric deformable models can be either implicit or ex-
plicit, both examples includes: superquadratics[6], finite element[7], 
gradient vector flow[8], level set, wavelet [9] and spherical har-
monic[10] instances. Parametric surface models can facilitate image 
data integration and initial model creation is generally straightfo r-
ward due to the technique’s basis as a mathematical formulation. 
However, this type of approach can only handle topologically sim-
ple objects, whereas medical image structures are typically hard to 
describe mathematically. This approach lacks flexibility and the 
necessary computational is very demanding. Discrete surface de-
formable models are formed by triangular mesh foam[2, 11-13] 
where deformation is performed by constraining the model locally 
at its vertices, and offers the advantage of high flexibility (many 
degrees of freedom). 

The surface of the model is deformed according to a given function, 
either an energy minimization and constraint modeling function or a 
dynamic force system. In general, the function comprises  two terms: 
Internal Force and External Force.  The internal term aims to keep 
the deformable model surface smooth, holds the model surface to-
gether and prevents surface point s from bending too much,  while 
the external  term aims to attract the surface to desired features in the 
dataset.  The Deformable Surface Model approach has been shown 
to be effective at segmenting structures such as teeth [2] , cardiac 
ventricles [14] and vertebrae [13].  

2.2 Previous Research in Hippocampus Estimation 
A review of previous attempts to segment hippocampal structures 
follows. 

A) Automatic segmentation 

i) Based on atlas/ template wrapping[15]: A digital atlas is used as 
the template and the method involves “wrapping” the atlas to the 
MR dataset. Before the wrapping stage, the atlas images need to be 
registered with the MR images. Imperfect registration often contri b-
utes to errors during the volume analysis process. High-accuracy 
results may obtained by using high-dimensional fluid registration, 
incorporating several user-defined landmarks lying on the hippo-
campus boundary. Unfo rtunately, this method is limited by high 
costs and high computational demands.  

ii) Statistical shape modelling segmentation[16-18]:This is a variant 
of the parametric deformable model approach. An initial model 
surface is created parametrically, based on a mathematical function 
(e.g. Spherical harmonic, Fourier surface). The model is then grown. 
The expansion is transfo rmed to a set of shape descriptors that are 
comparable across different individuals. This approach tends not to 
be effective since the hi ppocampus structure is small and its shape is 
highly variable across subjects. Further, "good" statistical  shape 
deformable models are highly reliant on a large number of training 
set images.  

B) Semi-automated method 

i) Geometric deformable model based on an expert system [19]: an 
initial model (triangulated surface) is created by stitching up 2D 
contours slice-by-slice, using landmarks  found by an expert system. 
Segmentation is based on the energy minimization of a set of con-
straints (internal energy: local curvature, deformation, external en-
ergy: edge detector). The use of 2D contours to generate an initial 
model is highly dependent on how well the model handles branch-
ing problems due to adjacent contours having the potential for dif-

ferent control points on the contour. High accuracy may need 
an expert system based on a large group of patients.  

ii) Statistical shape modelling based on affine-invariant attribute 
vector[20]: the initial model surface is created based on a manually 
labelled image. Segmentation is based on energy minimization of a 
set of constraints (a combination of a set of affine-invariant attribute 
vectors) and (in the approach described) requires approximately 200 
manually-defined landmarks.  

iii) Methods based on purely low level segmentation are likely to be 
ineffective and incapable of segmenting the hippocampus structure.  

3. Hybrid Segmentation Method 
3.1 Method 

Our proposed method is a semi-automated hybrid segment ation 
method, combining both low-level  image processing techniques - 
thresholding, hole filling (based on adjacent  voxel connectivity) 
and distance transformation,  and high level  image processing tech-
niques – application of Geometric Deformable Model (discrete sur-
face model) in a sequential pipeline.  We have developed a GDM 
for MRI volumetric analysis, derived from the formulation of [1, 2], 
but incorporating a number of modifications. This method is de-
signed to accomodate a segmentation object surface which is ho-
meomorphic to the sphere. In our method, the model is initialised as 
a structure in Euclidean 3-D space isomorphic to a sphere, made up 
of uniformly tessellated icosahedrons.  

3.2 Our Contribution 
Our hybrid segmentation method incorporating a GDM approach 
can overcome several problems associated with previously proposed 
GDM methods. Contributions of our work may be listed thus:  

i) Avoidance of False Local Minima  

During the energy minimization of the deformable model, the model 
surface will typically have several local minima. If the model verti-
ces are trapped by local minima it will prevent its convergence to 
the correct final shape. A solution to this problem involves the crea-
tion of an initial model that is close to the final shape of the target 
structure. In medical image segmentation, because of the natural 
variabi lity or the action of disease, a common initial shape is hard to 
define. Our proposed solution is to solve local mesh deformation 
problems globally. In our approach, a global shape descriptor (dis-
tance map) is incorporated to identify “ fake” local minima.  

ii) Treatment of Problems Associated with Gaps  

The use of edge points extracted from the dataset as external forces 
is proposed by several researchers[14, 21]. The identification of 
those voxels possessing high intensity gradient functions as border 
voxels is often not correct, since strong edges are sometimes created 
by the action of noise. In addition, extracted edge points will tend to 
have a number of spurious and undesirable edge fragments and 
gaps, and this will cause the problem of mesh point leakage.  In 
order to solve these problems, we propose a new external energy 
component that combines with the target object global shape info r-
mation (distance map) and directional derivatives to localize the 
model vertices at the correct edge.  

 iii) Convergence Problems 

If only a fine mesh is used to segment the target structure, the model 
may not converge, or it may require many iterations to converge to 
the correct target shape. Our approach of integrating a distance map 
with the external “ force” effectively prevents the surface from stop-
ping at the wrong edges,  due to its ability to provide global shape 
information about the target structure. Thus, it can both guide the 



process of adaptive adjustment of the time step as well as enabling 
fine segment ation. 

3.3 Processing Stages 
Brain MR Images are assumed to be composed of a number of con-
stant intensity objects in a well-separated background. It is known 
that the hippocampus is constructed from grey matter. 
From histogram data, the intensity range of grey matter can be 
found, which allows the use of a very simple double threshold 
method to remove the white matter and Cerebrospinal Fluid (CFS) 
detail surrounding the hippocampus. In this process, it is often the 
case that the selected thresholds are unable to cover some local min-
ima or maxima, and so “ holes” are created as a result. To address 
this problem it is necessary to use 2D, 8-neighbourhood-
connectivity info rmation to fill in the holes left from the double-
thresholding process. 2D 8-neighbourhood connectivity information 
is used rather than 3D, 6/18/26-neighbourhood connectivity info r-
mation, as the hippocampus is a very thin, small structure which is 
not appropriate to bigger neighbourhood connectivity. After the 
hole-filling process, a distance transformation technique is used to 
construct a distance map for each voxel to the nearest non-object 
voxel. Values on the distance map show that neighbouring voxels 
are highly corelated, internal voxels will have larger distance values. 
This aims to provide global information about the hippocampus at 
the surface deformation stage.    
The operation of the GDM is based on constraint modelling and cost 
function minimization. Our GDM incorporates 5 constraints which 
are integrated together to form a local cost function (potential func-
tion) associated with each vertex in a 3D model. The geometric 
model is iteratively deformed to a position that minimizes its local 
cost function (Equation 1) with a coarse (large time step) to fine 
(small time step) approach.  

The local cost function ),,( zyxC at the current location is given 
as: 
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Where ao, a1, a2, a3, a4 are individual weights for the fo llowing 
constraints: 

1) Deformation Potential: ),,( zyxD  This constraint generates a 
“force” that tends to expand the model, anal ogous to an inflation 
force acting on a balloon.  
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Where: )z,y,x( is the position of current model point.
 )zo,yo,xo( is the position of focal point. 

2) Feature Event: ),,( zyxF  This constraint counteracts the defo r-
mation force. The feature event integrates the distance map  with  
gradient information to form a robust and reliable indication of the 
boundary of an anatomical structure. 

3) Maintaining topology: ),,( zyxM  This constraint tends to pre-
serve the model surface smoothness by minimizing the local curva-
ture between each model point and its neighbours.  
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Where n is the number of neighbours of the current model point  and 
)j,y,x(&)z,y,x( kkkjjj are neighbours of current model point.  

4)Angular:  ),,( zyxA   This constraint is based on the sum of the 
angles that comprise the local surface and tends to keep the local 
mesh surface as smooth and as regular as possible, avoiding the 
generation of long, thin mesh triangles. 

5) Non-Neighbouring Vertices Distance: ),,( zyxNN   In some 
circumstances the surface of a 3D GDM can self-intersect and this 
constraint is designed to counteract this effect. Non-neighbouring 
vertices (i.e. vertices unconnected to the current vertex) that are 
close to the current vertex will lead to a large constraint, preventing 
mesh surfaces from intersecting.  

Manual stopping landmark: The hippocampus is connected with 
other grey matter structures (with the amagala at the “ head” 
and caudate nucleus at the “tail”). As a result, sometimes there is no 
obvious boundary to characterize the small structure. Two manually 
defined coronal slice markers are required to limit the hippocampus 
from growing into other small grey matter areas at the head and the 
tail of the hippocampus.   

Subdivision: The GDM is refined through a series of iterative steps 
until it converges to match the desired anatomical structure. During 
this process, global and local resampling is applied in order to mai n-
tain a uniform density of vertices [2, 22].  

Volumetric analysis: The volume of the GDM is calculated after 
each stage of deformation. At each iteration, the vertices of a model 
face are deformed from their current positions to new positions. The 
projection between the current and deformed face positions can be 
considered as being composed of a set of tetrahedrons. The change 
in volume of the GDM at each iteration is calculated as the sum of 
the volumes of the tetrahedrons making up each face projection. 
This volume calculation does not depend on voxel count and is 
capable of sub- voxel accuracy.  

4. Result 
The experimental data set consists of a simulated sphere (a 
64x64x64 matrix) and a well-documented set of MR T1-weighted 
images from an elderly patient.  The MR images occupy a 
182x218x182 matrix and were obtained on a Siemens 1 Tesla MRI 
scanner using the following scanning protocol : TR: 11.4ms; TE: 
4.4ms; Flip Angle: 15 degree; Effective thickness: 1.41mm; Slab 
thickness: 180mm; Acquisition time: 6 minutes 7 seconds. 

 Figure 1 illustrates the results of segmenting a dataset containing a 
known spherical volume. Figure 2 demonstrates the ability of our 
semi-automated method of segmentation to segment the hippocam-
pus from a real MRI dataset. A comparison between the calculated 
volumes obtained (a) by counting voxels and (b) as an output of our 
model is shown in Table 1.  

 
 

Figure 1 Segmentation of a sphere volumetric dataset:  a) Ren-
dered sphere b) extracted sphere from our model.  
 



 

 
 

 

Table 1  
 
 

The results in Table 1 indicate that our model produces a volume 
estimate that is close to that produced by voxel counting, with a 
particularly accurate result obtained for regular geometric shapes 
with clearly defined boundaries (e.g.: Sphere).  For left and right 
hippocampi segmentation, the overlaid results shown in Figure 2 
above clearly demonstrate that our coarse mesh model has a strong 
correspondence with the results of manual segmentation by an ex-
pert operator (blue mesh). The model volume gives a slightly larger 
result than the volume obtained by counting voxels in the manually 
segmented hippocampus. This may be due to partial mesh leakage 
to adjacent small grey matter regions. Incomplet e coverage of some 
hippocampus areas is due to high surface to volume ratios in these 
parts. The result shows that the the difference in volume recorded by 
our model is within 4-8% of that recorded by manual segmentation. 

 
 

5. Discussion and Future Work 
We have proposed and demonstrated hybrid segmentation in a se-
quential pipeline, incorporating geometric deformable models and 
image processing techniques. Compared with semi-automated 
methods such as [20], our approach is significantly less user-
intensive since we only need 2 manual landmarks rather than 200 
manual selected control point s to constraint the model. The use of a 
distance map has significantly improved the ability of our model to 
converge to a near-optimal solution (solving the energy minimiza-
tion & constraint modelling problems globally), since the model 
tends not to be trapped in an internal region by “ fake” minima. Real 
minima should be associated with voxels which have low values on 
the distance map; this is used to overcome image gap and conver-
gence problems. Although the current model needs interactive ini-
tialization, the approach is far less user intensive than manual 
segmentation by radiologists in clinical practice.  

Our model is currently well-suited to hippocampus segmentation for 
visualization purposes. Ongoing work includes applying the model 
to repeat MRI scans (to investigate changes in hippocampal struc-
tures over time), further refinement of volumetric accuracy and 
extension of the model towards fully-automatic segmentation of 
brain structures.  
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Object  Voxel count volume 
Model  

volume 
%  

Sphere 54435 54402 0.061 
Hippocampus Left  1659 1786.8 7.70 

Hippocampus Right 1654 1727.4 4.43 

Figure 2 Overlay of coarse stage of our model (red colour) 
on manual segmentatuion results (blue colour) 
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