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ABSTRACT the array outputs (after Fourier transformation and selection of the

o . ) ... appropriate frequency bin). This vector can be modeled as
Taking into account the modeling errors on the array manifold in di- pprop q y bin)

rection of arrival (DOA) estimation is a crucial issue in practice. It Zy = Asc+ng

is regularly considered in the literature but no satisfactory S°|Ut'°%th AtheNx P matrix with columns the steering vecta8p) for

is known and only sensitivity or performance analyses of existing, _ 1 to P, 5, the P-dimensional signal vector with components
methods (usually subspace-based) are proposed mostly in the ex%cfk) andny the N-dimensional additive spatial noise vector. The
data case. We show that projecting the observations on the nong?gnalssp(k) and noises are wide-sense stationary complex valued
nal array manifold is a solution to this problem that greatly reducesp 45m "orocesses with zero mean. For simplicity, we assume that
the degradations in performance induced by modeling errors. E)ihe spatial noise to be white with varianeand uncorrelated with

cept for some very specific array geometries, this projection is u :
feasible in practice, hence the interest of the Global Matched Filtgt;he signals. It follows that _
(GMF) which, when using as inputs a finite number of beamformer- R=E(ZZ;) = ASA" + VI, with S= E(ss;)- 1)

outputs, benefits from the projection that is implicitly performed byWe assume the matr&—diag(ap) o be diagonal, i.e., we assume
the conventional beamformer. Its performance is quite remarkablet.ne signals emitted by t?iésour(':)es to be ungcorreylalte'(‘j

In practice a number of different modeling errors coexist, such
1. INTRODUCTION as errors in the sensor gains, sensor phases and sensor locations bu

Estimating the directions of arrivals (DOA) of narrowband sourcesalsof mutual couphnghcoefnmelnts bet.\l"lleen ds?nsors or local Scaétéa.r'
impinging on an array of sensors has applications in many differind for instance. In the sequel, we will model these errors as addi-
ent fields. Numerous investigations have been performed to invede perturbations on the components of the nominal steering vector
tigate the performance of the more or less sophisticated methoﬂe)’ that we assume to be of the form

developed to detect and locate the sources. Most of them assume a a() =[e 2™ g2im:  g=2j7h 1T 2
perfect match between the assumed model and the reality. Unfortu-

nately, even after a qallbratlon procedure, in an operational contextith dy, the distance, expressed in wavelengths, between sknsor

the assumed model is always different from the true model and it igng the reference sensor projected on the dire@iofthe potential

probably fair to say that the more a method is sophisticated the lesgyrce. This means that for the nominal steering vector some cal-

itis robust to mismatch. ibration (or normalization) has been performed so that each sensor
Several authors have studied the performance degradation du@s nominal gain 1 and nominal phase 0.

to the modeling mismatch in terms of mean square errors, see e.g. |n the presence of modeling errors, the nominal steering vector

[1, 2, 3]. First order expansions, that are valid for small erra®s, a a(8) becomes(9) with

proposed in, in general, the infinite data case. Assuming a perfectly R ] )

known covariance matrix allows, of course, to concentrate on the a(0) =a(0)+w, with weCN(0,0°). (3

degradations due to modeling mismatch and avoids to mix them

with discrepancies induced by the finite number of observationsThe real A-dimensional vector build with the real and imagi-

When the modeling errors are small, they introduce small errorgary part ofw is Gaussian with zero mean and covariance matrix

in the DOAs and do not affect the resolution properties. As the(1/2)c?l. This perturbation model is of course quite rough but it is

magnitudes of the errors increase they affect the resolution itsetiften considered [3, 4] and is general enough to get a good picture

and there appears a threshold effect, a discontinuity that depend$the performances of an approach. We further assume that the per

upon the difficulty of the scenario. Recently the notion of resolutionturbationwy, that affects the steering vectaffp) is independent of

probability has been investigated in this context [4]. It aims to givethe perturbationvg that affects the steering vectaf6y).

guidelines for setting the calibrations requirements in a true bearing

estimation system. It has been developed for a method, MUSIC 3. THE GLOBAL MATCHED FILTER

[5, 6], that has poor robustness properties in its basic form but th . Lo . .
can easily be improved upon for some array geometries, as we shijf¢ forget about the modeling errors in this section where we briefly
see below. ' sketch the DOA estimation that we will consider.

3.1 Theelementary version

We summarize a high resolution DOA estimation scheme that si-
We consider the problem of estimating the direction of arrivalsmultaneously somehow detects the number of sources present. It is
(DOA) of P narrowband sources impinging on a arrajNoensors.  a sparse representations technique, we called the Global Matched
To simplify the exposition we limit ourselves to the one dimensionalFilter (GMF) in [7, 8], that can also be seen as a model-fitting ap-
localization problem (the azimuth ang®, i.e., we assume that the proach or an inverse-problem solver. It works whenever one wants
sources and sensors are coplanar and that the sources are in thetfalecompose a vector of observations into the sum of a small num-
field. We denote&y the k-th snapshots, an N-dimensional vector of ber of vectors belonging to a known parametrized family of vectors

2. PROBLEM FORMULATION
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[7]. This is the case in the present source localization context whewe replaceR by its estimateR, to get an estimat& of =. The

one considers as vector of observations a set of beamformer OWpmponents in the resulting observation vector, ¥ay: $-3Y are
puts. We will see that it generally outperforms MUSIC (at a higherihen, asymptotically iT, uncorrelated and of unit variance.
computational cost though) and attains performances close to the Tne ' more elaborate version of GMFE. which is quite close to

Cramer-Rao bounds [8]. . o : . )
With the notations introduced above, the expected beamformegr%iﬂglignrggleggg (()g) %r;/proach applied to the observation, in

output power at azimutlp is 1
p , min > [IFanX —Yall3 + 0 (X1, )
(@) =a(g)"Ra(p) = 3 apla(p)*a(6p)|”+ Nv. 4 . . _
p=1 with Yoy = X7 2Y, Ry = 27 2F andRy, represents the matrky, with
) ] o columns normalized to one # norm.
It can indeed be seen as b_elng the sum of the contributions @f the The number of waveform® present, their powers and their
sources and the spatial noise. Its observed counterpary(ays”~  pearings are then deduced from the optimxiraf (7), obtained for
obtained by replacin® by its estimate an adequately chosénas explained in the following Section.

~ 1l
=7 szzw (5) 3.3 Implementation issues

For a well choserh, the optimalX has typically about R+ 1
nonzero components, i.e., a pair of neighboring nonzero compo-
nents for each of the waveforms that are present and an additional
component to model the noise contribution. The estimate of the
umber of waveforms present is then given by the number of (sig-
ificant) clusters of nonzero components, the power of a source is
estimated by the sum of the weights in its associated cluster and the
azimuth estimate is obtained by linear interpolation of the associ-
ated indices ofym, € W.

the so-called snapshot covariance matrix. WRile the basic input
to the MUSIC algorithm, GMF uses as inputlamdimensional vec-
tor with componentg™= y(g). We will denoteY this vector filled
with L beams evaluated at, e.g. equispaced, beagingsd, where
L depends upon the array geometry but is typically of the order oﬂ
magnitude oN.

The decomposition of(@) observed in (4) extends ¥

P
Y: Zpr(ep)+VN1,
p=1 3.3.1 Setting the threshold

\évggijerzgev)vgﬁ T)oetgﬁ' ;gig&n:ﬁ:ts 'Oor\'/?é;’?gtt%reog;g%?wn]tgﬁﬂo';Of We consider the standard version of the proposed technique. The
P ' value ofh will have a major influence upon the detection part of

vector of ones, that allows to model the contribution of the spatially, ; X
: : , : : : the whole procedure. To make this more apparent we introduce the
white noise tor. The aim of the GMF is to recover this sparse exacty -\'of the criterion (7) which is

representation of from the observation of its noisy estimate ~
We next introduce a set dfl L-dimensional vectorsy = min||FunX|l2  under ||F(FunX —Yo)[lw < h (8)

f(Ym) with gm € W andM > L > P and build theLxM +1 matrix X

F with columns thefy's andN1 the cpntribution of the spatially where || X|| = max|x|. This dual which is equivalent to (7), is

white noise. A sparse representatior¥at then given byF X with important because it allows to understand the role playel [8y.

X an (M+1)-dimensional vector of weights having just a few non- One can already observe from the constraints in (8) thal ias

zero components. Since the true bearifigsdo generically not  creases, so does the size of the admissible domain. More precisely,

belong to the discretization grid point, two columns ofF will,  for hlarger thar|FR,}, Y|/, the pointX = 0 becomes admissible and

in general, be needed to approximatively modej the contribution ofs then the optimum. Roughly speaking, the lafgethe sparser the

each true source. A typical spargerepresentingy will thus have  optimalX and vice versa.

about 2P non-zero components plus one component to model the  If the value ofhis too large, the procedure may not detect weak

noise. . 3 . sources and ih is too small, there may appear many false alarms,
Quite specifically tht_e most elementary version of the GMFi.e., the procedure will detect sources that do not exist.
amounts to solve the optimization problem Due to limited space, we do not detail the justification of the
1 52 choice ofh we use in the sequel, namély~ +/2InM in (7) which
mins IFnX =12+ hilX]l2, ©®) should lead to roughly 10% of false alarms, see [8, 10] for details.

with | X]|1 = 5 %!, [|X||3 = x2, F the F matrix with its columns - ,
norm|¢‘alli|z‘ed toz o‘ne| ir|1| E!chlidegn norm ame positive real to be fixed 332 Getting the estimates

by the user. This is a convex program, for which fast dedicated algd=laving obtained the optimum of (7), denotédelow, we now ex-
rithms are available, and one deduces from its unique optimum thelain how to deduce fronX the estimates of the powers and az-
different estimates of the azimutlg, powersap, noise variance imuths. We first consider the cage= 1, where there is a single

and even source numbEr source present in the observations. For a well chbaséme optimal
X has then just two non-zero complex weights. A non-zero com-
3.2 Thestandard version ponent associated with the noise contribution, i.e., colivirand

We now take into account the statistical properties of the observ;flnorher one associated with the columrFiwith bearing closest
: o . . o the true bearing. The amplitude and bearing estimates are then
tions inY to develop what we will call the standard version of GMF.

e i . simply this non-zero component (modified to take into account the
Under the current assumptiofSis an estimate of the covariance normalization step of the columns of tRematrix) and the bearing
matrix of Zk S CN(O7 R) and it follows thatTR is then a Sample associated with the Corresponding column.
of a complex Wishart distributio@W(T,N,R) [9]. The statistical The so-obtained bearing estimate being on the discretization
properties of the componeryg 6f Y are then easy to obtain, see grid may not be the best possible. A better choicen gglightly
Appendix B. WithZ, denoting the covariance matrix ¥bne has smaller than the previous one) might yield a optitddlaving three
1 . ) non-zero weights. Besides the 'noise’ component, there would ap-
2 = ?\a(qq() Ra(qr)|“. pear a couple of neighboring non-zero weights that, by simple linear
. . interpolation, would yield a bearing estimate that does not lie on the
Itis then natural to premultiply both andY in (6) by>~2 towhiten  discretization grid and may thus well be closer to the true azimuth.
the observations iW. SinceR and thus: are not known, in practice In case, there are more than 2 contiguous nonzero components in
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X (which actually never happens) one similarly estimates the bear- 4. DEVELOPMENT
ing by linear interpolation and the amplitude by simply adding the
different weights.

If there areP>1 paths present i, one expects the optimal
to have, in addition to the noise componer®, dsjoints couples
of non-zero weights and the same procedure applies to each co
ple. This, of course, corresponds to the ideal situation where th

Let us come back to the problem we are concerned with, namely the

presence of modeling errors and the ensuing performance degrada
tion. This degradation is induced by the discrepancy between the

ssumed array manifold and the true one. The assumed array mani-
Id is the set ifIN described by the steering vector in (2) whn

roposed algorithm does a perfect detection iob. va(ies in .its domain of definitio[O,]T] or [—m, 1. For the so-called
prop 9 P J uniform linear array (ULA) [11] with a half-wavelength separation,
3.3.3 Detecting the number of paths this vector becomes
An estimate ofP, the number of sources presentMnis given by a(0) =[1e7 TS0 g-2nsing e (N-1)jmsing T,

the number of (significant) clusters of non-zero components in the

optimal X. A cluster being typically a couple of neighboring non- \here the dependency @his now visible and simple and, for un-
zero weights. For a given scenario, the detection performance Qyrrelated sources, it is well known that this type of steering vector
the proposed approach depends mainly upon the choibénothe  |eads to a exact covariance matRxX1) having a Toeplitz structure.
criterion, see Section 3.3.1 above. While for easy scenarios thignis means that whatever the scenario, the associated exact covari-
choice is quite robust, this is no longer true for difficult scenarios gnce matrix belongs, just lika(6), to a manifold which for a ULA
Globally if h is fixed to get a probability of false alarms equal to s this simple Toeplitz structure. When the hermitian matrices of
Pra, the procedure W'!l detect.an ac{(:!|tlonal (false) bea”n@f'@ rderN are seen as real vectors of dimensitf the manifold as-
percent of the realizations. This additional source will have aSm""@ociated with hermitian Toeplitz matrices becomes a subspace of
amgll_ltgudehes_tlma;iﬁnd magemusf apFear S”.SE'C'OléSt'h . dimension A — 1, the number of real degrees of freedom in this

€ choice or the num of columns Ink and theé assocl- type of matrices. The projection then consistaweraging the di-

ated discretization step in azimuth or better, for a uniform I'nearagonalsand is known as redundancy averaging [12] or sometimes

array, in spatial frequency has also some importance in this CorEpatiaI smoothing [13].

text even though the optimization problems (6) or (7) are convex™" g4 nitorm circular arrays (UCA), there exists similarly man-
and have thus generically a unique optimumMIfs too large, it ifolds for the steering vector and the covariance matrix. The co-

will essentially increase the computation time and lead to a poorly,a jance matrisR has a more complex structure, the dimension of
conditioned optimization problem. _the manifold is much higher and is again linked to the number of

If M is too small, it may happen that the two clusters assoc"components in the co-array [11].

ated with sources having close bearings merge which results in the But this is only the apparent part of the manifold which is far

non-separation of the two paths. This situation can and must b ; : P
avoided by adequately choosing Indeed knowing roughly the fhore complex and indeed exists for any array geometry. Projecting

resolution limit associated with the array, we propose to chaose the estimated covariance matrix on its manifold is systematically

p beneficial when it is to be used in a suboptimal method such as the
so that GMF can detect.two co_rrespondlngly spaced sources. As Uibspace techniques.
extample, fordag 3rEr3a)t/hW|tN eqlwtspa(l:_ed'tser\r:solrs_ al??. sn_gt;ngl to nct:)_lsle More importantly, while this is true in the absence of model-
ratios aroun , the resolution limit (Rayleigh limit) in spatial i, oo it becomes even more beneficial in the case of modeling
frequency is aboudf = 1/N and a high resolution method able to errors. From (3), it follows that
separate abf = 1/2N, so that we will typically choos# = 12N. ' '
This choice allows for about 2 zero weights between two sources 5 A _
that are close in azimuths but nevertheless potentially separable and Ze=ASct i = (A+W)sc+ g,

’Engstvgg2getjr:tceeis;2}aéé\;\é%tcggjomt clusters will be obtained in Cas\(/evith W andNx P matrix filled with independenEN(0, ozl) sam-

It remains to explain how to choodethe number of beams ples. The matrix in (5) then becomes, omitting the zero-mean cross-

formed to build the observation vectér This vector must contain terms,

all the information present in the data. JustRyst should be a R 1 1
sufficient statistic and as suthshould be equal to the number of R~ (A+W)(? z&sz)(A+W)* + T z NNk
real degrees of freedom in the array manifold. We will detail this
point below and in any case indicate the value takenLfan the

simulations. where(1/T) 5 s — Sand(1/T) 3 ngni — vl as the number of

snapshotg increases. Averaging over tiesnapshots has a ben-

334 Unbiasing the estimates eficial effect of the spatial noise and reduces the estimation error
e . due to this noise but is without effect on the modeling-error induced

Since even fo¥ =Y, the optimalX will never be suchthd X =Y,  term, that are close ®&SN* in R

forh> 0, itis obvious that the presence of the temfX |1 in (6) (7) The beneficial effect of the projection on the manifold of

induces bias into the estimates. This bias while concerning quite dimodeling-error induced term is easy to perceive in the case of a

rectly the amplitude estimates, also affects sightly the azimuth estdLA where the projection amounts to average the diagonals. While

mates. Again we will not elaborate on this, but one can for instancenis will bring (1/T) 3 nnj; even closer tal, its effect olWSN* is

use the estimates furnished by GMF to initialize a ML algorithmfar more drastic since no other mitigation is performed on it. Indeed

that will then converge in a few steps. for the present additive gaussian noise model (3), it can be shown to
) be a first order approximation of a maximum likelihood algorithm

3.3.5 Summary of the algorithm. which means that it is close to the best one can do, to take care of

Let us summarize the algorithm. For a given array, we buildrthe this type of modeling errors. ] )

matrix of dimensionL,M + 1) with M ~ 12N and column vectors The good news for the GMF technique is that the beamformer

the contribution of sources at equispaced bearings and the noise R§rforms the projection on the array manifold whatever the array
the vectory, see Section 3.1, [8]. With thE observed snapshots geometry. This is established in Appendix A, where it is shown the
we build an estimat® of their covariance matrix and forin~2N ~ beam-output at bearing: a(6)"Ra(6), see (4), remains the same
beams stored in the vectdt To implement the standard version if one usesk or Ry, its projection on the array manifold.

(7), one further has to white¥i and normalize the columns of the This is a valuable feature of GMF, since obtainlﬁgis a dif-
whitenedF-matrix. We then solve (7) with as defined in Section ficult task except for some very specific array geometries, such as
3.3.1, to deduce the estimates from its optimum. ULA's. Approximate ways to perform the projection are proposed
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in [14] for uniform circular arrays or in [15] for arbitrary arrays.
Note that any optimal DOA estimation procedure, such as a max-
imum likelihood methods (ML), for instance, perform implicitly
such a projection in one way or another.

5. SIMULATIONSRESULTS

To highlight the drastic benefit associated with the projection of
the estimated covariance matf(5) on its manifold we will thus
mainly consider ULA's since for them the projection is trivial. One
has then to projecR on the set of Toeplitz matrices and this is (a) MUSIC (b) P-MUSIC
achieved byaveraging the diagonals.

We essentially compare the performance in the resolution oFigure 1:Zoom on the MUSIC pseudo-spectrumin the presence of model-
two close sources of the basic MUSIC, the projected MUSIC, deing errors of variance o2 = 0.04 without (a) and with (b) projection of the
noted P-MUSIC below, i.e. the MUSIC algorithm working on the estimated covariance matrix on the array manifold.
projected covariance matrix, and the standard version of GMF de-
scribed in Section 3.2. We consider first the case where there is no
modeling error, the projection has already a beneficial effect on the
performance of MUSIC in this case. Then, as soon as we introdudénues to resolve the two sources systematically. We present in Table
modeling errors, the basic MUSIC fails to resolve the two sourceg. the results obtained for different modeling-error variancés
quite frequently. Even for quite moderate modeling errors MUSIC
fails systematically and we thus only compare P-MUSIC and GMF
They have similar performances with a slight advantage to GMF.

We then consider a linear array with the same number of se
sors and the same aperture as previously but with non uniforml
spaced sensors. GMF keeps its good performances in the presence l [ P -MUSIC | GMF l
of modeling errors, because the beamformer implicitly projects the

Table 2: Two equipowered sources in spatially white noise with bearing 0
rf'gnd 6 degrees at SNR= 0 dB, T=150 snapshots and modeling-errors with
yariance 02 successively equal to .02, .04and .08.

observation on the array manifold while the P-MUSIC is no longer [truebearing | 0 [ 6 [ 0 [ 6 ]
feasible and MUSIC fails as expected even for quite moderate mod- mean || -0.01] 598 | -0.02 | 5.98
eling errors. std. deviation|| 0.47 | 0.48 || 0.48 | 0.49
We simulate a linear array withl = 10 equispaced sensors modeling-error variance 02 = .02

(half wavelength) and® = 2 equipowered sources at bearirgs ]

equal to 0 and 6 degrees with respect to broadside, at SNR=0 dB [truebearing [ 0 [ 6 [ 0 | 6 ]
(ay=a=v=1in (1)) andT = 150 snapshots. Both for MUSIC and mean -0.0I1[ 5971 -0.02] 6.00
GMF we assume to know the number of sources present. For std. deviation|| 0.62 | 0.65 || 0.66 | 0.66

MUSIC this means that we take a signal subspace of dimerision

. . ) modeling-error variance 02 = .04
and localize theé® main peaks in the pseudo-spectrum, for GMF

this means that in the optimudd of (7) we only consider thé& [truebearing [ 0 [ 6 [ 0 | 6 |
main clusters of non-zero components, in case there are more than mean 0031 6061 0021 6.05
P. For GMF we further takél = 12N, L = 2N andh = v2InM as Std. deviationll 1.26 | 1.40 || 0.94 | 0.95

suggested in Section 3. All the results presented are obtained using
1000 independent realizations.

i) In the absence of modeling errors all 3 methods separate Sygximates of the mean and standard deviation of the bearings averaged
tematically the two sources. We present the results in Table 1. Thger 1000 independent realizations, obtained for P-MUSIC and GMF.
observed standard deviations (st dev) are slightly below the Cramer
Rao bound (CRB) for the GMF and P-MUSIC because of the gran-

ular way with which the estimates are deduced from the grid values. ) ) =
iii) Keeping the two extreme sensors at their current positions,

to preserve the array aperture, and moving the 8 remaining sensors

modeling-error variance g2 = .08

Table 1:Two equipowered sources in spatially white noise with bearing 0

and 6 degrees at SNR= 0 dB, T=150 snapshots. slightly away from their current locations leads to a new nominal
' array having essentially the same performances as the initial one.
l [ MUSIC || PMUSIC | GMF l In the absence of modeling error, MUSIC and GMF applied to this

array will perform just as in Table 1. above. But since the projec-

(true [ 0 ] 6 [[ 0 ] 6 [ 0 ] 6 | tion on the new manifold is unfeasible, in the presence of modeling

mean || 0.19] 5.80] 0.01] 5.98] 0.01] 5.99 errors, only the use of MUSIC makes sense and it fails to resolve
stdev|| 34 [ 34 || 25 | 25| 24 | 24 the two sources while GMF will have performances similar to those
CRB .26 .26 .26 .26 .26 .26 obtained using the ULA.

] o ) To fix ideas, we keep the two extreme sensors at their current
Estimates of the mean and standard deviation of the bearings averaged  positions, and place the other sensors regularly on an arc of circle
over 1000 independent realizations, obtained for MUSIC, MUSIC after  passing by these two positions. The angle that subtends the array
projection and GMF. is taken equal to 60 degrees and the bearings are measured w.r.t.

the axis of symmetry of this arc. This entirely defines the shape.
The array is a part of a UCA with radius 4.5 wavelengths and inter-
i) As soon as we introduce some modeling errors, see relatiogensor spacing 9€ir/54) wavelengths. We present in Table 3. the
(3), MUSIC fails to systematically separate the 2 sources, while Presults obtained in the presence of modeling errors by GMF since
MUSIC does so as is apparent in Figure 1., where we present thgUSIC does not work and P-MUSIC is no longer feasible. We
MUSIC and P-MUSIC pseudo-spectrum for 20 realizations wherconsider the same modeling-error variances as in Table 2 and indeed
the modeling error in (3) has a variance equabifo= .04. Indeed  the results are similar and actually slightly better which may mean
while MUSIC fails to separate the 2 sources quite often even fothat the information content is larger, though the array manifold is of
quite small modeling-error variances, P-MUSIC just as GMF con-much higher dimension and thus the information less concentrated.
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Table 3: Arc-of circle shaped array. Two equipowered sourcesin spatially o ariance of is then easy when one uses the following relation
white noise with bearing 0 and 6 degrees at SNR= 0 dB, T=150 snapshots [9] that holds for Wishart matrices

and modeling-errorswith variance g2 successively equal to .02, .04and .08.

E{tr(ARA)tr(ARB)} = %tr(RARB),

[ o2 [ o002 ] 004 [ 008 ]

[true T 0 [ 6 [ O [ 6 ] 0 [ 6 ] with AR= R— R, the estimation error. Taking thefi= B, andB =
mean || 0.01 | 598 -0.02 6.02 ]| -0.02 | 6.02 P, and introducingyy = tr(ARF), the estimation error on beayg,
stdev|| .46 | .46 .64 .63 .84 .85 it follows : 1

>y = E(AyAyy) = =tr(RARP,

GMF-estimates of the mean and standard deviation of the bearings ) ] k'l_ (Byiys) T (RARRY)

averaged over 1000 independent realizations, obtained for 3 different ~ Which by substitution becomes

modeling-errors variances g2 = 0.02, 0.04 and 0.08 . The performance 1 1

aresimilar to those of GMF in Table 2., P-MUSI C is no longer feasible and —tr(Ra(@)a(@) Ra(@)a(@)) = =|a(@)*Ra(e)|>.

MUSIC does not separate the two sources systematically. T T

Fork = ¢, one gets
1 y 1
Tk = E(bydyk) = 1a(@)"Ra(@) | = £k
6. CONCLUDING REMARKS _ _ o

We have addressed the DOA estimation problem in the presence })r} tt?]e GMT’ to ge; alg estimate @fthe covariance matrix of one

modeling errors. We have shown that the projection of the obse Urther replacest by .
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