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ABSTRACT

Taking into account the modeling errors on the array manifold in di-
rection of arrival (DOA) estimation is a crucial issue in practice. It
is regularly considered in the literature but no satisfactory solution
is known and only sensitivity or performance analyses of existing
methods (usually subspace-based) are proposed mostly in the exact
data case. We show that projecting the observations on the nomi-
nal array manifold is a solution to this problem that greatly reduces
the degradations in performance induced by modeling errors. Ex-
cept for some very specific array geometries, this projection is un-
feasible in practice, hence the interest of the Global Matched Filter
(GMF) which, when using as inputs a finite number of beamformer-
outputs, benefits from the projection that is implicitly performed by
the conventional beamformer. Its performance is quite remarkable.

1. INTRODUCTION

Estimating the directions of arrivals (DOA) of narrowband sources
impinging on an array of sensors has applications in many differ-
ent fields. Numerous investigations have been performed to inves-
tigate the performance of the more or less sophisticated methods
developed to detect and locate the sources. Most of them assume a
perfect match between the assumed model and the reality. Unfortu-
nately, even after a calibration procedure, in an operational context
the assumed model is always different from the true model and it is
probably fair to say that the more a method is sophisticated the less
it is robust to mismatch.

Several authors have studied the performance degradation due
to the modeling mismatch in terms of mean square errors, see e.g.
[1, 2, 3]. First order expansions, that are valid for small errors, are
proposed in, in general, the infinite data case. Assuming a perfectly
known covariance matrix allows, of course, to concentrate on the
degradations due to modeling mismatch and avoids to mix them
with discrepancies induced by the finite number of observations.
When the modeling errors are small, they introduce small errors
in the DOA’s and do not affect the resolution properties. As the
magnitudes of the errors increase they affect the resolution itself
and there appears a threshold effect, a discontinuity that depends
upon the difficulty of the scenario. Recently the notion of resolution
probability has been investigated in this context [4]. It aims to give
guidelines for setting the calibrations requirements in a true bearing
estimation system. It has been developed for a method, MUSIC
[5, 6], that has poor robustness properties in its basic form but that
can easily be improved upon for some array geometries, as we shall
see below.

2. PROBLEM FORMULATION

We consider the problem of estimating the direction of arrivals
(DOA) of P narrowband sources impinging on a array ofN sensors.
To simplify the exposition we limit ourselves to the one dimensional
localization problem (the azimuth angleθ ), i.e., we assume that the
sources and sensors are coplanar and that the sources are in the far
field. We denoteZk the k-th snapshots, an N-dimensional vector of

the array outputs (after Fourier transformation and selection of the
appropriate frequency bin). This vector can be modeled as

Zk = Ask +nk

with A theN×P matrix with columns the steering vectorsa(θp) for
p = 1 to P, sk the P-dimensional signal vector with components
sp(k) andnk the N-dimensional additive spatial noise vector. The
signalssp(k) and noises are wide-sense stationary complex valued
random processes with zero mean. For simplicity, we assume that
the spatial noise to be white with variancev and uncorrelated with
the signals. It follows that

R = E(ZkZ∗
k ) = ASA∗ + vI, with S = E(sks∗k). (1)

We assume the matrixS =diag(αp) to be diagonal, i.e., we assume
the signals emitted by theP sources to be uncorrelated.

In practice a number of different modeling errors coexist, such
as errors in the sensor gains, sensor phases and sensor locations but
also mutual coupling coefficients between sensors or local scatter-
ing for instance. In the sequel, we will model these errors as addi-
tive perturbations on the components of the nominal steering vector
a(θ), that we assume to be of the form

a(θ) = [ e−2 jπd1 e−2 jπd2 ... e−2 jπdN ]T (2)

with dk, the distance, expressed in wavelengths, between sensork
and the reference sensor projected on the directionθ of the potential
source. This means that for the nominal steering vector some cal-
ibration (or normalization) has been performed so that each sensor
has nominal gain 1 and nominal phase 0.

In the presence of modeling errors, the nominal steering vector
a(θ) becomes ˆa(θ) with

â(θ) = a(θ)+w, with w ∈CN(0,σ2I). (3)

The real 2N-dimensional vector build with the real and imagi-
nary part ofw is Gaussian with zero mean and covariance matrix
(1/2)σ2I. This perturbation model is of course quite rough but it is
often considered [3, 4] and is general enough to get a good picture
of the performances of an approach. We further assume that the per-
turbationwp that affects the steering vectora(θp) is independent of
the perturbationwq that affects the steering vectora(θq).

3. THE GLOBAL MATCHED FILTER

We forget about the modeling errors in this section where we briefly
sketch the DOA estimation that we will consider.

3.1 The elementary version

We summarize a high resolution DOA estimation scheme that si-
multaneously somehow detects the number of sources present. It is
a sparse representations technique, we called the Global Matched
Filter (GMF) in [7, 8], that can also be seen as a model-fitting ap-
proach or an inverse-problem solver. It works whenever one wants
to decompose a vector of observations into the sum of a small num-
ber of vectors belonging to a known parametrized family of vectors
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[7]. This is the case in the present source localization context when
one considers as vector of observations a set of beamformer out-
puts. We will see that it generally outperforms MUSIC (at a higher
computational cost though) and attains performances close to the
Cramer-Rao bounds [8].

With the notations introduced above, the expected beamformer
output power at azimuthφ is

y(φ) = a(φ)∗Ra(φ) =
P

∑
p=1

αp|a(φ)∗a(θp)|2 +Nv. (4)

It can indeed be seen as being the sum of the contributions of theP
sources and the spatial noise. Its observed counterpart, say ˆy(φ) is
obtained by replacingR by its estimate

R̂ =
1
T

T

∑
1

ZkZ∗
k , (5)

the so-called snapshot covariance matrix. WhileR̂ is the basic input
to the MUSIC algorithm, GMF uses as input anL-dimensional vec-
tor with components ˆyk = ŷ(φk). We will denoteŶ this vector filled
with L beams evaluated at, e.g. equispaced, bearingsφk ∈ Φ, where
L depends upon the array geometry but is typically of the order of
magnitude ofN.

The decomposition ofy(φ) observed in (4) extends toY

Y =
P

∑
p=1

αp f (θp) + v N1,

where f (θ) denotes theL-dimensional vector of the contribution of
a source with bearingθ and unit power to the beams inY and1, a
vector of ones, that allows to model the contribution of the spatially
white noise toY . The aim of the GMF is to recover this sparse exact
representation ofY from the observation of its noisy estimateŶ .

We next introduce a set ofM L-dimensional vectorsfm =
f (ψm) with ψm ∈ Ψ andM ≫ L ≫ P and build theL×M +1 matrix
F with columns thefm’s andN1 the contribution of the spatially
white noise. A sparse representation ofŶ is then given byFX with
X an(M+1)-dimensional vector of weights having just a few non-
zero components. Since the true bearingsθp do generically not
belong to the discretization grid pointsΨ, two columns ofF will,
in general, be needed to approximatively model the contribution of
each true source. A typical sparseX representinĝY will thus have
about 2P non-zero components plus one component to model the
noise.

Quite specifically the most elementary version of the GMF
amounts to solve the optimization problem

min
X

1
2
‖FnX − Ŷ‖2

2 +h‖X‖1, (6)

with ‖X‖1 = ∑ |xk|, ‖X‖2
2 = x2

k , Fn the F matrix with its columns
normalized to one in Euclidean norm andh a positive real to be fixed
by the user. This is a convex program, for which fast dedicated algo-
rithms are available, and one deduces from its unique optimum the
different estimates of the azimuthsθp, powersαp, noise variancev
and even source numberP.

3.2 The standard version

We now take into account the statistical properties of the observa-
tions inŶ to develop what we will call the standard version of GMF.
Under the current assumptionŝR is an estimate of the covariance
matrix of Zk ∈ CN(0,R) and it follows thatT R̂ is then a sample
of a complex Wishart distributionCW (T,N,R) [9]. The statistical
properties of the components ˆyk of Ŷ are then easy to obtain, see
Appendix B. WithΣ, denoting the covariance matrix ofŶone has

Σk,l =
1
T
|a(φk)

∗Ra(φℓ)|2.

It is then natural to premultiply bothF andŶ in (6) byΣ− 1
2 to whiten

the observations in̂Y . SinceR and thusΣ are not known, in practice

we replaceR by its estimateR̂, to get an estimatêΣ of Σ. The
components in the resulting observation vector, say,Ŷw = Σ̂− 1

2 Ŷ are
then, asymptotically inT , uncorrelated and of unit variance.

The more elaborate version of GMF, which is quite close to
a maximum likelihood approach applied to the observations inŶ ,
amounts to replace (6) by

min
X

1
2
‖FwnX − Ŷw‖2

2 + h ‖X‖1, (7)

with Ŷw = Σ̂− 1
2 Ŷ , Fw = Σ̂− 1

2 F andFwn represents the matrixFw with
columns normalized to one inℓ2 norm.

The number of waveformsP present, their powers and their
bearings are then deduced from the optimumX of (7), obtained for
an adequately chosenh, as explained in the following Section.

3.3 Implementation issues

For a well chosenh, the optimalX has typically about 2P + 1
nonzero components, i.e., a pair of neighboring nonzero compo-
nents for each of the waveforms that are present and an additional
component to model the noise contribution. The estimate of the
number of waveforms present is then given by the number of (sig-
nificant) clusters of nonzero components, the power of a source is
estimated by the sum of the weights in its associated cluster and the
azimuth estimate is obtained by linear interpolation of the associ-
ated indices ofψm ∈ Ψ.

3.3.1 Setting the threshold

We consider the standard version of the proposed technique. The
value ofh will have a major influence upon the detection part of
the whole procedure. To make this more apparent we introduce the
dual of the criterion (7) which is

min
X

‖FwnX‖2 under ‖FT
wn(FwnX − Ŷw)‖∞ ≤ h (8)

where‖X‖∞ = maxk |xk|. This dual which is equivalent to (7), is
important because it allows to understand the role played byh [8].
One can already observe from the constraints in (8) that, ash in-
creases, so does the size of the admissible domain. More precisely,
for h larger than‖FT

wnŶw‖∞, the pointX = 0 becomes admissible and
is then the optimum. Roughly speaking, the largerh, the sparser the
optimalX and vice versa.

If the value ofh is too large, the procedure may not detect weak
sources and ifh is too small, there may appear many false alarms,
i.e., the procedure will detect sources that do not exist.

Due to limited space, we do not detail the justification of the
choice ofh we use in the sequel, namelyh ≃

√
2lnM in (7) which

should lead to roughly 10% of false alarms, see [8, 10] for details.

3.3.2 Getting the estimates

Having obtained the optimum of (7), denotedX below, we now ex-
plain how to deduce fromX the estimates of the powers and az-
imuths. We first consider the caseP = 1, where there is a single
source present in the observations. For a well chosenh, the optimal
X has then just two non-zero complex weights. A non-zero com-
ponent associated with the noise contribution, i.e., columnN1 and
another one associated with the column inF with bearing closest
to the true bearing. The amplitude and bearing estimates are then
simply this non-zero component (modified to take into account the
normalization step of the columns of theF-matrix) and the bearing
associated with the corresponding column.

The so-obtained bearing estimate being on the discretization
grid may not be the best possible. A better choice ofh (slightly
smaller than the previous one) might yield a optimalX having three
non-zero weights. Besides the ’noise’ component, there would ap-
pear a couple of neighboring non-zero weights that, by simple linear
interpolation, would yield a bearing estimate that does not lie on the
discretization grid and may thus well be closer to the true azimuth.
In case, there are more than 2 contiguous nonzero components in
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X (which actually never happens) one similarly estimates the bear-
ing by linear interpolation and the amplitude by simply adding the
different weights.

If there areP>1 paths present inY , one expects the optimalX
to have, in addition to the noise component, 2P disjoints couples
of non-zero weights and the same procedure applies to each cou-
ple. This, of course, corresponds to the ideal situation where the
proposed algorithm does a perfect detection job.

3.3.3 Detecting the number of paths

An estimate ofP, the number of sources present inY , is given by
the number of (significant) clusters of non-zero components in the
optimalX . A cluster being typically a couple of neighboring non-
zero weights. For a given scenario, the detection performance of
the proposed approach depends mainly upon the choice ofh in the
criterion, see Section 3.3.1 above. While for easy scenarios this
choice is quite robust, this is no longer true for difficult scenarios.
Globally if h is fixed to get a probability of false alarms equal to
Pf a, the procedure will detect an additional (false) bearing inPf a
percent of the realizations. This additional source will have a small
amplitude estimate and may thus appear suspicious.

The choice of the numberM of columns inF and the associ-
ated discretization step in azimuth or better, for a uniform linear
array, in spatial frequency has also some importance in this con-
text even though the optimization problems (6) or (7) are convex
and have thus generically a unique optimum. IfM is too large, it
will essentially increase the computation time and lead to a poorly
conditioned optimization problem.

If M is too small, it may happen that the two clusters associ-
ated with sources having close bearings merge which results in the
non-separation of the two paths. This situation can and must be
avoided by adequately choosingM. Indeed knowing roughly the
resolution limit associated with the array, we propose to chooseL
so that GMF can detect two correspondingly spaced sources. As an
example, for an array withN equispaced sensors and signal to noise
ratios around 0 dB, the resolution limit (Rayleigh limit) in spatial
frequency is about∆ f = 1/N and a high resolution method able to
separate at∆ f = 1/2N, so that we will typically chooseM = 12N.
This choice allows for about 2 zero weights between two sources
that are close in azimuths but nevertheless potentially separable and
thus guarantees that two disjoint clusters will be obtained in case
the two sources are detected.

It remains to explain how to chooseL the number of beams
formed to build the observation vectorŶ . This vector must contain
all the information present in the data. Just asR̂, it should be a
sufficient statistic and as suchL should be equal to the number of
real degrees of freedom in the array manifold. We will detail this
point below and in any case indicate the value taken forL in the
simulations.

3.3.4 Unbiasing the estimates

Since even for̂Y =Y , the optimalX will never be such thatFX =Y ,
for h > 0, it is obvious that the presence of the termh‖X‖1 in (6) (7)
induces bias into the estimates. This bias while concerning quite di-
rectly the amplitude estimates, also affects sightly the azimuth esti-
mates. Again we will not elaborate on this, but one can for instance
use the estimates furnished by GMF to initialize a ML algorithm
that will then converge in a few steps.

3.3.5 Summary of the algorithm.

Let us summarize the algorithm. For a given array, we build theF
matrix of dimension(L,M +1) with M ≃ 12N and column vectors
the contribution of sources at equispaced bearings and the noise to
the vectorY , see Section 3.1 , [8]. With theT observed snapshots
we build an estimatêR of their covariance matrix and formL ≃ 2N
beams stored in the vectorŶ . To implement the standard version
(7), one further has to whiten̂Y and normalize the columns of the
whitenedF-matrix. We then solve (7) withh as defined in Section
3.3.1, to deduce the estimates from its optimum.

4. DEVELOPMENT

Let us come back to the problem we are concerned with, namely the
presence of modeling errors and the ensuing performance degrada-
tion. This degradation is induced by the discrepancy between the
assumed array manifold and the true one. The assumed array mani-
fold is the set inℜN described by the steering vector in (2) whenθ
varies in its domain of definition[0,π] or [−π,π]. For the so-called
uniform linear array (ULA) [11] with a half-wavelength separation,
this vector becomes

a(θ) = [ 1 e−iπ sinθ e−2iπ sinθ ... e−(N−1) jπ sinθ ]T ,

where the dependency onθ is now visible and simple and, for un-
correlated sources, it is well known that this type of steering vector
leads to a exact covariance matrixR (1) having a Toeplitz structure.
This means that whatever the scenario, the associated exact covari-
ance matrix belongs, just likea(θ), to a manifold which for a ULA
has this simple Toeplitz structure. When the hermitian matrices of
orderN are seen as real vectors of dimensionN2, the manifold as-
sociated with hermitian Toeplitz matrices becomes a subspace of
dimension 2N − 1, the number of real degrees of freedom in this
type of matrices. The projection then consists inaveraging the di-
agonals and is known as redundancy averaging [12] or sometimes
spatial smoothing [13].

For uniform circular arrays (UCA), there exists similarly man-
ifolds for the steering vector and the covariance matrix. The co-
variance matrixR has a more complex structure, the dimension of
the manifold is much higher and is again linked to the number of
components in the co-array [11].

But this is only the apparent part of the manifold which is far
more complex and indeed exists for any array geometry. Projecting
the estimated covariance matrix on its manifold is systematically
beneficial when it is to be used in a suboptimal method such as the
subspace techniques.

More importantly, while this is true in the absence of model-
ing errors, it becomes even more beneficial in the case of modeling
errors. From (3), it follows that

Ẑk = Âsk +nk = (A+W )sk +nk,

with W andN×P matrix filled with independentCN(0,σ2I) sam-
ples. The matrix in (5) then becomes, omitting the zero-mean cross-
terms,

R̂ ≃ (A+W )(
1
T ∑sks∗k)(A+W )∗ +

1
T ∑nkn∗k ,

where(1/T )∑sks∗k → S and(1/T )∑nkn∗k → vI as the number of
snapshotsT increases. Averaging over theT snapshots has a ben-
eficial effect of the spatial noise and reduces the estimation error
due to this noise but is without effect on the modeling-error induced
term, that are close toWSW ∗ in R̂.

The beneficial effect of the projection on the manifold of
modeling-error induced term is easy to perceive in the case of a
ULA where the projection amounts to average the diagonals. While
this will bring (1/T )∑nkn∗k even closer tovI, its effect onWSW ∗ is
far more drastic since no other mitigation is performed on it. Indeed
for the present additive gaussian noise model (3), it can be shown to
be a first order approximation of a maximum likelihood algorithm
which means that it is close to the best one can do, to take care of
this type of modeling errors.

The good news for the GMF technique is that the beamformer
performs the projection on the array manifold whatever the array
geometry. This is established in Appendix A, where it is shown the
beam-output at bearingθ : a(θ)∗R̂a(θ), see (4), remains the same
if one usesR̂ or R̂p, its projection on the array manifold.

This is a valuable feature of GMF, since obtainingR̂p is a dif-
ficult task except for some very specific array geometries, such as
ULA’s. Approximate ways to perform the projection are proposed
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in [14] for uniform circular arrays or in [15] for arbitrary arrays.
Note that any optimal DOA estimation procedure, such as a max-
imum likelihood methods (ML), for instance, perform implicitly
such a projection in one way or another.

5. SIMULATIONS RESULTS

To highlight the drastic benefit associated with the projection of
the estimated covariance matrix̂R (5) on its manifold we will thus
mainly consider ULA’s since for them the projection is trivial. One
has then to project̂R on the set of Toeplitz matrices and this is
achieved byaveraging the diagonals.

We essentially compare the performance in the resolution of
two close sources of the basic MUSIC, the projected MUSIC, de-
noted P-MUSIC below, i.e. the MUSIC algorithm working on the
projected covariance matrix, and the standard version of GMF de-
scribed in Section 3.2. We consider first the case where there is no
modeling error, the projection has already a beneficial effect on the
performance of MUSIC in this case. Then, as soon as we introduce
modeling errors, the basic MUSIC fails to resolve the two sources
quite frequently. Even for quite moderate modeling errors MUSIC
fails systematically and we thus only compare P-MUSIC and GMF.
They have similar performances with a slight advantage to GMF.

We then consider a linear array with the same number of sen-
sors and the same aperture as previously but with non uniformly
spaced sensors. GMF keeps its good performances in the presence
of modeling errors, because the beamformer implicitly projects the
observation on the array manifold while the P-MUSIC is no longer
feasible and MUSIC fails as expected even for quite moderate mod-
eling errors.

We simulate a linear array withN = 10 equispaced sensors
(half wavelength) andP = 2 equipowered sources at bearingsθi
equal to 0 and 6 degrees with respect to broadside, at SNR=0 dB
(α1=α2=v=1 in (1)) andT = 150 snapshots. Both for MUSIC and
GMF we assume to knowP the number of sources present. For
MUSIC this means that we take a signal subspace of dimensionP
and localize theP main peaks in the pseudo-spectrum, for GMF
this means that in the optimumX of (7) we only consider theP
main clusters of non-zero components, in case there are more than
P. For GMF we further takeM = 12N, L = 2N andh =

√
2lnM as

suggested in Section 3. All the results presented are obtained using
1000 independent realizations.

i) In the absence of modeling errors all 3 methods separate sys-
tematically the two sources. We present the results in Table 1. The
observed standard deviations (st dev) are slightly below the Cramer
Rao bound (CRB) for the GMF and P-MUSIC because of the gran-
ular way with which the estimates are deduced from the grid values.

Table 1:Two equipowered sources in spatially white noise with bearing 0
and 6 degrees at SNR= 0 dB, T=150 snapshots.

MUSIC P-MUSIC GMF
true 0 6 0 6 0 6
mean 0.19 5.80 0.01 5.98 0.01 5.99
st dev .34 .34 .25 .25 .24 .24
CRB .26 .26 .26 .26 .26 .26

Estimates of the mean and standard deviation of the bearings averaged
over 1000 independent realizations, obtained for MUSIC, MUSIC after
projection and GMF.

ii) As soon as we introduce some modeling errors, see relation
(3), MUSIC fails to systematically separate the 2 sources, while P-
MUSIC does so as is apparent in Figure 1., where we present the
MUSIC and P-MUSIC pseudo-spectrum for 20 realizations when
the modeling error in (3) has a variance equal toσ2 = .04. Indeed
while MUSIC fails to separate the 2 sources quite often even for
quite small modeling-error variances, P-MUSIC just as GMF con-
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Figure 1:Zoom on the MUSIC pseudo-spectrum in the presence of model-
ing errors of variance σ2 = 0.04 without (a) and with (b) projection of the
estimated covariance matrix on the array manifold.

tinues to resolve the two sources systematically. We present in Table
2. the results obtained for different modeling-error variancesσ2.

Table 2:Two equipowered sources in spatially white noise with bearing 0
and 6 degrees at SNR= 0 dB, T=150 snapshots and modeling-errors with
variance σ2 successively equal to .02, .04 and .08.

P -MUSIC GMF
true bearing 0 6 0 6
mean -0.01 5.98 -0.02 5.98
std. deviation 0.47 0.48 0.48 0.49

modeling-error variance σ2 = .02

true bearing 0 6 0 6
mean -0.01 5.97 -0.02 6.00
std. deviation 0.62 0.65 0.66 0.66

modeling-error variance σ2 = .04

true bearing 0 6 0 6
mean -0.03 6.06 -0.02 6.05
std. deviation 1.26 1.40 0.94 0.95

modeling-error variance σ2 = .08

Estimates of the mean and standard deviation of the bearings averaged
over 1000 independent realizations, obtained for P-MUSIC and GMF.

iii) Keeping the two extreme sensors at their current positions,
to preserve the array aperture, and moving the 8 remaining sensors
slightly away from their current locations leads to a new nominal
array having essentially the same performances as the initial one.
In the absence of modeling error, MUSIC and GMF applied to this
array will perform just as in Table 1. above. But since the projec-
tion on the new manifold is unfeasible, in the presence of modeling
errors, only the use of MUSIC makes sense and it fails to resolve
the two sources while GMF will have performances similar to those
obtained using the ULA.

To fix ideas, we keep the two extreme sensors at their current
positions, and place the other sensors regularly on an arc of circle
passing by these two positions. The angle that subtends the array
is taken equal to 60 degrees and the bearings are measured w.r.t.
the axis of symmetry of this arc. This entirely defines the shape.
The array is a part of a UCA with radius 4.5 wavelengths and inter-
sensor spacing 9sin(π/54) wavelengths. We present in Table 3. the
results obtained in the presence of modeling errors by GMF since
MUSIC does not work and P-MUSIC is no longer feasible. We
consider the same modeling-error variances as in Table 2 and indeed
the results are similar and actually slightly better which may mean
that the information content is larger, though the array manifold is of
much higher dimension and thus the information less concentrated.
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Table 3:Arc-of circle shaped array. Two equipowered sources in spatially
white noise with bearing 0 and 6 degrees at SNR= 0 dB, T=150 snapshots
and modeling-errors with variance σ2 successively equal to .02, .04and .08.

σ2 0.02 0.04 0.08
true 0 6 0 6 0 6
mean 0.01 5.98 -0.02 6.02 -0.02 6.02
st dev .46 .46 .64 .63 .84 .85

GMF-estimates of the mean and standard deviation of the bearings
averaged over 1000 independent realizations, obtained for 3 different
modeling-errors variances σ2 = 0.02, 0.04 and 0.08 . The performance
are similar to those of GMF in Table 2., P-MUSIC is no longer feasible and
MUSIC does not separate the two sources systematically.

6. CONCLUDING REMARKS

We have addressed the DOA estimation problem in the presence of
modeling errors. We have shown that the projection of the obser-
vations, e.g. the snapshot-covariance matrix, on the nominal array
manifold has a beneficial effect in this context. While this projec-
tion is indeed implicit in any optimal DOA estimation scheme, it
is difficult to achieve in subspace-based methods such as MUSIC.
Hence the benefit of using GMF, which -when based on the beam-
outputs- benefits from the implicit projection performed by the con-
ventional beamformer. The optimal DOA-estimation strategy in the
presence of modeling errors is actually not clear and further inves-
tigation are needed. It certainly depends upon the modeling-error
model that is used, but even for the simplest one that is used in
this paper, projecting on the nominal manifold may not be globally
optimal.

7. APPENDIX A : A PROPERTY OF THE BEAMFORMER

We establish that the beamformer performs the projection on the
array manifold (at no cost) or more precisely that the output of
the beamformer is the same when usingR̂ or R̂p the projection
of R̂ on the array manifold. Since the output of the beamformer
a(φ)∗R̂a(φ)∗ can be rewritten tr(R̂a(φ)a(φ)∗) with tr(.) the trace
operator, one has to establish that :

tr(R̂a(φ)a(φ)∗) = tr(R̂pa(φ)a(φ)∗)

The proof uses the fact that trAB∗ is a inner product on the set of
square matrices that corresponds to the usual Euclidean inner prod-
uct when matrices are considered asN2- dimensional vectors. With
IP the operator that achieves the desired projection, one hasIPR̂ = R̂p
by definition, but alsoIPR = R, andIPa(φ)a(φ)∗ = a(φ)a(φ)∗ since
R anda(φ)a(φ)∗ already belong to the manifold. To establish the
result, we successively write :

tr(R̂a(φ)a(φ)∗) = tr(R̂ IPa(φ)a(φ)∗)

= tr(a(φ)a(φ)∗IPR̂) = tr(R̂pa(φ)a(φ)∗)

where the second equality follows from the Hermitian property
of the inner product.

8. APPENDIX B : STATISTICAL PROPERTIES OF THE
BEAMS

We obtain the statistical properties of the beams in order to evaluate
the covariance matrixΣ of the vectorŶ used as input to the GMF.

The beamformer output power ˆyk at directionφk ∈ Φ is the pos-
itive real quantity

ŷk = a(φk)
∗R̂a(φk) = tr(R̂a(φk)R̂a(φk)

∗)

= tr(R̂a(φk)a(φk)
∗) = tr(R̂Pk)

where we have introducedPk = a(φk)a(φk)
∗. The evaluation of the

covariance of ˆyk is then easy when one uses the following relation
[9] that holds for Wishart matrices

E{tr(∆R A)tr(∆R B)} =
1
T

tr(RARB),

with ∆R = R− R̂, the estimation error. Taking thenA = Pk andB =
Pℓ and introducing∆yk = tr(∆RPk), the estimation error on beamyk,
it follows :

Σk,l = E(∆yk∆yℓ) =
1
T

tr(RPkRPℓ)

which by substitution becomes

1
T

tr(Ra(φk)a(φk)
∗Ra(φℓ)a(φℓ)) =

1
T
|a(φk)

∗Ra(φℓ)|2.

For k = ℓ, one gets

Σk,k = E(∆yk∆yk) =
1
T
|a(φk)

∗Ra(φk)|2 =
1
T

y2
k .

In the GMF, to get an estimate ofΣ the covariance matrix of̂Y one
further replacesR by R̂.
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