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ABSTRACT
We consider the problem of semi-supervised segmentation of
textured images. In this paper, we propose a new Bayesian
framework by modeling two-dimensional textured images as
the concatenation of two one-dimensional hidden Markov
autoregressive models for the lines and the columns, re-
spectively. A new segmentation algorithm, which is similar
to turbo decoding in the context of error-correcting codes,
is obtained based on a factor graph approach. The pro-
posed method estimates the unknown parameters using the
Expectation-Maximization algorithm.

1. INTRODUCTION

An image texture can be defined as the local spatial varia-
tions in pixel intensities and orientation [1]. In order to rec-
ognize objects and scenes in computer vision, it is essential
to be able to partition an image into meaningful regions with
respect to texture characteristics. This task, referred toas
texture segmentation in the image processing literature, is
a challenging problem due to the complexity and diversity
of natural textures. We restrict the focus of this paper to
semi-supervised segmentation, where the number of texture
classes, denoted byM, is known, but no ground truth data are
available to train the features or parameters associated with
each class.

We consider model-based segmentation, where the tex-
tures are described by a stochastic process. Existing meth-
ods model the intensity field as a Gauss-Markov random field
(GMRF) [2], which takes into account the spatial dependen-
cies between the pixels. The segmentation task can be car-
ried out in several ways. One possibility is to apply a classi-
cal clustering algorithm to texture features based on the es-
timated GMRF parameters, such as a neural network or the
k-means algorithm [3]. A more accurate approach is obtained
by labeling the pixels to one ofM texture classes and model-
ing the label field as a Markov random field (MRF), so that
pixels close together tend to have the same texture class. The
labels of all pixels can then be estimated using simulated an-
nealing [4].

In this paper, we propose a texture segmentation method
based on one-dimensional hidden Markov autoregressive
models (1D HMM-AR). The main advantage of the 1D
HMM-AR over the MRF approach is that segmentation and
parameter estimation can be performed at lower computa-
tional cost with a flexible and versatile forward-backward
procedure known as the Baum-Welch algorithm [5]. How-
ever, a single 1D HMM-AR is unable to capture the 2D
properties of textures. Therefore, we propose to handle 2D
textured images by converting them to two 1D signals by
scanning with a horizontal and a vertical raster scan. Each

1D signal, corresponding respectively to the lines and the
columns of the pixels, is modeled with a 1D HMM-AR. Us-
ing the factor graph framework [7], a new segmentation algo-
rithm is obtained by applying the sum-product algorithm [7]
to a factor graph representing the jointa posteriori proba-
bility distribution of the class labels given the pixel intensi-
ties. This scheme is analog to the turbo decoding algorithm
proposed by Berrou [8] in the context of error-correcting
codes. Hence the name turbo segmentation for the pro-
posed method. Moreover, the unknown parameters can be
estimated using the Expectation-Maximization (EM) frame-
work [9].

This paper is organized as follows. Sec. 2 presents our
new model for textured images based on two 1D HMM-AR
corresponding to the lines and the columns of the pixels.
The derivation of turbo segmentation using a factor graph
approach is introduced in Sec. 3. Finally, experimental re-
sults are given in Sec. 4 to investigate the performances of
the proposed method.

2. PROPOSED MODEL FOR TEXTURED IMAGES

In this section, we introduce a 1D HMM-AR model of a tex-
tured image (Sec. 2.1). The model is visualized by means
of a factor graph. In order to capture the 2D nature of tex-
tures, the image must be modeled as the concatenation of two
1D HMM-AR, one for the lines and another for the columns
(Sec. 2.2). The complete factor graph corresponding to the
concatenated HMM-AR model is also drawn.

2.1 1D HMM-AR model

Let S = {s = (i, j),1≤ i ≤H,1≤ j ≤W} be a 2D lattice rep-
resenting the grid points of an image. It is well known that a
2D image can be converted to a 1D signal through horizontal
raster scanning. This is achieved by visiting the points of the
2D latticeS, using the space filling curve given by Fig. 1 a).
With this pixel ordering, the texture labels and the gray-level
pixel values can be written as{lk} and {yk}, respectively,
where the discrete time indexk ∈ {1,2, . . . ,WH}.

We would like our model to capture the spatial depen-
dencies between pixel values for each texture class. Let
B(n) = [a1(n), . . . ,aP(n)]T and v(n) represent the coeffi-
cients and the variance corresponding to then-th texture class
autoregressive (AR) model,n ∈ {1, . . . ,M}. We assume an
HMM-AR model of orderP [6] defined by the difference
equation

yk =
P

∑
p=1

ap(lk)yk−p +nk(lk), 1≤ k ≤WH, (1)
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Figure 1: a) Horizontal raster scanning - b) Vertical raster
scanning.

wherenk(lk) is an independent zero mean Gaussian noise of
variancev(lk). The texture labels are assimilated to hidden
states whose dynamics are governed by the transition matrix
P = {pm,n}, where

pm,n = P(lk = n|lk−1 = m), 1≤ m,n ≤ M.

We collect the unknown parameters of the HMM-AR inλ =
(P,B(n),v(n),n ∈ {1, . . . ,M}).

We define the vector of hidden labels asl1:WH =
(l1, l2, . . . , lWH) and the vector of pixel intensities asy1:WH =
(y1,y2, . . . ,yWH). Under the assumption of first-order
Markov model for the label process, we obtain the factor-
ization

p(l1:WH |y1:WH) ∝ p(y1|l1)P(l1)p(y2|l2,y1)P(l2|l1)× . . .

× p(yP|lP,yP−1, . . . ,y1)P(lP|lP−1)

×
WH

∏
k=P+1

p(yk|lk,yk−1, . . . ,yk−P)P(lk|lk−1).

(2)

From an image modeling viewpoint, it also seems reasonable
to assume that the texture label at the beginning of a new line
is independent from the label at the end of the previous line,
so that the lines become independent. With this simplifica-
tion, the corresponding factor graph [7] is depicted in Fig.2
(whenP = 2). Variable nodes are represented as circles and
the local functions appearing in the factorization of thea pos-
teriori probability density function, denoted by

{

fk = P(lk|lk−1)

gk = p(yk|lk,yk−1, . . . ,yk−P)
(3)

are represented as squares.

2.2 Concatenated HMM-AR model

The 1D HMM-AR introduced in Sec. 2.1 models the dynam-
ics of the texture labels as a discrete-valued Markov chain
along the lines of the image. In the sequel, this model will be
referred to as the horizontal 1D HMM-AR. In general, this is
not sufficient to capture the 2D features of textures. Visiting
the points of the 2D latticeS with the vertical raster scanning
curve given by Fig. 1 b), we define a second 1D HMM-AR
to model the dependencies along the columns. In the sequel,
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Figure 2: Factor graph of an HMM-AR model of order-2 for
horizontal raster scanning of the pixels.

this model will be referred to as the vertical 1D HMM-AR.
The corresponding factor graph is the same as the one de-
picted in Fig. 2 (when the orderP = 2), except that the line
dependencies are replaced by column dependencies.

As a result, each pixel is now associated with two tex-
ture labels, corresponding to the horizontal and vertical 1D
HMM-AR model, respectively. The first (resp. second) label
is governed by the dynamics imposed by the state transition
matrix of the horizontal (resp. vertical) 1D HMM-AR. Since
both labels correspond in fact to the same pixel, we must im-
pose an equality constraint on those variables. We call the
resulting model a concatenated HMM-AR model. The cor-
responding factor graph (ignoring the local functionsgk cor-
responding to pixel intensities for the sake of readability) is
drawn in Fig. 3. The graph in thick (resp. thin) line corre-
sponds to the horizontal (resp. vertical) 1D HMM-AR model
of a textured image. Equality constraints between hidden la-
bels are represented in a box.

3. TURBO SEGMENTATION

3.1 Bayesian inference algorithm

We apply the sum-product algorithm (SPA) [7] to the com-
plete factor graph in Fig. 3, which implements belief propa-
gation [7].

In order to derive the messages exchanged by the SPA,
we focus on a small portion of the complete factor graph cen-
tered at time indexk, illustrated by Fig. 4. This small portion
corresponds to the horizontal 1D HMM-AR, whose parame-
tersλ = (P,B(n),v(n),n∈ {1, . . . ,M}) are fixed. Of course,
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Figure 3: Complete factor graph for the concatenated HMM-
AR model (hereH = 5,W = 5).
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Figure 4: Messages exchanged on a portion of the complete
factor graph.

one could just as well draw a small portion of the graph for
the vertical 1D HMM-AR, with exactly the same graph struc-
ture and therefore the same message-passing algorithm.

Let γ(lk) be the message sent by the local function node
gk to the variable nodelk, according to (1) we have

γ(lk) = p(yk|lk,yk−1, . . . ,yk−P)

=
1

√

2πv(lk)
exp







−
1

2v(lk)

[

yk −
P

∑
p=1

ap(lk)yk−p

]2






.

Denote byl′t the texture label of the vertical HMM-AR
related tolk by an equality constraint and byσ ′(l′t) the mes-
sage sent byl′t to the equality function node. Applying the
sum-product rule to the equality constraint, the message sent

by the equality function node tolk is given by

ε(lk) =
M

∑
l′t =1

δ (lk − l′t)σ ′(l′t) = σ ′(lk), (4)

whereδ (.) represents the Dirac function. Conversely, let
σ(lk) be the message sent bylk to the equality function node,
the message sent by the equality function node tol′t is given
by

ε ′(l′t) =
M

∑
lk=1

δ (lk − l′t)σ(lk) = σ(l′t). (5)

Let α(lk−1) be the message sent bylk−1 to the function
node fk, then the message sent byfk to lk has the form

M

∑
lk−1=1

P(lk|lk−1)α(lk−1).

Now, applying the sum-product rule at the variable nodelk,
we get the recursion

α(lk) =
M

∑
lk−1=1

P(lk|lk−1)α(lk−1)γ(lk)ε(lk), 1≤ lk ≤ M.

(6)
Similarly, letβ (lk) be the message sent by the function node
fk+1 to lk, we obtain the recursion

β (lk−1) =
M

∑
lk=1

P(lk|lk−1)β (lk)γ(lk)ε(lk), 1≤ lk−1 ≤ M.

(7)
We recognize that (6) and (7) are a modified version of the
forward and backward recursion of the well-known Baum-
Welch algorithm [5], withε(lk) as an additional multiplica-
tive term.

Finally, the message sent bylk to the equality constraint
node under the sum-product rule is given by

σ(lk) = α(lk)β (lk)/ε(lk), 1≤ lk ≤ M.

In fact, as suggested in [10], the message sent bylk to the
equality constraint node should be slightly modified to

σ(lk) = wα(lk)β (lk)/ε(lk), 1≤ lk ≤ M, (8)

where 0≤ w ≤ 1 is a weight factor left as a design parameter,
which increases with the number of iterations.

Due to the presence of many cycles in the proposed factor
graph illustrated by Fig. 3, instead of stopping the message
computations once all the nodes have been visited, the mes-
sages are recomputed iteratively until a stopping criterion is
reached [7].

The proposed inference procedure is summarized in Ta-
ble I.

MaxIt, the total number of allowed iterations, is the num-
ber of iterations needed so that a consensus is found between
the texture labels computed by the horizontal and vertical
pass. The final estimate of the texture labels is given by the
maximum posterior mode (MPM) decision rule as [7]

l̂k = arg max
lk∈{1,...,M}

α(lk)β (lk), 1≤ k ≤WH, (9)

where theα ′s andβ ′s are the forward and backward mes-
sages computed during the last vertical pass.
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1. Initialize allα, β , ε messages to 1 (no prior informa-
tion) and the set of parametersλ for the horizontal
and vertical 1D HMM-AR. Set the iteration counter
to it = 1.

2. Horizontal pass: Compute the forward recursion (6),
the backward recursion (7) and (8) for each line of
the image. Pass the updatedε messages (5) to the
columns. Updateλ for the horizontal 1D HMM-AR.

3. Vertical pass: Compute the forward recursion (6), the
backward recursion (7) and (8) for each column of the
image. Pass the updatedε messages (4) to the lines.
Updateλ for the vertical 1D HMM-AR.

4. While it < MaxIt, incrementit and return to step 2)

Table 1: Turbo segmentation algorithm

3.2 Parameter estimation

Since our aim is to propose a semi-supervised segmentation
algorithm, after each horizontal or vertical pass of the infer-
ence algorithm proposed in Table I, the set of parametersλ
of the corresponding 1D HMM-AR must be updated. We use
the EM approach developed in [6] to achieve this goal.

The 1D HMM-AR state transition matrix is re-estimated
according to

pm,n =

WH−1

∑
k=1

ζk(m,n)

WH−1

∑
k=1

M

∑
n=1

ζk(m,n)

, 1≤ m,n ≤ M. (10)

whereζk(m,n) = 0 in caselk is the last label of a line/column
andlk+1 is the first label of the next line/column, otherwise

ζk(m,n) =

pm,nα(lk = m)β (lk+1 = n)γ(lk+1 = n)ε(lk+1 = n)
M

∑
m=1

M

∑
n=1

pm,nα(lk = m)β (lk+1 = n)γ(lk+1 = n)ε(lk+1 = n)

,

(11)

where it is understood that is the old value ofpm,n is used in
(11). The expression of the quantitiesα, β , γ, ε is given in
Sec. 3.1.

The AR parameters corresponding to then-th texture
class are re-estimated according to



























B(n) =

[

WH

∑
k=1

ηk(n)zkz
T
k

]−1[

WH

∑
k=1

ηk(n)ykzk

]

v(n) =
∑WH

k=1 ηk(n)
(

yk −z
T
k B(n)

)2

∑WH
k=1 ηk(n)

,

(12)

where


















zk = [yk−1,yk−2, . . . ,yk−P]T

ηk(m) =
α(lk = m)β (lk = m)

M

∑
m=1

α(lk = m)β (lk = m)

, 1≤ m ≤ M.

In order to avoid convergence problems, the transition prob-
abilities are constraint to be greater than a threshold, say
pm,n ≥ 10−2.

3.3 Parameter initialization

The initialization procedure for the AR parameters corre-
sponding to each texture class is inspired from the coarse
segmentation algorithm introduced in [2]. The latticeS is
partitioned into non-overlapping rectangular regions. For the
purpose of parameter initialization, we assume that each re-
gion contains only a single texture. LetR denote the lat-
tice corresponding to such a region andRI the interior subset
of R [2]. After horizontal raster scanning ofR, a 1D signal
{yk(R)} corresponding to the pixel intensities is obtained, so
that each pixel belonging toRI can be modeled by an hori-
zontal AR model

yk(R) = z
T
k BH +nk,

wherezk(R) = [yk−1(R),yk−2(R), . . . ,yk−P(R)]T , BH is the
column vector of AR coefficients andnk is a zero mean Gaus-
sian noise of variancevH . A LS estimate ofBH andvH is
obtained as

B̂H =

[

∑
RI

zk(R)zk(R)T

]−1[

∑
RI

yk(R)zk(R)

]

v̂H =
1

Card(RI)
∑
RI

(

yk(R)−zk(R)T
B̂H

)2
.

Similarly, after vertical raster scanning ofR, a 1D signal
{yk(R)} corresponding to the pixel intensities is obtained, so
that each pixel belonging toRI can be modeled by an vertical
AR model

yk(R) = z
T
k BV +nk,

wherezk(R) = [yk−1(R),yk−2(R), . . . ,yk−P(R)]T , BV is the
column vector of AR coefficients andnk is a zero mean Gaus-
sian noise of variancevV . Also a LS estimate ofBV andvV
denoted byB̂V andv̂V can be obtained. Each regionR is then
associated with the corresponding feature vector

F =
(

B̂
T
H ,B̂T

V

)T
.

Applying thek-means algorithm [3] to the feature vectors, a
coarse estimate of the label field{l̂0

s ,s ∈ S} is obtained. This
step implements a coarse segmentation where the number of
classesM is assumed to be known. Assuming that the label
field estimate{l̂0

s ,s ∈ S} is correct, a LS parameter estima-
tion of B(n),v(n) for then-th texture class,n = 1, . . . ,M, is
recomputed for the horizontal and the vertical 1D HMM-AR.
These values will be used as initial AR parameters.

The initialization of the state transition matrix for the
horizontal and vertical 1D HMM-AR is obtained as follows.
Raster scan the label field{l̂0

s ,s∈ S} obtained from the coarse
segmentation and set the initial value ofpm,n, 1≤ m,n ≤ M
to

pm,n =
number of transitions from labelm to labeln

number of transitions from labelm
. (13)

If pm,n = 0 during initialization, setpm,n to 10−2 and renor-
malize the resulting state transition matrixP = {pm,n}, so
that the lines sum to one.
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Figure 5: (a) 256×256 three-texture mosaic - (b) correct seg-
mentation - (c) turbo segmentation with error rate of 1.72%.

4. EXPERIMENTAL RESULTS

Fig. 5a and 6a are texture mosaics taken from the Brodatz
album [11]. Fig. 5c and 6c show the turbo-segmentation re-
sults when the order of the 1D HMM-AR models isP = 5
and the maximum number of iterations is set toMaxIt = 5.
The evolution of the weight factors [10] (affecting the mes-
sages sent by the lines to the columns and the messages sent
by the columns to the lines) with the iteration number was
optimized experimentally to

w = [0.1,0.1,0.1,0.1,1.0].

The parameter initialization procedure described in Sec. 3.3
partitions the image into non-overlapping square regions of
size 32× 32 pixels. The obtained classification error rates
are very good. Other numerical experiments, although not
shown due to lack of space, demonstrated that turbo segmen-
tation generally converges within a few iterations and can
outperform existing Bayesian GMRF-based segmentation.
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