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1. ABSTRACT

This article deals with the extraction of frequency-domain
auditory objects in sparse representations. To do so, we first
generate sparse audio representations we call spikegrams,
based on neural spikes using gammatone/gammachirp ker-
nels and matching pursuit. We then propose a method
to extract frequent auditory objects (patterns) in the afore-
mentioned sparse representations. The extracted frequency-
domain patterns help us address spikes (atoms or auditory
events) collectively rather than individually. When audio
compression is needed, the different patterns are stored in
a small codebook that can be used to efficiently encode au-
dio materials in a lossless way. The approach is applied to
different audio signals and results are discussed and com-
pared. Our experiments show that substantial coding gain is
obtained when our technique based on pattern extraction is
used as opposed to the case where spikes (atoms) are coded
individually. This work is a first step towards the design of a
high-quality “object-based” audio coder.

2. INTRODUCTION

In [9], we proposed a bio-inspired universal audio coder
based on projecting signals onto a set of overcomplete atoms
consisting of gammatone/gammachirp kernels (see [12] for a
literature survey on overcomplete sparse audio coding). The
projections on the kernels are called spikes, since they can be
considered as the spikes generated by hair cells in the audi-
tory pathway (see Fig. 1). The best atom at each iteration is
found by matching pursuit. Our proposed method in [9] is an
adaptive version of [14] and uses gammachirp kernels instead
of the original gammatones used in [14]. In our approach,
at each matching pursuit iteration, six different parameters
(i.e., amplitude, time, frequency, chirp factor, attack, and de-
cay) are extracted in the adaptive case, while three param-
eters (i.e., amplitude, time, frequency) are extracted in the
non-adaptive case. Note that our approach is different from
other works in the literature (i.e., [3]) in which gammatones
are used as a filterbank and not as kernels for the generation
of sparse representations based on matching pursuit. We also
showed in [9] that, when used for audio coding, our adaptive
approach outperforms the work in [14] in terms of bitrate
and number of atoms for the same perceptual quality on dif-
ferent types of signals. The representations we dubbed as
spikegrams are good at extracting non-stationary and time-
relative structures such as transients, timing relations among
acoustic events, and harmonics.

The authors would like to thank D. Patnaik and K. Unnikrishnan for
the GMiner toolbox and for fruitful discussions, J. Rouat for fruitful discus-
sions, as well as the University of Sherbrooke for a travel grant that made
the aforementioned discussions possible.

Figure 1: Spikegram of the harpsichord using the gammatone
MP algorithm (spike amplitudes are not represented). Each
dot represents the time and the channel where a spike is fired.

In [9], we only studied the analysis/synthesis of a given
signal using our proposed method when each spike is pro-
cessed individually and when the underlying signal is synthe-
sized as the sum of all individual spikes. The aforementioned
approach lacks the ability to process auditory information in
holistic form (i.e., as auditory objects [2]) and therefore en-
codes each spike (auditory event) individually. Hence, the
statistical dependence between spikes/atoms that form audi-
tory objects is not exploited specifically in [9] and more gen-
erally in other sparse representations in the literature. In this
article, we propose an approach that takes into consideration
the statistical dependence between some spike attributes and
is therefore a more optimal way to represent auditory signals.

Figure 2: Block diagram of our proposed Universal Bio-
Inspired Audio Coder.

3. THE BIO-INSPIRED AUDIO CODER

The analysis/synthesis part of our universal audio codec pre-
sented in [9] is based on the generation of sparse 2-D rep-
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Generate an initial set of (1-node) candidate episodes (N = 1)
repeat
Count the number of occurrences of the set of (N-node) candidate episodes in one pass of the data sequence
Retain only those episodes whose count is greater than the frequency threshold and declare them to be frequent episodes
Using the set of (N-node) frequent episodes, generate the next set of (N+1-node) candidate episodes
until There are no candidate episodes remaining
Output all the frequent episodes discovered

Table 1: The frequent episode discovery algorithm as described in [8].

resentations of audio signals, dubbed as spikegrams. The
spikegrams are generated by projecting the signal onto a set
of overcomplete adaptive gammachirp (gammatones with ad-
ditional tuning parameters) kernels (see section 3.1). The
adaptiveness is a key feature we introduced in Matching Pur-
suit (MP) to increase the efficiency of the proposed method
(see [9]). A masking model is applied to the spikegrams to
remove inaudible spikes [7]. In addition a differential en-
coder of spike parameters based on graph theory is proposed
in [10]. The quantization of the spikes is given in our previ-
ous work [11]. The block diagram of all the building blocks
of the receiver and transmitter of our proposed universal au-
dio coder is depicted in Fig. 2, of which the frequent pattern
discovery block is discussed in this paper.

3.1 Generation of Overcomplete Representations with
MP

In mathematical notations, the signal x(t) can be decomposed
iteratively into overcomplete kernels as follows:

x(t) =< x(t),gm > gm + rx(t), (1)

where < x(t),gm > is the inner product between the signal
and the kernel gm. rx(t) is the residual signal after projec-
tion. In order to find an adequate representation as in Eq. 1,
MP can be used. In this technique the signal x(t) is decom-
posed over a set of kernels so as to capture the structure of
the signal. The approach consists of iteratively approximat-
ing the input signal with successive orthogonal projections
onto some bases gm. In [9], we used adaptive gammachirp
kernels gm(t). In the aforementioned approach, the chirp fac-
tor (instantaneous frequency), the attack, and the decay of
gammachirp kernels are found adaptively in addition to the
standard parameters of the gammatone kernels.

In the remainder of this article, a new solution to the ex-
traction of frequent episodes (auditory objects or patterns)
out of the generated spikegrams is presented. Without loss
of generality, we use the non-adaptive (3-parameter gamma-
tone kernels as gm(t)) approach in this article, since we only
extract frequency-domain patterns.

4. FREQUENT EPISODES IN SPIKES

In spikegrams, the spike activity of each channel can be asso-
ciated to the activity of a neuron tuned to the center frequency
of that channel. The ultimate goal here is to find a genera-
tive neural architecture (such as a synfire chain [1] or a poly-
chronous network [4]) that is able to generate a spikegram
such as the one we extract by MP (see Fig. 1) for a given
audio signal. Here, we propose a solution to a simplified ver-
sion of the aforementioned problem. We propose to extract

“channel-based or frequency-domain patterns” in our gener-
ated spikegrams using temporal data mining [6] [8]. Since
these patterns are repeated frequently in the signal and are
the building blocks of the audio signal, we may call them
auditory objects. Note that spikes’ timing and amplitude in-
formation is encoded independently as in [9] and is not taken
into account in extracted patterns.

Frequent Episode Discovery framework was proposed by
Mannila et al. [6] and enhanced in [5]. Patnaik et al. [8] ex-
tended previous results to the processing of neurophysiolog-
ical data. The frequent episode discovery fits in the general
paradigm of temporal data mining. The method can be ap-
plied to either serial episodes (ordered set of events) or to par-
allel episodes (unordered set of events). A frequent episode
is one whose frequency exceeds a user specified threshold.
Given an episode occurrence, we call the largest time differ-
ence between any two events constituting the occurrence as
the span of the occurrence and we use this span as a tem-
poral constraint in the algorithm. The overall procedure for
episode discovery is presented in Table 1 as a pseudo code.

Percussion Pass 1 Pass 2 Pass 3 Overall
No. extracted spikes 1682 771 335 2788
No. codebook elements 47 36 11 94
Codebook size in bits 2200 1976 320 4496
Raw bit saving 9968 4403 1820 16191
Effective bit saving 7768 2427 1500 11695

Castanet Pass 1 Pass 2 Pass 3 Overall
No. extracted Spikes 596 684 580 1860
No. codebook elements 8 20 37 65
Codebook size in bits 440 1436 2340 4216
Raw bit saving 2660 4095 3253 10008
Effective bit saving 2220 2659 913 5792
Speech Pass 1 Pass 2 Pass 3 Overall
No. extracted Spikes 1262 689 395 2346
No. codebook elements 8 21 11 40
Codebook size in bits 338 1053 288 1679
Raw bit saving 3238 3859 2250 11026
Effective bit saving 2899 2806 1962 7667

Table 2: Results for a 3-Pass pattern extraction on 1-second
frames. Percussion: The total number of bits to address
channels when no pattern recognition is used equals 23704
and the saving in addressing channels due to our algorithm
is 49% (compared to when no pattern discovery is used as
in [9]). Castanet: The total number of bits to address chan-
nels when no pattern recognition is used is 21982 and there
is a saving of 26% with our proposed algorithm. Speech:
The total number of bits to address channels when no pattern
recognition is used is 19118 and there is a saving of 40%.
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Figure 3: Spikegrams (dots) and the most relevant extracted
patterns (lines) at each of the 3 passes for percussion for a
250 ms frame. Different colors/grayscales represent differ-
ent episodes. Only spikes not discovered during the previ-
ous pass are depicted at each pass. Note that since unordered
episodes are discovered, patterns are similar up to a permuta-
tion in the temporal order. Timing and amplitude information
is not included in the patterns and is encoded separately.

4.1 Extraction of Frequency-Domain Patterns in
Spikegrams

Given the sequence of spike channel number ( f i, fk, . . . , fm)
where i,k,m vary between 1 and N, the number of chan-
nels (associated with centre frequencies) in the spikegram,
we want to find frequent parallel episodes that are subsets
of the sequence given above. The frequent episodes repre-
sent the underlying statistical dependencies between differ-
ent center frequencies for a given time interval specified by
the temporal constraint of the discovery algorithm. The fre-
quent episodes here can be considered as “frequency-based
auditory objects” since they are the frequency-domain build-
ing blocks of our audio signal and they do not include timing
or amplitude information (timing and amplitude are sent in-
dividually and independently from the patterns). In graphical
terms, frequent episodes are visual structures that repeat fre-
quently on the spikegram within a predefined time window.
Since we are looking for unordered episodes, the aforemen-
tioned structures are similar up to a permutation in the order
of appearance. This can be roughly compared to extracting
similar regions on a conventional spectrogram. However, in

contrast with spectrograms, spikegrams are reversible (e.g.,
one can synthesize the original signal from spikegram el-
ements) . In addition, the spikegram is much more pre-
cise than a spectrogram in terms of the ability in extract-
ing acoustic events (or timing information). Furthermore, the
spikegram can only take on discrete values. Hence, it is much
easier to extract patterns in such a discrete representations
compared to a spectrogram where values are continuous. As
we will see in the section 5, the sequence ( f i, fk, . . . , fm) can
be expressed in terms of frequent episodes that we will use
as elements of a codebook plus the residual center frequency
sequence that cannot be expressed in terms of codebook ele-
ments. Note that other parameters such as spikes’ timing and
amplitude are encoded separately as in [9]. We only consider
patterns (codebook elements) for which their length multi-
plied by their number of occurrence is higher than a prede-
fined threshold. Furthermore, we noticed that spikegrams are
denser in some regions than others. Therefore, the extraction
of patterns would be normally biased towards those regions
and sparser regions would be ignored, if the pattern extrac-
tion algorithm was applied just once. Hence, we propose
a multipass approach in which patterns are extracted during
the first pass in denser regions. We then subtract the pat-
terns we matched to the spikegram from the spikegram and
we keep the residual spikegram on which we run the frequent
episode discovery algorithm a second time. Finally, we ap-
ply the frequent episode discovery algorithm on the residual
spikegram of the second pass. Our observations have shown
that very little information is extracted after the third pass.
Therefore, we use a 3-pass approach throughout this article.
The GMiner toolbox1[8] based on the pseudo-code in Table 1
is used to extract patterns in our spikegrams. The input to the
GMiner toolbox at each pass is either the original spikegram
(first pass) or the residual spikegram (passes 2 and 3) as de-
scribed above.

5. RESULTS

In this section we give pattern discovery results for three dif-
ferent audio signals: percussion, castanet, and speech.

5.1 Experimental Setup

The signal is processed in 1-second frames. For each frame,
a 4000-spike spikegram is generated. Frequent episodes are
discovered for each signal during three different passes as
described in section 4.1. The temporal constraint window is
set to 400, meaning that the difference of occurrence time
of any two spikes in an episode cannot exceed 400 discrete
samples. The threshold (i.e., number of episode occurrence
multiplied by the length of the episode) is set to 10. There-
fore, very short sequences or rarely-occurring sequences are
not extracted, as they do not result in significant bit saving.
Each element of the codebook is run-length coded and sent
to the receiver. The total number of bits required to send the
codebook to the receiver is computed as well. For each pass
the residual spikes are arithmetic coded and the difference in
the number of bits required to code the residual at each pass
is computed as “raw bit saving” in channel addressing . We
then computed the “effective bit saving” in channel address-
ing as the “raw bit saving” minus the bits required to send the
codebook (overhead). This is the effective gain obtained in

1http://neural-code.cs.vt.edu/

1251



bitrate when our proposed 3-pass pattern extraction is used
(see Table 2).

Figure 4: Residual norm (‖rx(t)‖ in Eq. 1) vs. number of
iterations for percussion when 24 and 64 channels are used
for spike extraction. Each iteretion is associated with a spike.

5.2 Pattern Discovery and Coding Results

In Table 2 the number of extracted spikes is shown for each
pass and the raw bit saving and effective bit saving in channel
addressing as described above are given for percussion, cas-
tanet, and speech. Our algorithm was able to extract between
1860 and 2788 spikes in different episodes out of the total of
4000 spikes. The longest pattern found in percussion is 13-
spike long and is repeated on average 17 times in the signal
frame, while the longest pattern for castanet is 14-spike long
and is repeated 33 times on average in frames. In the mean-
time, the longest pattern for speech is 100-spike element and
is repeated 8 times on average in the frames. Results show
that the bitrate coding gain obtained in addressing frequency
channels ranges from 26 % to 49% depending on the type of
the signal. Note that since the pattern extraction coding is
lossless, the informal subjective quality evaluations in [9] for
the audio materials still hold when our new audio extraction
paradigm is applied. Fig. 3 shows the extracted patterns for
each of the three distinct passes for percussion. Since un-
ordered episodes are discovered, the order of appearance of
spikes in different channels can change. However, the chan-
nels in which spike activity occurs are the same for all similar
patterns. Fig. 3 also shows that our 3-pass algorithm is able
to extract patterns in the high, low and mid-frequency ranges,
while a 1-pass algorithm would have penalized some sparser
spikegram regions.

5.3 Extracted Patterns in Spectro-Temporal Domains

Fig. 5 shows how the precise timing of a percussion sig-
nal can be represented by a few codebook elements. For
instance, reconstruction with the first codebook element ex-
tracted by our proposed algorithm (13-spike long and re-
peated 17 times in the signal) shows that with only this first
element a considerable amount of the signal is grabbed at
each energy burst with accurate timing. Fig. 6 shows how
codebook elements represent frequency-domain information
for the same percussion signal. The reader may notice how
some frequency-domain patterns (especially on panels 4 and
5 of Fig. 6) are flipped/mirrored versions of each other. For
instance, let us consider the two spectral patterns at times
2.2× 104 and 2.6× 104 on panel 5 of Fig. 6 (as indicated
by arrows in the Figure). The reader may notice that in the

Bits/spike 24-channel without PE 64-channel with PE
Channel 5.6 3.2

Time 10.1 10.1
Amplitude 3.9 3.9

Table 3: Average number of bits used to address each param-
eter in the 24-channel without Pattern Extraction (PE) and
the 64-channel with PE cases. See [9] for values associated
with time and amplitude.

first spectral pattern, the dark/red zone around 14 kHz pre-
cedes the dark/red zone in the mid-level frequency range (8
kHz), while for the pattern located at 2.6× 104 the opposite
happens and the 8 kHz dark zone precedes the 14 kHz dark
zone (indicated by arrows). This flexibility in finding sym-
metrical (temporally-mirrored) patterns is due to the fact that
our algorithm is based on the extraction of parallel frequent
episodes (unordered set of events), so that the relative tim-
ing of different “high-energy” (dark) zones can change in a
pattern. This interesting feature reduces the number of ele-
ments in the codebook drastically, since all mirrored patterns
are classified as a single codebook element in our algorithm.

first

Figure 5: Reconstruction of a percussion signal with a few
codebook elements. 1st Panel: Original percussion signal.
2nd to 5th Panels: Signals generated with the first to fourth
codebook elements respectively.

5.4 Choice of Number of Channels in The Spikegram

Fig. 4 shows that the number of spikes required to get the
same SNR decreases drastically when 64 channels are used
instead of 24 in the spikegrams. Nevertheless, since a 64-
channel spikegram would have required much more bits to
address channels individually, in [9] we used the 24-channel
spikegram to code spikes individually. However, in the cur-
rent work, since patterns (i.e., groups of spikes) are extracted,
the number of bits required to collectively address channel
information is drastically reduced. As such, here we use 64-
channel spikegrams. Table 3 shows the average number of
bits required to address each parameter in the cases when
pattern extraction is used and when it is not, for 24-channel
and 64-channel spikegrams. When 64 channels are used the
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Figure 6: 1st Panel: Spectrogram of the original percussion
signal. 2nd to 5th Panels: Spectrograms of signals gener-
ated with the first to fourth codebook elements respectively.

total number of spikes required for a given SNR (shown by
the horizontal dashed line in Fig. 4) is 2400, while for the
same SNR we need 4000 spikes in the 24-channel case (con-
firmed by informal listening tests). Therefore, the total num-
ber of bits used to address time, channel, and amplitude in
24-channel (without pattern extraction) and 64-channel (with
pattern extraction) spikegrams are 78400 and 41280 bits re-
spectively (based on the data in Table 3). Thus, there is a
saving of 47% in the total bitrate and our choice of using
64-channel spikegrams in the previous sections is justified.

6. CONCLUSION AND FUTURE WORK

We propose a fast (faster than the MP stage) frequency-
domain audio object (episode) extraction algorithm based
on the generation of spikegrams. The advantage of such an
algorithm stems in the fact that spikegrams are representa-
tions of discrete events that can be mined easily by known
approaches. This is in contrast with raw or irreversible
frequency-domain representations of signals (i.e., spectro-
gram) in which each sample can take so many values and
where data mining is difficult to perform. We then applied
our proposed technique to audio coding and obtained promis-
ing results for the lossless coding of frequency-based infor-
mation. In order to increase performance, we proposed a
3-pass pattern extraction method that helps extract patterns
more uniformly in spikegrams. The advantage of our pat-
tern extraction approach is two-fold. First, we show how
to save bits by extracting patterns and small codebooks for
sending channel information with a much lower bitrate. We
also obtained another bitrate decrease due to the fact that by
increasing the number of channels in the spikegram, we can
decrease the number of spikes needed to meet the same qual-
ity. This aforementioned gain is achieved due to the effi-
ciency in sending channel information collectively as pat-
terns. Informal listening tests show that the overall system
in Fig. 2 gives high quality (scores above 4 on the ITU-R
5-grade impairment scale) and has the potential to achieve
the target 44.1 kbps for the audio material described in this
article. In a future work, we will extract the structural depen-

dencies of spike amplitudes, timings, and/or other parameters
in the spikegram such as the chirp factor, etc. (see [9]). We
will also investigate the design of a generative neural model
based on spikegrams. Formal subjective listening tests for
the overall system will be conducted. In order to speed up
the spikegram extraction of audio signals, we have conducted
preliminary tests on replacing the MP stage (see Fig. 2) by
neural circuitry that can be implemented on embedded and
parallel hardware [13]. We will further explore this avenue in
a future work. The application of our proposed audio object
extraction is not limited to audio coding and can be used in
audio source separation, speech recognition, etc. It can also
be applied to sparse representations other than spikegrams.
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