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ABSTRACT

Deciding for the possible presence of a LOS component in a 
wireless radio link is preliminary to several operations that 
a communication receiver has to accomplish. In fact, NLOS 
radio models require more complex signal processing algo-
rithms for data detection. We propose to adopt the normal-
ized version of the Rayleigh-ness test (recently introduced 
for code acquisition purposes, as a measure of the Ricianity 
of the series under investigation) to obtain here a self-
tunable test, independent of the actual power of the received 
signal. The achieved results evidence the robustness of the 
test.

1. INTRODUCTION

In order to exploit the advantages of a direct sequence-spread 
spectrum (DS/SS) signal in a code division multiple access 
(CDMA) system, receivers must first be able to synchronize 
the locally generated PN code with the incoming PN code 
[1]-[9]. Thus, quickly achieving and then maintaining PN 
code synchronization is a critical issue to be satisfied because 
even a small misalignment can cause dramatic signal-to-
noise ratio (SNR) degradation. The most widely used and 
studied methods for acquiring PN codes are: (maximum like-
lihood) full parallel search, serial search, and hybrid search. 
In each of these methods, correlations between the incoming 
and the locally generated PN sequence are realized. In the 
first case (full parallel search), correlations are formed for all 
possible PN code offsets. In simple serial search, only one of 
the correlations used in the full parallel search is formed, 
while hybrid search tests a small set of possible alignments in 
parallel and then repeats this test on another set of observa-
tions until the correct code offset is discovered. In all cases, a 
threshold test is performed to accept or reject the presence of 
useful signal characterized by a given code in the search re-
gion under investigation. The test sequentially searches for 
the most likely codes and their optimum timing shift as reli-
able candidates for code (and code offset) acquisition [2], [6]. 

Conventional testing methods for the presence of a pilot syn-
chronization signal (with a given spreading code offset) rely 
on the power detector [7]. This test distinguishes between 
two different hypotheses: the in-sync condition (hypothesis 
H1), which corresponds to the case of presence of the tested 

code with the offset detected by the receiver’s systematic 
timing offset; and the out-of-sync case (hypothesis H0) which 
conversely states the absence of that code with the consid-
ered offset [6]. The constant false alarm rate (CFAR) crite-
rion, often employed to perform effective tests, is adopted to 
determine the threshold value. Power detector is chosen to 
limit the computational costs of the decision device, in order 
to allow faster sequential hypothesis rejection. That is be-
cause rejection is much more likely than acceptance in code 
serial search devices for spread spectrum communications 
[5]-[9].

In a recent development, the “Rayleigh-ness” test was intro-
duced in [4] for code acquisition purposes, as a measure of 
the “Ricianity” of the series under investigation. In particular, 
the Rayleigh-ness test has been previously proposed regard-
ing applications to non-coherent initial synchronization of the 
chip offset (code acquisition) in a symbol-length spreading 
sequence of DS-CDMA systems [4]. Addressing some of 
these issues, this work proposes a signal processing tech-
nique based on a normalized version of the Rayleigh-ness 
test for SS communication systems. Our goal is to obtain, via 
the proposed method, a self-tunable test that avoids the 
evaluation of the variance of the received symbols, i.e. the 
test is self-tunable in respect to the power of the received 
signal. The remainder of this work is organized as follows. 
The system model is described in the first half of Section II, 
while the basic frameworks of the Rayleigh-ness test are 
briefly summarized in the second half. In section III, the new 
normalized test is detailed, and in Section IV a number of 
numerical results are presented to assess the validity of the 
devised method. The paper’s conclusions are finally drawn in 
Section V.

2. BASIC FRAMEWORKS

2.1 System Model
The two opposite cases of acquired or mismatched code 
offset are often referred to as in-sync and out-of-sync condi-
tions. These cases differ because the output of a matched 
filter is ideally constant in the former condition, while it 
randomly varies in the latter one. In fact, it is well known 
that the user codes employed are orthogonal only if the users 
are chip-synchronized with each other. In practice, any pair 
of codes may present a relevant cross-correlation for non-
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zero chip offset. Such a residual correlation acts as a random 
variable (the codes are usually modulated by independent 
data streams), characterized by a noise-plus-interference 
variance depending on the effective time synchronization. In 
addition, let us consider an additive independent and identi-
cally distributed (i.i.d.) zero-mean complex Gaussian ran-
dom series, say H=[η1, …, ηk]

T, with variance 2σ2, that af-
fects the estimated cross-correlation sample. It accounts for 
both the background noise and the random interference ef-
fects of the same code with erroneous shift (self-
interference) or other co-users in the same cell (multi-user 
interference) [6]. Because we aim to perform a testing pro-
cedure suited in the presence of a large number of interfer-
ers, the Gaussianity of the series can be asymptotically as-
sumed as a direct consequence of the central limit theorem. 
We are then assuming that the series at the output of a non-
coherent correlator, matching the correct code shift, referred 
as Γ'=[│μ+ε’

1│, …,│μ+ε’
k│]T with mean μ≠ 0, is corrupted 

by the zero-mean complex i.i.d. Gaussian random noise 
Ε'=[│ε’

1│, …,│ε’
k│]T with variance 2σ'2. 

Testing for the presence of useful signal should discrimi-
nate over the following two hypotheses operating on the 
observed series Γ = [│R1│, …, │Rk│]T whose samples are 
detected at the output of the matched filter (see Fig. 1): H1

stands for the in-sync case (i.e. presence of signal), while 
H0 represents the out-of-sync case (i.e. absence of signal). 
The statistical distribution of the observed variable is the 
Rice probability density function (PDF) in the former hypo-
thesis, while reduces to the Rayleigh PDF in the latter case. 
As a consequence, the hypothesis testing is equivalent to 
decide for the “best fitting” statistical model of the real and 
positive-valued observed series Γ = [│R1│, …, │Rk│]T

between the Rayleigh and the Rice cases. Due to the central 
limit theorem, several testing variables asymptotically tend 

to Gaussian, whether the correlation error {εk} is Gaussian 
or not. Under such an assumption, only the mean E[Z│H0] 
and the variance var[Z│H0] of the testing variable Z should 
be estimated under the null hypothesis to compute the thre-
shold [4].

2.2 “Rayleigh-ness” Test
A complete and extensive discussion on the Rayleigh-ness 
test can be found in [4]. This technique aims to state whether 
a real positive series is a portion of one realization of a 
Rayleigh-distributed random process. Such a Rayleigh-ness 
test can be performed to decide on the possible presence of a 
(statistically relevant) mean of the complex Gaussian model 
(i.e. Rk = μ + εk) generating both Rayleigh (μ = 0) and Rice 
(μ≠0) distributions by the magnitude of the complex Gaus-
sian variable (i.e., │Rk│), where {εk} is the correlation error. 
In particular, let us consider for sake of notational conven-
ience and without loss of generality in the following, the 
marginal statistical moments (referring to the I/Q compo-
nents) of the random variables Re{Rk} (or, equivalently, 
Im{Rk}), instead of the equivalent definitions in the complex 
domain. In practice, the term σ2 accounts for the marginal 
variance of Rk (i.e., the variance of the real or imaginary part 
only). Let us also define the marginal kurtosis α of Rk as the 
ratio between the marginal fourth-order moment (i.e., that of 
the real or imaginary part only) and the square σ4 of the 
marginal variance (being α = 3 in the Gaussian case). The 
testing variable is represented by the following:
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Fig. 1 Block schemes of the a) conventional power and b) Rayleigh-ness testing procedures
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The Rayleigh-ness testing variable can be expanded as fol-
lows: 
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Its mean value, after some algebra detailed in [4], can be 
expressed as:

   

 

4 4

2 2 4

2 3

2
4 2 1

E X

N

  

   

     

       
(3)

The testing variable X is asymptotically Gaussian (N→+∞) 
because of the central limit theorem, whether the correlation 
error {εk} is Gaussian or not. In fact, the first term in (1) is 
the square of an asymptotically Gaussian variable with non-
zero mean, whose variance goes to zero like 1/N. The sec-
ond term, consisting of a sum of random variables, is as-
ymptotically Gaussian from a direct application of the cen-
tral limit theorem. The testing variable is then asymptoti-
cally Gaussian, since it is a linear combination of two as-
ymptotically Gaussian random variables.

3. NORMALIZED “RAYLEIGH-NESS” TEST

One of the weakness points of the Rayleigh-ness test is rep-
resented by the fact that we have to estimate the variance of 
Rk in order to evaluate the testing variable X. In this Section, 
we present a normalized version of the Rayleigh-ness test 
that avoids the evaluation of the variance of the received 
symbols, i.e. the test is self-tunable in respect to the power 

of the received signal. We can divide each member of (1) by 
the variance of Rk and, after some algebra, we can obtain the 
following new testing variable:
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The normalized test now is as follows:
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It means that if the testing variable is greater than the thre-
shold value the algorithm decides for H0, otherwise the 
choice is for H1. Let us observe that equation (4) is equiva-
lent to the ratio between the (estimated) variance of the 
same squared correlation samples {│Rk│

2} and the (esti-
mated) mean of the same samples. In fact, a conventional 
indicator only refers to one term, i.e. the mean output pow-
er. Conversely, a reduction of such variance in the in-sync 
condition will help the acquisition process (see also [6]) by 
means of the presence of the second term in the new testing 
variable (4). In our analysis, detailed in the results’ Section,
we have used the Constant False Alarm Rate (CFAR) pro-
cedure, often employed to perform effective tests [8]. In 
particular, the CFAR test is accomplished in two successive 
parts: first, a threshold is determined to limit the false-alarm 
probability PFA at a given reduced value (also named size of 
the test); second, the probability of detection PD (also 
named power of the test) is evaluated for the threshold pre-
viously determined [4].

Fig. 2 Probability of false alarm versus the power of the LOS component
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The probability of false alarm must be tuned to guarantee a 
very low number of possible false alarms, which eventually 
imply a relevant penalty time to the acquisition device. 
Large probabilities of detection (up to 100%) are typical of 
well-performing testing variables [3, 9]. The test threshold 
can be asymptotically tuned from a straightforward evalua-
tion of the Gaussian integral for a fixed probability of false 
alarm, with μ=0, as follows:

      
0 0

1
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Furthermore, the asymptotic probability of detection (for 
the above threshold) can be similarly determined by means 
of the Gaussian error function in the case μ ≠ 0 by means of 
the expression:
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In the next Section, wide simulation trials are conducted to 
prove the sensitivity of the theoretical approach and to ver-
ify the efficiency of the normalized test we propose here.

4. NUMERICAL RESULTS

In this Section, we show the performance of the system in 
terms of detection probability, PD, for different values of 
practical interest of the parameter N (i.e. the number of sam-
ples) and of the parameter . It has to be underlined that 
this test can be used to decide for the presence of line-of-
sight (LOS) or no-line-of-sight (NLOS) components. In fact, 
in a recent development, authors in [10] state that the Rician 
factor is defined as the ratio of power in the LOS path to 
power in the scattered paths and can be considered as a 
measure of the link quality. Since  is the power of the LOS 
component, its estimation (i.e. the estimation of the Rician 
factor) is also a measure of the quality of the link. This in-
formation is of high significance for location purposes in a 
wireless cellular network since time-of-arrival (TOA) and 
time-difference-of-arrival (TDOA) information based on 
LOS connections can be weighted stronger in a location 
computing algorithm and hence can lead to higher position-
ing accuracy. Otherwise, if the connection is identified as 
LOS it can be useful to adopt a 2-D signal processing 
(space-time processing) strategy with an antenna array, in-
stead of using the high complexity of the TOA and TDOA 
methods.

In particular, Fig. 2 shows here the probability of detection 
evaluated versus the values of the parameter , for different 
false alarm probabilities (from 10-3 to 10-2) and with N = 
1000. As we can see, the behaviour of the curves for differ-
ent PF is very similar, hence, in all the following simulations 
we adopt the value of PF = 10-3, as done in the operating 
modes, to obtain detection probabilities of practical interest. 

The resulting probability of detection with PF = 10-3 is de-
picted in Fig. 3 versus the value of the factor , i.e. the 
power of the LOS component. As we can easily see from the 
graph, the simulation results (dotted lines) well match the 
theoretical ones (solid lines) ensuring the correctness of the 
adopted mathematical model and assumptions of the previ-
ous Sections. The best working point on the graph is repre-
sented by the best trade-off between the computational com-
plexity of the algorithm (i.e. the values of the requested 
number N of samples) and the values of the probability of 
detection in bad cases (i.e. with low values of the power of 
the LOS component, the parameter ).

In order to verify these results, we have cross-matched the 
obtained data plotting in Fig. 4 the resulting probability of 
detection for different values of the power of the LOS com-
ponent versus the number N of samples. Once again, we 
are searching the best trade-off between the algorithm’s effi-
ciency (i.e. probability of detection of practical interest) and 
computational complexity (i.e. number of samples). We can 
see that for low values of we always need a greater num-
ber of samples to obtain detection probability of practical 
interest. This is a consequence of the fact that, as stated in 
[10], for typical urban macro cellular environments with a 
root mean square delay spread on the order of 1 μs the Ri-
cian factor is equal to 1 (i.e. power on the main path equal to 
the power of the diffusive (multi-path) components. This 
means that the proposed test needs more samples before a 
correct acquisition shift is identified.

5. CONCLUSION

This work proposes a normalized version of the Rayleigh-
ness test, recently introduced in the literature, for code acqui-
sition purposes, as a measure of the “Ricianity” of the series 
under investigation. Our goal is to obtain, via the proposed 
method, a self-tunable test that avoids the evaluation of the 
variance of the received symbols, i.e. the test is self-tunable 
in respect to the power of the received signal. We show the 
obtained outcomes versus different number of received sam-
ples and channel conditions (in terms of power of LOS com-
ponent). Simulation results are used to show the robustness 
of this normalized test that can also be applied as a measure 
of the quality of the communication link to decide for the 
possible presence of LOS/NLOS components.
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Fig. 3 Probability of detection (with PFA = 10-3) versus the power of the LOS component.
(Simulation results: dotted lines; theoretical results: solid lines).

Fig. 4 Probability of detection (with PFA = 10-3) versus the number of estimated samples.
(Simulation results: dotted lines; theoretical results: solid lines).
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