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ABSTRACT
A method to eliminate eye movement artifacts based on In-
dependent Component Analysis (ICA) and Recursive Least
Squares (RLS) is presented. The proposed algorithm com-
bines the effective ICA capacity of separating artifacts from
brain waves, together with the online interference cancella-
tion achieved by adaptive filtering. The method uses separate
electrodes localized close to the eyes (Fp1, Fp2, F7 and F8),
that register vertical and horizontal eye movements, to ex-
tract a reference signal. Each reference input is first projected
into ICA domain and then the interference is estimated using
the RLS algorithm. This interference estimation is subtracted
from the EEG components in the ICA domain. Results from
experimental data demonstrate that this approach is suitable
for eliminating artifacts caused by eye movements, and the
principles of this method can be extended to certain other
sources of artifacts as well. The method is easy to imple-
ment, stable, and presents a low computational cost.

1. INTRODUCTION

The electroencephalogram (EEG), the record of the neuronal
electrical activity, is a good indicator of abnormality in the
nervous central system. The occurrence of electrical artifacts
generated by eye movements and blink contamination pro-
duce a signal known as Electrooculogram (EOG). This well
recognized problem that appears in the recorded EEG as an
interference, causes serious problems in EEG interpretation
and analysis. To remove the EOG from the EEG, it is conve-
nient to discriminate between artifacts and brain waves with-
out altering important information of EEG activity.
On the other hand, many applications such as brain com-
puter interface (BCI) require online and real-time processing
of EEG signal. The potential of optimal filtering based on
adaptive methodologies that search very efficiently the opti-
mal solution could be used in EEG signal to optimally per-
form in real time tasks [2, 11, 12].
Taking these requirements into account, several papers have
published different methods about automatic removal of
EEG artifacts using independent component analysis (ICA)
[7]. ICA allows to separate components in complex signals
with the possibility of discriminating between artifacts and
brain waves. This method is widely used as a tool to elim-
inate artifacts [1, 3, 4] with the possibility of combining it
with other methods such as Bayesian classifier or high-order
statistics [8, 9].
The method proposed describes an adaptive filtering applied
to EEG data components obtained by ICA for eliminating
EOG contamination. The principal difference with other
methods for ocular artifacts removal is the use of ICA com-
ponents as reference inputs corresponding to noise that we

want to eliminate. The adaptive filtering works under ICA
domain using the EEG reference electrodes localized close
to the eyes. We test the correspondence of these electrodes
with ocular artifacts using the scalp topographic map [5].
This paper is organized as follows: Section II explains the ap-
proach for removing EOG artifacts based on ICA and adap-
tive filtering and describes the procedure by means of pseudo
code. Section III shows the results of the EOG noise can-
celler applied to real EEG data. In Section IV the main re-
sults are discussed and in Section V the conclusions of the
paper are given.

2. METHODS

2.1 Independent Component Analysis (ICA) of EEGs

The ICA technique appears ideally suited for performing
source separation in domains where, (i) the sources are inde-
pendent, (ii) the propagation delays of the ’mixing medium’
are negligible, (iii) the sources have p.d.f’s not too different
from the gradient of the logistic sigmoid, and (iv) the num-
ber of independent signal sources is the same as the number
of sensors, meaning that if we employM sensors, using the
ICA algorithm we can separateM sources.
In EEG source analysis, just the assumption (iv) is question-
able [14], since we do not know the effective number of sta-
tistically independent brain signals contributing to the EEG
recorded from the scalp, and this is the foremost problem in
interpreting the output of ICA. However ICA still proves to
be useful in this domain [1, 3, 4, 8, 9, 12].
We assume that at time “n” we build a vector of measure-
ments fromM sensorsx(n) = [x1(n),x2(n), ...,xM(n)]T and
that we storeN such vectors as columns in matrixX =
[x(1),x(2), ...,x(N)]. In ICA, the observed signalX is as-
sumed to be a linear combination ofM unknown and sta-
tistically independent sources (assuming that the number of
unknown sources is equal to the number of observations).
The objective of the ICA algorithm is to find a separating
or demixing matrixW such that we estimate the sources as
S
′
= WX .

There are many well known procedures for solving de ICA
problem, for instance those based on Fast-ICA or kernel-ICA
[10]. Without loss of generality we will use here the Joint
Approximate Diagonalization of Eigen-matrices (JADE) that
is based on the diagonalization of cumulant matrices [1].
This algorithm has been successfully applied to processing
of real data sets and EEGs and the JADE Matlab code is
available in [13]. For EEG, the value ofM depends on the
montage used by the electrodes. It is possible then to esti-
mate a signalS

′
= WX ; whereW = [w1,w2, ...,wM]T is the
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Figure 1: General scheme of automatic EOG noise cancellation using adaptive filtering and ICA. Processing of signal from
sensor “m” is shown, this scheme has to be runM times in parallel to process all EEG data.

mixing matrix obtained by ICA andS
′
is the linear combina-

tion of the used channels. The columns of the inverse matrix
W−1 give the projection strengths of the respective compo-
nents onto the scalp sensors. These weights give the scalp
topographic of each component, and provide evidence about
the physiological origin of the components [5, 6].
“Filtered” EEG can be derived asX′ = W−1S′′, whereS′′ is
the matrix of activations waveforms, with the rows inS′ rep-
resenting artifact sources set to 0. The rank of “filtered” EEG
data is less than that of the original data.
It is important to know that the spatial order inS′ does not
correspond to spatial order inX, nevertheless, we can use the
scalp topographies of the components as an indicator of the
biologic origin of the sources [15].

2.2 Removing EOG artifact by adaptive filtering and
ICA

In conventional adaptive noise cancellation systems, the pri-
mary input signal is a combined signalx(n)+ i(n) wherex(n)
represents the “clean” (unavailable) signal andi(n) is the in-
terference. We assume the availability of a reference signal
r(n) assumed to be correlated withi(n). The goal is to ob-
tain an output signale(n) that is the residual after substract-
ing fromx(n)+ i(n) the best least squares estimation ofi(n),
î(n).
The proposed artifact removal method comprises two steps.
First, ICA projections are obtained for EEG data (W ma-
trix in S

′
= WX ) and for reference data (V matrix in

T′ = VR), where R = [r(1), r(2), ..., r(N)] and r(n) =
[r1(n), r2(n), r3(n), r4(n)]T , r j(n) being signals obtained
from electrodes localized close to eyes as Fp1, Fp2, F7 and
F8, which register vertical and horizontal eye movements
[16].
The second step is the use of every ICA projection data in an
adaptive filter scheme, to be runM times (possibly in paral-
lel). The adaptive filter with weigthshm(n) aims at estimat-
ing the interfering componentîm(n) present in them-th ICA
channel in a Least Squares sense, from the reference signal

t′(n). The filter operates in ICA domain, and the residual
signal is:

e
′

m(n) = s
′

m(n)− îm(n) (1)

where
îm(n) = hT

m(n)t′(n) (2)

The equation (2) represents a transversal filter with four tap
weights. We need to estimate the clean EEG ICA compo-
nentsx′m(n) adjusting the coefficients of the filter by solving:

min
hm(n)

{

n

∑
i=1

λ n−i(s′m(n)−hT
m(n)t′(n))2

}

(3)

We expect thatx′m(n) and t′(n) are incorrelated, and hence
the filter only estimates the interferenceîm(n). The solution
of Eq.(3) is given by the well known Recursive Least Square
(RLS) algorithm. The use of the forgetting factorλ , where
0 < λ ≤ 1, allows to use the algorithm in non-stationary sit-
uations [17]. Finally, in this section we present the pseudo
code of EEG adaptive filtering using RLS and ICA (See Ta-
ble 1).

3. EXPERIMENTS AND RESULTS

The EEG records of 3 patients using the 10-20 International
System of Electrode Placement with additional anterotem-
poral electrodes T1/T2 were recorded at Hospital Universi-
tario de Navarra, Deparment of Neurophisiology (Pamplona,
Spain). Raw EEG data were digitized at a sample rate of
200 Hz using ”DAD-32” equipment (La Mont Medical) and
segmented into pieces every 5 secs. Using the 10-20 Inter-
national System, the electrodes with major information of
eyes movements are Fp1, Fp2, F7 and F8. The electrodes
that record the largest potential change in the presence of
vertical eye movements are Fp1 and Fp2 because they are
placed directly above the eye. The electrodes that record the
largest potential change when horizontal (lateral) eye move-
ments are produced are F7 and F8 because they are approxi-
mately lateral to the eyes [16]. These electrodes will be our
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Figure 2: Topographic map of the components with their MSE values. Each figure represents the component activity for each
projection. Note that the component number 9, with a maximumin the frontopolar region, also presents a minimum MSE.

Table 1: RLS-ICA Algorithm

**********************************************
Inputs:X,R,λ
Output:X′ (filtered EEG)
Comment: ***** ICA pre-processing using JADE *****
**********************************************
W = jade(X)
V = jade(R)
S′′ = WX
T′ = VR
**********************************************
Comment: Noise cancellation in every channelm= 1, ...,M
Comment: ******** RLS Initialization ********
**********************************************
P(0) = 104I
hm(0) = 0
for n→ 1 to N

do



















π(n) = t′T(n)P(n−1)
k(n) = πT(n)/(λ +π(n)t′(n))
λ (n) = s′m(n)−hT

m(n−1)t′(n)
hm(n) = hm(n−1)+α(n)k(n)
P(n) = (P(n−1)−k(n)π(n))/λ

Comment: *** Recovery of filtered EEG ***

j = argminm

{

∑N
n=1e

′2
m(n)

}

Comment: ** Set the j-th row inS′ to zero to obtainS′′ **
return (X′ = W−1S′′)

reference signals to buildR.
A Pentium III with Matlab was used for the implementation
of the algorithm in Table 1. By means of cross-validation we
explored different values toλ and we observed that this pa-
rameter is not critical for the performance of the algorithm.
We use the valueλ = 0.9. The cancellation with the RLS al-
gorithm was fast compared with ICA computing, the method
is simple and its amount of computation is not expensive.
Although it is an adaptive method oriented to real-time ap-
plications, in this work we just present off-line results, since
to fully extend these results to a time varying scenario, an
adaptive ICA algorithm should be used.
To further validate the results, we analyze using the topo-
graphic scalp map the projections corresponding with the
minimum values in MSE. Fig.2 shows the topographical pro-
jection for each component and its correspond MSE value.
Observe that the component number 9 presents the minimum
MSE and its projection presents a maximum activity in the
frontopolar region.
Fig.3 represents the ICA projections of the EEG data, and it
is possible to observe that ICA has been able to separate the
Electrooculogram (EOG) contribution, mainly representedin
this case by the component number 9.
Fig.4 presents the results of artifact elimination caused by
eyes movements when we are using the reference signals
close to the eyes. We compare results with and without ICA
preprocessing. We highlight two EEG segments with pres-
ence (dotted box B) and absence of artifacts (dotted box A).
Note in this figure how the proposed algorithm rejects the
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Figure 3: Filtered ICA projections using RLS. Observe that
the waveform of the component number 9 corresponds to eye
movements and its localization is in frontopolar region show-
ing the minimum MSE (See Fig2).

.

negatives and positives peaks corresponding to vertical eyes
movements (in both figures the dotted box B). In fact, ICA
has demonstrated minimal distortion using measures such as
minimal correlation analysis or average waveform similarity
[1, 5]. On the other hand, the results without ICA prepro-
cessing are not satisfactory, since the EOG interference is
still present, which proves the usefullness of ICA. Further-
more, the proposed ICA-RLS method does not affect those
parts of the EEG signals where the EOG is not present (zone
A, for instance).

4. DISCUSSION

ICA appears to be a generally applicable and effective
method for removing artifacts and independent noise, provid-
ing considerable performance improvements [18]. It is com-
monly supposed that the introduction of a new block in a pre-
processing system is not suitable, but the proposed approach
gives us a new alternative method for eliminating noise with-
out calibration. Furthermore, it is easy to implement, very
stable and presents a fast convergence.
As we discussed before, the ICA potential is the availability
of removing real noise components without modifying others
in standard EEG. Even though there are some other electrical
activities in abnormal EEG that could be modified or elimi-
nated, several studies present good results using ICA in a
pre-processing stage [19] and other experiments as adaptive
on-line ICA [20] perform good effective components separa-
tion using gradient adaptive step size.
Adaptive filtering based on ICA would be very helpful in
long recordings and on-line analysis, and although the ap-
proach developed in this paper is oriented to the elimination
of EOG signals, it would be possible to apply it in artifacts
more difficult to suppress such as muscle or electrodes arti-
facts.
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Figure 4: An example of EOG artifact rejection using RLS-
ICA and RLS. We show the EOG peaks (marked with arrows
in the dotted box B) caused by eye movements on the elec-
trodes Fp1, Fp2, F7 and F8. The result from RLS-ICA algo-
rithm shows how the algorithm rejects the positive pulse cor-
responding to eye opening and the negative deflection close
to peak since it corresponds to eye closing (dotted box B).
Note also the poor performance of RLS algorithm (bottom)
and how our method does not introduce significant changes
in the absence of ocular artifacts (dotted box A).
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5. CONCLUSIONS

An automatic artifact cancellation using EEG data is pre-
sented. This method efficiently rejects artifacts produced
by eyes movements and it relies on independent component
analysis (ICA) and Recursive Least Squares (RLS) adaptive
filtering. Our preliminary results show that this method is
able to eliminate eye movement artifacts, and we consider
that it may be a relevant technique for e.g. Somatosen-
sory Evoked Potential (SEPs) and event related potentials (or
fields (magnetoencephalography) due to the limited number
of responses in a run.
Futher analysis in distortion or correlation between corrected
EEG and original EEG is necessary for fully demonstrating
the effectiveness of our method. Such analysis and the ex-
tension of the method to pure on-line scenarios is proposed
as further work.
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