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a, COPPE/Poli/UFRJ, Cx. P. 68504, Rio de Janeiro, RJ, BRAZILemail: diniz�lps.ufrj.brABSTRACTSet-membership (SM) adaptive �lters have data-sele
tive 
o-e�
ient update leading to lower 
omputational 
omplexityand power 
onsumption. The set-membership a�ne proje
-tion (SM-AP) algorithm has been known for not trading 
on-vergen
e speed with misadjustment and 
omputation 
om-plexity. In this paper analyti
al results related to the SM-APalgorithm in nonstationary environments are advan
ed. Theanalysis results for the ex
ess of mean square error (MSE) innonstationary environments are shown to be quite a

urate
on�rming the attra
tive features of the SM-AP algorithms.1. INTRODUCTIONThe a�ne proje
tion (AP) algorithm, �rst proposed in[1℄, is widely dis
ussed in the open literature due its faster
onvergen
e than the sto
hasti
 gradient algorithms, su
h asthe LMS, and its lower 
omputational 
omplexity than theRLS algorithm [1℄-[6℄. However, the AP algorithm tradeso� 
omputational 
omplexity with 
onvergen
e speed. Set-membership (SM) adaptive �ltering algorithms [7℄-[14℄ havebeen in
reasingly dis
ussed sin
e they redu
e the 
ompu-tational burden while keeping low misadjustment and fast
onvergen
e. As a result, the 
ombination of SM and APresults in 
omputationally e�
ient algorithms with low mis-adjustment and high 
onvergen
e speed, su
h as the SM-APalgorithms [9℄. Analyti
al results 
on
erning the SM-AP al-gorithms are s
ar
e in the open literature [2℄, whereas results
on
erning nonstationary environments are not available sofar. The obje
tive of this paper is to propose analyti
al ex-pressions for the behavior of the SM-AP algorithms in non-stationary environmentsThis paper is organized as follows. In Se
tion 2 the SM-AP algorithms are brie�y presented along with their energy
onservation equations. Se
tion 3 addresses the tra
king per-forman
e of the SM-AP algorithms in simple nonstationaryenvironments, where the unknown system parameters aremodeled as �rst-order Markov pro
esses. Se
tion 4 presentssome simulation results whi
h 
on�rm the validity of the an-alyti
 expressions.2. SET-MEMBERSHIP AFFINE PROJECTIONALGORITHMLet's de�ne the adaptive �lter output
y(k) = wTx(k) (1)where x(k) = [x0(k) x1(k) . . . xN(k)]T is the input sig-nal ve
tor, and w = [w0 w1 . . . wN ]T is the parameterve
tor. Assuming the availability of a referen
e signal se-quen
e d(k) and a sequen
e of input ve
tors x(k), both for

k = 0, 1, 2, . . . ,∞, the estimation error sequen
e e(k) is de-�ned as
e(k) = d(k) −wTx(k) = d(k) − y(k) (2)

The ve
tors x(k) and w ∈ R
N+1, where R represents the setof real numbers, whereas e(k) and y(k) represent the outputerror and adaptive �lter output signal, respe
tively. The ob-je
tive of the SMF is to 
hoose w su
h that the magnitudeof estimation output error is upper bounded by a pres
ribedquantity γ. If the value of γ is properly 
hosen, several validestimates for w exist. That means any �lter parameter isa

eptable as long as the magnitude of the output estima-tion error is smaller than the deterministi
 threshold γ. Thebounded error 
onstraint results in a set of estimates ratherthan a single one. If γ is 
hosen too small there might be nosolution.In a
tual appli
ations only measured data are available.Given a set of data pairs {x(i), d(i)}, for i = 0, 1, . . . , k,we 
an de�ne H(k) as the set 
ontaining all ve
tors w su
hthat the asso
iated output error at time instant k is upperbounded in magnitude by γ. That means,

H(k) = {w ∈ R
N+1 : |d(k) −wTx(k)| ≤ γ} (3)The set H(k) is known as the 
onstraint set. The bound-aries of H(k) are hyperplanes. For the two-dimensional 
ase,where the 
oe�
ient ve
tor has two elements, H(k) repre-sents the region between the lines where d(k) − wTx(k) =

±γ. For more than two dimensions, H(k) represents theregion between two parallel hyperplanes in the parameterspa
e w.Ea
h data pair is asso
iated with a 
onstraint set. As a
onsequen
e the interse
tion of the 
onstraint sets over allthe available iterations i = 0, 1, . . . , k, is 
alled the exa
tmembership set ψ(k), formally de�ned as
ψ(k) =

k
\

i=0

H(i) (4)The set ψ(k) represents a polygon in the parameter spa
e,and one of the main obje
tives of the SMF is to �nd thepolygon lo
ation. In the early iterations it is likely that the
onstraint set redu
es the size of the membership-set poly-gon. The polygon in w, represented by ψ(k), be
omes smallif the set of data pairs in
ludes substantial innovation. This
ondition is usually met after a large number of iterations
k, when most likely ψ(k) = ψ(k − 1), where ψ(k − 1) isalready pla
ed inside the 
onstraint set H(k). In su
h sit-uation, the parameters do not require updating sin
e the
urrent membership set is inside the 
onstraint set, givingrise to a data-dependent sele
tion of update.The SM-AP algorithm minimizes the obje
tive fun
tionby performing a 
oe�
ient update wheneverw(k) 6∈ ψL+1(k)in su
h a way that

min ‖w(k + 1) −w(k)‖2 (5)subje
t to:d(k) −XT (k)w(k + 1) = γ(k) (6)
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where d(k) is the desired signal ve
tor and X(k) is the inputsignal matrix. Fig. 1 depi
ts a typi
al 
oe�
ient updaterelated to the SM-AP algorithm for the 
ase with two pa-rameters, i.e., for L = 1 and |γi(k)| < |γ|, su
h thatw(k + 1)is not pla
ed at the border of H(k).
H(k − 1)

d(k − 1) − w
T
x(k − 1) = γ

d(k − 1) − w
T
x(k − 1) = −γ

d(k − 1) − w
T
x(k − 1) = γ2(k)

H(k)

w(k)

w(k + 1)

d(k) − w
T
x(k) = γ1(k)

d(k) − w
T
x(k) = −γ

d(k) − w
T
x(k) = γFigure 1: SM-AP algorithm 
oe�
ient update, L = 1.The updating equation of the SM-AP algorithm is givenby w(k + 1) =

(w(k) +X(k)
hXT (k)X(k)

i

−1
[e(k) − γ(k)] if |e(k)| > γw(k) otherwise (7)where e(k) = [e(k) ε(k − 1) . . . ε(k − L)]T (8)with ε(k − i) = d(k − i) − xT (k − i)w(k) denoting the aposteriori error 
al
ulated with the data pair of iteration

k − i using the 
oe�
ients of iteration k, for k = 1, . . . , L.The general des
ription of the SM-AP algorithm is des
ribedin detail below.The Set-Membership A�ne Proje
tion AlgorithmInitializationx(0) = w(0) = [0 . . . 0]T
hoose γ around √
5σn (to be explained)

δ = small 
onstantDo for k ≥ 0e(k) = d(k) −XT (k)w(k)w(k + 1) =

(w(k) +X(k)
hXT (k)X(k) + δIi−1

[e(k) − γ(k)]if |e(k)| > γw(k) otherwiseWhenever required, the updating equation of the set-membership a�ne proje
tion algorithm has the followingformw(k + 1) = w(k) +X(k)
hXT (k)X(k) + δIi−1

[e(k) − γ(k)](9)Before pro
eeding it should be 
onsidered that a 
oe�
ientupdate will not take pla
e all the time. This 
an be addressedby asso
iating to the 
oe�
ient updating equation of the SM-AP algorithm a probability of updating denoted by Pup(k),with its model brie�y des
ribed in Appendix I. Assumingthat the desired signal is given by
d(k) = wT

o x(k) + n(k) (10)the underlying updating equation 
an be alternatively de-s
ribed by
∆w(k + 1) = ∆w(k)

+Pup(k)X(k)
hXT (k)X(k) + δIi−1

[e(k) − γ(k)] (11)

where ∆w(k) = w(k) −wo.By premultiplying equation (11) by the input ve
tor ma-trix, the following expressions resultXT
(k)∆w(k + 1) = XT

(k)∆w(k)

+Pup(k)XT (k)X(k)
hXT (k)X(k) + δIi−1

[e(k) − γ(k)]

−ε̃(k) =−ẽ(k)

+Pup(k)XT
(k)X(k)

hXT
(k)X(k) + δIi−1

[e(k) − γ(k)](12)where
ε̃(k) = −XT (k)∆w(k + 1) (13)is the noiseless a posteriori error ve
tor andẽ(k) = −XT (k)∆w(k) = e(k) − n(k) (14)is the noiseless a priori error ve
tor withn(k) = [ n(k) n(k − 1) . . . n(k − L) ]

Trepresenting the standard noise ve
tor.Let's now de�ne the following quantitye(k) = e(k) − γ(k) (15)With the above de�nition, by solving equation (12), weget
“XT (k)X(k)

”

−1
(ẽ(k) − ε̃(k)) = Pup(k)

“XT (k)X(k) + δI
”

−1 e(k)Multiplying both sides byX(k) and then repla
ing the equa-tion above in equation (11), the resulting expression is givenby
∆w(k + 1) −X(k)

“XT
(k)X(k)

”

−1 ẽ(k)

= ∆w(k) −X(k)
“XT (k)X(k)

”

−1
ε̃(k) (16)Assumptions: The additional noise is white and statisti-
ally independent of the input signal; the inverse of the in-herent 
orrelation matrix is statisti
ally independent of boththe a priori error and the noises; the error in the 
oe�
ientsduring the transient is independent of the data; the a priorierror e(k) is modeled as a zero-mean Gaussian pro
ess, after
onvergen
e. From the above equation it is shown in [2℄ that

(2 − Pup(k))tr
n

E[ẽ(k)ẽT (k)]E[Ŝ(k)]
o

+2(1 − Pup(k))tr
n

E[n(k)ẽT (k)]E[Ŝ(k)]
o

=

Pup(k)tr
n

E[n(k)nT (k)]E[Ŝ(k)]
o (17)where Ŝ(k) is the inverse of XT (k)X(k).Any 
hoi
e for the thresholds γi(k) is valid as long asthey 
orrespond to points represented by the adaptive �lter
oe�
ients in H(k − i+ 1), i.e., |γi(k)| ≤ γ. A parti
ularlysimple SM-AP version is obtained if γi(k) for i 6= 1 
orre-sponds to the a posteriori error ε(k − i+ 1) = d(k− i+1)−wT (k)x(k − i+ 1) and γ1(k) = e(k)/|e(k)|. Sin
e the 
oe�-
ients were updated 
onsidering previous data pairs then atthe 
urrent iteration it is true that w(k) ∈ H(k − i+ 1), i.e.,

|ε(k − i+ 1)| = |d(k − i+ 1) − xT (k − i+ 1)w(k)| ≤ γ, for
i = 2, . . . , L+1. Therefore, by 
hoosing γi(k) = ε(k − i+ 1),
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for i 6= 1, all the elements the a posteriori errors remain 
on-stant, ex
ept for �rst element. The 
onstraint value γ1(k)
an be sele
ted as in the SM-NLMS algorithm where γ1(k)is su
h that the solution lies at the nearest boundary of H(k),i.e.,
γ1(k) = γ

e(k)

|e(k)| = γsgn[e(k)] (18)The resulting update equation is then given byw(k + 1) = w(k) +X(k)
hXT (k)X(k)

i−1

µ(k)e(k)u1 (19)where u1 = [1 0 . . . 0]T ,
e(k) = d(k) −wT (k)x(k) (20)
µ(k) =



1 − γ

|e(k)|
if |e(k)| > γ

0 otherwise (21)This algorithm minimizes the Eu
lidean distan
e
‖w(k + 1) − w(k)‖2 subje
t to the 
onstraintw(k + 1) ∈ ψL+1(k) su
h that the a posteriori er-rors at iteration k − i, ε(k − i), are kept 
onstant for
i = 2, . . . , L + 1. Fig. 2 illustrates a typi
al 
oe�
ientupdating for the simpli�ed SM-AP algorithm where it isobserved that the a posteriori error related to previousdata remains unaltered. The simpli�ed SM-AP algorithm

H(k − 1)

d(k − 1) − w
T
x(k − 1) = γ2(k − 1)

w(k)

d(k − 1) − w
T
x(k − 1) = γ

d(k − 1) − w
T
x(k − 1) = −γ

H(k)

d(k) − w
T
x(k) = γ

d(k) − w
T
x(k) = −γ

w(k + 1)

Figure 2: Simpli�ed SM-AP algorithm 
oe�
ient updatewith 
onstant a posteriori error, L = 1.given by equation (19) will perform an update if and only ifw(k) 6∈ H(k), or |e(k)| > γ. After some lengthy derivationspresented in [2℄ it is possible to verify that
E[ẽ2

0(k)] ≈
(L + 1)Pup

2 − Pup

×
σ2

n + γ2

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0(k)]

γ

!(22)In the expression above, γ is the SM threshold and e20(k)denotes the MSE. Therefore, the misadjustment for the set-membership a�ne proje
tion algorithm is given by
M =

(L + 1)Pup

2 − Pup

×

γ2

σ2
n

+ 1

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0
(k)]

γ

! (23)

For small 1−Pup, this equation 
an be approximated by
M =

(L+ 1)Pup

(2 − Pup)

„

γ2

σ2
n

+ 1

« (24)3. BEHAVIOR IN NONSTATIONARYENVIRONMENTSIn a nonstationary environment the error in the 
oe�-
ients is des
ribed by the following ve
tor
∆w(k + 1) = w(k + 1) −wo(k + 1) (25)where wo(k + 1) is the a
tual time-varying ve
tor. For this
ase, equation (16) be
omes

∆w(k + 1) = ∆ŵ(k)

+Pup(k)X(k)
“XT (k)X(k) + δI

”−1

(e(k) − γ(k))(26)where ∆ŵ(k) = w(k) − wo(k + 1). By premultiplying theexpression above by XT (k) it follows thatXT (k)∆w(k + 1) = XT (k)∆ŵ(k)

+Pup(k)XT (k)X(k)
“XT (k)X(k) + δI

”

−1
(e(k) − γ(k))

−ε̃(k) = −ẽ(k)

+Pup(k)XT (k)X(k)
“XT (k)X(k) + δI

”

−1
(e(k) − γ(k))(27)By solving the equation (27), it is possible to show that

“XT (k)X(k)
”

−1
[ẽ(k) − ε̃(k)] =

Pup(k)
“XT (k)X(k) + δI

”

−1
(e(k) − γ(k)) (28)Following the same pro
edure to derive equation (16), we
an now substitute equation (28) in equation (26) in orderto dedu
e that

∆w(k + 1) −X(k)
“XT

(k)X(k)
”

−1 ẽ(k) = ∆ŵ(k)

−X(k)
“XT

(k)X(k)
”

−1
ε̃(k) (29)By 
omputing the energy on both sides of this equation itis possible to show that

E
h

‖∆w(k + 1)‖2
i

+ E

»ẽT (k)
“XT (k)X(k)

”

−1 ẽ(k)

–

= E
h

‖∆ŵ(k)‖
2
i

+ E

»

ε̃
T

(k)
“XT

(k)X(k)
”

−1
ε̃(k)

–

= E
h

‖∆w(k) + ∆wo(k + 1)‖2
i

+E

»

ε̃
T (k)

“XT (k)X(k)
”

−1
ε̃(k)

–

≈ E
h

‖∆w(k)‖2
i

+ E
h

‖∆wo(k + 1)‖2
i

+E

»

ε̃
T

(k)
“XT

(k)X(k)
”

−1
ε̃(k)

– (30)where ∆wo(k + 1) = wo(k) − wo(k + 1), and in the lastequality we have assumed that E ˆ∆wT (k)∆wo(k + 1)
˜

≈
0. This assumption is valid for simple models for the time-varying behavior of the unknown system, su
h as random
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walk model1. We will adopt this assumption in order tosimplify our analysis.In Appendix II we 
ompute the 
ovarian
e of ∆wo(k+1)leading to
E
h

‖∆wo(k + 1)‖2
i

= tr{cov[∆wo(k + 1)]}

= (N + 1)

"

2κ2w
1 + λw # σ

2w (31)with κw de�ned in the Appendix II.Solving equation (30) using equation (31) and assumingthat the algorithm has 
onverged su
h that
E
ˆ

‖∆w(k + 1)‖2˜ = E
ˆ

‖∆w(k)‖2˜Equation (30) 
an be expressed as
P

2
upE

»ẽT
(k)
“XT

(k)X(k)
”

−1 ẽ(k)

–

= PupE

»

ε̃
T (k)

“XT (k)X(k)
”

−1
ε̃(k)

–

+(N + 1)

"

2κ2w
1 + λw # σ

2w (32)Leading to the equation
P

2
upE

h

(e(k) − γ(k))T Ŝ(k)R̂(k)Ŝ(k) (e(k) − γ(k))
i

= PupE
hẽT (k)Ŝ(k) (e(k) − γ(k)) + (e(k) − γ(k))T Ŝ(k)ẽ(k)

i

+(N + 1)

"

2κ2w
1 + λw #σ

2w (33)By solving this equation following the same pro
edure as in[2℄, we 
an derive the ex
ess of MSE only due to the time-varying unknown system.
ξlag =

(N + 1)

Pup(2 − Pup)

»

2κ2w
1 + λw – σ2w (34)By taking into 
onsideration the additionalnoise and the time-varying parameters to be es-timated, the overall ex
ess of MSE is given by

ξexc =
(L + 1)Pup

2 − Pup

σ2
n + γ2

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0
(k)]

γ

!

+
(N + 1)

Pup(2 − Pup)

"

2κ2w
1 + λw #σ

2w
=

1

2 − Pup

8

>

>

>

>

<

>

>

>

>

:

(L + 1)Pup(σ2
n + γ2)

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0(k)]

γ

!

+
N + 1

Pup

"

2κ2w
1 + λw # σ

2w) (35)1In this model the 
oe�
ients 
hange a

ording to wo(k) =wo(k − 1) + nw(k).

If κw = 1, the expression above be
omes simpler
ξexc =

1

2 − Pup

8

>

>

>

>

<

>

>

>

>

:

(L + 1)Pup(σ2
n + γ2)

1 + L

 

(1 − Pup)2 + 2Pup(1 − Pup)
r

2

πE[e2
0
(k)]

γ

!

+
2(N + 1)

Pup(1 + λw)
σ

2wff (36)As 
an be veri�ed, the 
ontribution due to the lag is in-versely proportional to the value of Pup. This is an expe
tedresult sin
e if the updates are not frequent the adaptive �l-ter will not be able to tra
k the variations in the unknownsystem. 4. SIMULATION EXAMPLESAn adaptive �ltering algorithm is used to identify a sys-tem whose impulse response is given by [2℄
[0.1 0.3 0 − 0.2 − 0.4 − 0.7 − 0.4 − 0.2]using the SM-AP algorithm using L = 0, L = 1 and L = 2.Table 1 lists the estimated and measured misadjustmentsfor L = 0, L = 1, and L = 2. The results were obtained for

γ =
√

2.7σ2
n and γ =

√
5σ2

n. The results re�e
t the average ofthree distin
t experiments with di�erent values of the inputsignal 
orrelation matrix eigenvalue spread. The expe
tedmisadjustments are 
lose to the measured ones despite theapproximations in the derivation of the theoreti
al formula.Table 1: Evaluation of the SM-AP Algorithm, γ =
√

2.7σ2
nand γ =

√
5σ2

n Misadjustment
γ L = 0 L = 1 L = 2Exp. Theory Exp. Theory Exp. Theory√
2.7σ2

n 0.2591 0.3354 0.4137 0.4315 0.5305 0.5432√
5σ2

n 0.1947 0.1934 0.2295 0.2292 0.3305 0.2738In Fig. 3, it is shown the measured and theoreti
al val-ues of the ex
ess of MSE in a non-stationary environment,for the 
ase where λw = 0.96. On
e again the measured andtheoreti
al results obtained from equation (35) are as 
lose assimilar results usually found in the literature, demonstratingthe validity the proposed analysis. It 
an be observed thatthe results are less a

urate for larger values of γ due toa redu
tion in the number updatings, turning the tra
kingmore di�
ult. The 
omputational 
omplexity of the SM-APalgorithm is similar to the original AP algorithm wheneveran update is required. However, the SM-AP algorithm sub-stantially redu
es the misadjustment.5. CONCLUDING REMARKSThis paper presented the analysis of the set-membershipa�ne proje
tion (SM-AP) algorithms in nonstationary en-vironments. The 
losed form expressions, derived for theex
ess of MSE of the SM-AP algorithms in nonstationary en-vironments, are tools for the proper setup of these algorithmsin pra
ti
al appli
ations. Some simulation results were in-
luded verifying that the analyti
al results mat
h well theexperimental ones.
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Figure 3: Ex
ess of MSE in nonstationary environments ofthe SM-AP algorithms for L = 0, L = 1, and L = 2, eigen-value spread equal 20.Appendix IThe expression of the ex
ess of MSE in the SM-AP algo-rithm must take into 
onsideration how often the algorithmupdates the 
oe�
ients after the transient. In [2℄ it is shownthat probability that the adaptive �lter is updated 
an beapproximated by
P̂up ≈ max

"

2Q

 

γ
p

(σ2
n + γ2)

!

+ 2Q

„

γ√
5

«

, 1

# (37)where Q[·] is the 
omplementary 
umulative distributionfun
tion, and σ2
n is the additional noise varian
e.Appendix IIThe time-varying 
hara
teristi
 of the unknown systemis a sour
e of ex
ess mean-square error. In order to takeinto a

ount the ex
ess MSE let's 
onsider that ea
h elementof the a
tual 
oe�
ient ve
tor is modeled as a �rst-orderMarkov pro
ess [17℄, sin
e it leads to simple derivations. The�rst-order Markov pro
ess is des
ribed bywo(k) = λwwo(k − 1) + κwnw(k) (38)where nw(k) is a ve
tor whose elements are zero-mean whitenoise pro
esses with varian
e σ2w, and λw < 1. The fa
-tor κw = (1 − λw)

p
2 , for p ≥ 1, is 
hosen su
h that

E[wo(k)wT
o (k)] is bounded.The value of the ex
ess of MSE requires the 
ovarian
eof ∆wo(k + 1) = wo(k) −wo(k + 1), that is

cov[∆wo(k + 1)] = E
h

(wo(k + 1) −wo(k))(wo(k + 1) −wo(k))T
i

= E
h

(λwwo(k) + κwnw(k) −wo(k))(λwwo(k) + κwnw(k) −wo(k))
T
i

= E
n

[(λw − 1)wo(k) + κwnw(k)][(λw − 1)wo(k) + κwnw(k)]T
o(39)Sin
e ea
h element of nw(k) is a zero-mean white noisepro
ess with varian
e σ2w, and λw < 1, it follows that

cov[∆wo(k + 1)] = κ2wσ2w (1 − λw)2

1 − λ2w I + κ2wσ2wI

= κ2w »1 − λw
1 + λw + 1

–

σ2wI (40)
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