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ABSTRACT

Set-membership (SM) adaptive filters have data-selective co-
efficient update leading to lower computational complexity
and power consumption. The set-membership affine projec-
tion (SM-AP) algorithm has been known for not trading con-
vergence speed with misadjustment and computation com-
plexity. In this paper analytical results related to the SM-AP
algorithm in nonstationary environments are advanced. The
analysis results for the excess of mean square error (MSE) in
nonstationary environments are shown to be quite accurate
confirming the attractive features of the SM-AP algorithms.

1. INTRODUCTION

The affine projection (AP) algorithm, first proposed in
[1], is widely discussed in the open literature due its faster
convergence than the stochastic gradient algorithms, such as
the LMS, and its lower computational complexity than the
RLS algorithm [1]-[6]. However, the AP algorithm trades
off computational complexity with convergence speed. Set-
membership (SM) adaptive filtering algorithms [7]-[14] have
been increasingly discussed since they reduce the compu-
tational burden while keeping low misadjustment and fast
convergence. As a result, the combination of SM and AP
results in computationally efficient algorithms with low mis-
adjustment and high convergence speed, such as the SM-AP
algorithms [9]. Analytical results concerning the SM-AP al-
gorithms are scarce in the open literature [2], whereas results
concerning nonstationary environments are not available so
far. The objective of this paper is to propose analytical ex-
pressions for the behavior of the SM-AP algorithms in non-
stationary environments

This paper is organized as follows. In Section 2 the SM-
AP algorithms are briefly presented along with their energy
conservation equations. Section 3 addresses the tracking per-
formance of the SM-AP algorithms in simple nonstationary
environments, where the unknown system parameters are
modeled as first-order Markov processes. Section 4 presents
some simulation results which confirm the validity of the an-
alytic expressions.

2. SET-MEMBERSHIP AFFINE PROJECTION
ALGORITHM

Let’s define the adaptive filter output
y(k) = w'x(k) (1)

where x(k) = [zo(k) z1(k) ...zx(k)]T is the input sig-
nal vector, and w = [wo w1 ...wN]T is the parameter
vector. Assuming the availability of a reference signal se-
quence d(k) and a sequence of input vectors x(k), both for
k=0,1,2,...,00, the estimation error sequence e(k) is de-
fined as

e(k) = d(k) — w'x(k) = d(k) — y(k) (2)
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The vectors x(k) and w € RV™!, where R represents the set
of real numbers, whereas e(k) and y(k) represent the output
error and adaptive filter output signal, respectively. The ob-
jective of the SMF is to choose w such that the magnitude
of estimation output error is upper bounded by a prescribed
quantity «. If the value of « is properly chosen, several valid
estimates for w exist. That means any filter parameter is
acceptable as long as the magnitude of the output estima-
tion error is smaller than the deterministic threshold . The
bounded error constraint results in a set of estimates rather
than a single one. If 7 is chosen too small there might be no
solution.

In actual applications only measured data are available.
Given a set of data pairs {x(¢),d(:)}, for ¢ = 0,1,...,k,
we can define H(k) as the set containing all vectors w such
that the associated output error at time instant k is upper
bounded in magnitude by v. That means,

H(k) = {w € R |d(k) — w'x(k)| <7} ®3)

The set H(k) is known as the constraint set. The bound-
aries of H(k) are hyperplanes. For the two-dimensional case,
where the coefficient vector has two elements, H(k) repre-
sents the region between the lines where d(k) — w” x(k) =
+v. For more than two dimensions, H(k) represents the
region between two parallel hyperplanes in the parameter
space w.

Each data pair is associated with a constraint set. As a
consequence the intersection of the constraint sets over all
the available iterations ¢ = 0,1,...,k, is called the ezact
membership set 1(k), formally defined as

v(k) = (0) (@

The set 1(k) represents a polygon in the parameter space,
and one of the main objectives of the SMF is to find the
polygon location. In the early iterations it is likely that the
constraint set reduces the size of the membership-set poly-
gon. The polygon in w, represented by 1 (k), becomes small
if the set of data pairs includes substantial innovation. This
condition is usually met after a large number of iterations
k, when most likely ¥ (k) = ¥(k — 1), where ¥(k — 1) is
already placed inside the constraint set H(k). In such sit-
uation, the parameters do not require updating since the
current membership set is inside the constraint set, giving
rise to a data-dependent selection of update.

The SM-AP algorithm minimizes the objective function
by performing a coefficient update whenever w(k) & 9= (k)
in such a way that

min ||[w(k + 1) —w(k)||2 (5)
subject to:
d(k) — X" (F)w(k + 1) = (k) (6)
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where d(k) is the desired signal vector and X (k) is the input
signal matrix. Fig. 1 depicts a typical coefficient update
related to the SM-AP algorithm for the case with two pa-
rameters, i.e., for L = 1 and |v;(k)| < |v|, such that w(k + 1)
is not placed at the border of H(k).

d(k —1) —w'x(k — 1) = (k)

d(k—1) —wl'x(k—1) = —y

—wTx{k) = (k)
d(k) — wx(k) = —v

A(k) — whx(k) =~

Figure 1: SM-AP algorithm coefficient update, L = 1.

The updating equation of the SM-AP algorithm is given

by
w(k+1) =
{w(k) +X(0) [XTRXR)] " felk) = v(0) il > (g
w(k) otherwise
where
e(k) =le(k)e(k—1) ... e(k—L)]" (8)

with e(k —4) = d(k —i) — x"(k — i)w(k) denoting the a
posteriori error calculated with the data pair of iteration
k — i using the coefficients of iteration k, for kK = 1,..., L.
The general description of the SM-AP algorithm is described
in detail below.

The Set-Membership Affine Projection Algorithm
Initialization
x(0) =w(0) =10 ... 0T
choose 7 around /50, (to be explained)
0 = small constant
Do for £ >0
e(k) = d(k) — XT (k)w(k)
w(k) + X(k) [XT ()X (k) +61] " [e(k) — 7 (k)]
w(k+1) = if |e(k)] >
w (k) otherwise

Whenever required, the updating equation of the set-
membership affine projection algorithm has the following
form

wik + 1) = w(k) + X (k) [XT(R)X (k) +61]  [ek) — 4(k)]
9)

Before proceeding it should be considered that a coefficient
update will not take place all the time. This can be addressed
by associating to the coefficient updating equation of the SM-
AP algorithm a probability of updating denoted by Pyp(k),
with its model briefly described in Appendix I. Assuming
that the desired signal is given by

d(k) = wlx(k) + n(k) (10)

the underlying updating equation can be alternatively de-
scribed by

Aw(k + 1) = Aw(k)

+Pap ()X () [XT ()X (k) +61] " [e(k) — (k)] (1)

where Aw (k) = w(k) — wo.
By premultiplying equation (11) by the input vector ma-
trix, the following expressions result

XT (k) Aw(k + 1) = X7 (k) Aw (k)
+ Pup (k)X T (k)X (k) [XT(k)X(k) + 51] " e(k) — (k)]

—&(k) = —&(k)

+Pap ()X (B)X(R) [XT (B)X(R) + 1] [e(k) = v(B)] (12)
where
&(k) = X" (k) Aw(k + 1) (13)
is the noiseless a posterior: error vector and
&(k) = —X" (k) Aw(k) = e(k) - n(k) (14)
is the noiseless a priori error vector with

n(k)=[ n(k) n(k—1) ... n(k—1L) 1"
representing the standard noise vector.
Let’s now define the following quantity

e(k) = e(k) —~(k) (15)

With the above definition, by solving equation (12), we
get

(XT0X(K)) " (k) — &) = Pup (k) (XT (R)X (k) +61) " e(k)

Multiplying both sides by X (k) and then replacing the equa-

tion above in equation (11), the resulting expression is given
by

Aw(k + 1) — X(k) (XT(k)X(k)) e

= Aw(k) = X(k) (X" ()X (H)) ) (16)

Assumptions: The additional noise is white and statisti-
cally independent of the input signal; the inverse of the in-
herent correlation matrix is statistically independent of both
the a priori error and the noises; the error in the coefficients
during the transient is independent of the data; the a priori
error e(k) is modeled as a zero-mean Gaussian process, after
convergence. From the above equation it is shown in [2] that

(2= Pup (R))tr { E[2(k)8" ()] EIS (k)] }
+2(1 = Pop (k)tr { Eln(k)&” (R EIS(k)] } =

Pup(k)tr { Eln(k)n" (0] B[S ()] } (17)

where S(k) is the inverse of X7 (k)X (k).

Any choice for the thresholds v;(k) is valid as long as
they correspond to points represented by the adaptive filter
coefficients in H(k — i + 1), i.e., |vi(k)| <. A particularly
simple SM-AP version is obtained if 7;(k) for ¢ # 1 corre-
sponds to the a posteriori error e(k — i+ 1) =d(k—i+1) —
wl (k)x(k —i+1) and ~1 (k) = e(k)/|e(k)|. Since the coeffi-
cients were updated considering previous data pairs then at
the current iteration it is true that w(k) € H(k —i+ 1), i.e.,
le(k —i4+1)] = |d(k —i+1) = x(k—i+ 1)w(k)| < 7, for
it =2,...,L+1. Therefore, by choosing v;(k) = e(k —i + 1),
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for ¢ # 1, all the elements the a posteriori errors remain con-
stant, except for first element. The constraint value 71 (k)
can be selected as in the SM-NLMS algorithm where 1 (k)
is such that the solution lies at the nearest boundary of H(k),
ie.,
e(k)
mi(k) = =75 = ysenle(k)] (18)
le(k)]
The resulting update equation is then given by
—1
wlk+ 1) = wik) + X(k) [XT()X(8)]  p(k)e(kyu (19)
where u; = [10 ... 0]7,

e(k) = d(k) — w” (k)x(k)
(k) = {1_(\)@%)\ if le(k)| >~

otherwise
This algorithm minimizes the FEuclidean distance
lw(k+1) — w(k)|*> subject to the constraint
w(k+1) € T (k) such that the a posteriori er-
rors at iteration k — i, e(k —1i), are kept constant for
i = 2,...,L + 1. Fig. 2 illustrates a typical coefficient
updating for the simplified SM-AP algorithm where it is
observed that the a posteriori error related to previous
data remains unaltered. The simplified SM-AP algorithm

(20)

(21)

H(k)

dA(k —1) — wix(k —1) =

- d(k—1) —wix(k —1) = 32(k — 1)

d(k—1) —wix(k — 1) = —v

Figure 2: Simplified SM-AP algorithm coefficient update
with constant a posteriori error, L = 1.

given by equation (19) will perform an update if and only if
w(k) € H(k), or |e(k)| > ~. After some lengthy derivations
presented in [2] it is possible to verify that

L+ 1)P,
E[ég(k)] M
2 — Py
y afl-i-’YZ
_ 2 _ 2
1+L<(1 Pup)? + 2Pup(1 Pup),/ﬂE[e%(k)]’O

(22)

In the expression above, 7 is the SM threshold and e (k)
denotes the MSE. Therefore, the misadjustment for the set-
membership affine projection algorithm is given by

(L +1)Pup
2 — Pup
2

2

X (23)

1+ L ((1 - P\lp)2 +2Pup(1 - Pup)”#g(k)]’}’)

EIS

For small 1 — P,p, this equation can be approximated by

2
M:M(%_A'_l)

(2— Puwp) \o02 (24)

3. BEHAVIOR IN NONSTATIONARY
ENVIRONMENTS

In a nonstationary environment the error in the coeffi-
cients is described by the following vector
Awk+1)=w(k+1) —wo(k+1) (25)

where wo(k + 1) is the actual time-varying vector. For this
case, equation (16) becomes

Aw(k + 1) = Aw(k)
+ Py (k) X(R) (X7 (R)X(K) +0T) " (e(k) (k)
(26)

where Aw(k) = w(k) — wo(k 4+ 1). By premultiplying the
expression above by X7 (k) it follows that

XT(B)Aw(k + 1) = X7 (k) Aw (k)

+Pup (k)X ()X () (X7 (B)X (k) +61) " (e(k) — (k)

—&(k) = —a(k)

+Pap ()X (B)X(K) (XT (W)X (k) +0T) " (e(k) = 7())
(27)

By solving the equation (27), it is possible to show that

(XT X (k) &) — (k) =
Pup(k) (XT(B)X(R) +61) " (e(k) —y(k)  (28)
Following the same procedure to derive equation (16), we

can now substitute equation (28) in equation (26) in order
to deduce that

Aw(k +1) = X(k) (X7 (k)X (K)) atk) = Aw(k)

—X(k) (X7 (R)X(R)) e
(29)

By computing the energy on both sides of this equation it
is possible to show that

B [law(e+ D] + B [670) (XT0X(0) 6k
= llawm)®] + £ [ m (X mx®) " ew)]
= E[llaw(k) + Awo(k + 1)’
+E [éT(k) ()(T(zc)x(k))’1 é(k)]
~ E[law®m|’] + E [law, (k+ 1))]
+B [0 (X7 (0% (0) " &) (30)
where Aw,(k + 1) = wo(k) — wo(k + 1), and in the last
equality we have assumed that E [Aw” (k)Aw,(k +1)] ~

0. This assumption is valid for simple models for the time-
varying behavior of the unknown system, such as random

2625



walk model'. We will adopt this assumption in order to
simplify our analysis.

In Appendix IT we compute the covariance of Aw,(k+1)
leading to

E [HAwo(k + 1)||2] = tr{cov[Aw,(k + 1)]}

26 2
31
1+)\w:| Tw (31)

we]

with kw defined in the Appendix II.

Solving equation (30) using equation (31) and assuming
that the algorithm has converged such that

E[law(k + 1)[I*] = E [|Aw(k)]*]
Equation (30) can be expressed as
P2 E [éT(k) (XT(k)X(k))

= PuyE [éT(k) (XX (k) -t é(k)]

2”%\1} 2

+(N +1) |:1+>\w ow (32)

Leading to the equation

P2E [(e(k) = (k)" S())R(K)S (k) (e(k) = v(k))]
= PupE &7 (0)S(k) (e(k) — (k) + (e(k) — ¥(k)) " S(K)&(k)]

2“%]2

(33)

+(N +1) |:1+>\w Tw

By solving this equation following the same procedure as in
[2], we can derive the excess of MSE only due to the time-
varying unknown system.

If kw = 1, the expression above becomes simpler

1 (L + 1)Pup(0'12,, + 72)

2= Puwp _ 2 _ __2
1+ L | (1= Pup)2+2Pup(1 — Pup) BRI

2(N +1) o2 }
Pup (1 + Aw) w

Lexc =

(36

As can be verified, the contribution due to the lag is in-
versely proportional to the value of P,,. This is an expected
result since if the updates are not frequent the adaptive fil-
ter will not be able to track the variations in the unknown
system.

4. SIMULATION EXAMPLES

An adaptive filtering algorithm is used to identify a sys-
tem whose impulse response is given by [2]

01030 —0.2 —04 —0.7 —04 —0.2]

using the SM-AP algorithm using L =0, L = 1 and L = 2.
Table 1 lists the estimated and measured misadjustments
for L =0, L =1, and L = 2. The results were obtained for
v =+/2.702 and 7 = /502. The results reflect the average of
three distinct experiments with different values of the input
signal correlation matrix eigenvalue spread. The expected
misadjustments are close to the measured ones despite the
approximations in the derivation of the theoretical formula.

Table 1: Evaluation of the SM-AP Algorithm, v = /2.702
and v = /502

Misadjustment
v L=0 L=1 L=2
Exp. [[Theory || Exp. [[Theory || Exp. [[Theory
V/2.702 |[0.2591 || 0.3354 || 0.4137 || 0.4315 || 0.5305 || 0.5432
V502 |10.1947 || 0.1934 || 0.2295 || 0.2292 || 0.3305 || 0.2738

(N + 1) 21"1}%\1 2
lag = g 34
Sing Pup(2—Pup) [1+Aw ]| (34)
By taking into consideration the additional
noise and the time-varying parameters to be es-
timated, the overall excess of MSE 1is given by
L (L +1)Pup or ++°
o 2P (= Pt 4 2P (1= Pay) . [—2
+ (1 = Pup)? + 2Pup (1 — Pup) W’Y
(N+1) 2r% 2
Pap(2— Pap) |1+ 2w | W
1 (L+1)Pup(°'721+72)

2= Puwp _ 2 _ __2
1+ L | (1= Pup)2+2Pup(1 — Pup) T

N N+1| 2:% 5
a.
Pup T4+aw | W

Tn this model the coefficients change according to wo(k) =
Wo(k — 1) + nw (k).

In Fig. 3, it is shown the measured and theoretical val-
ues of the excess of MSE in a non-stationary environment,
for the case where Aw = 0.96. Once again the measured and
theoretical results obtained from equation (35) are as close as
similar results usually found in the literature, demonstrating
the validity the proposed analysis. It can be observed that
the results are less accurate for larger values of + due to
a reduction in the number updatings, turning the tracking
more difficult. The computational complexity of the SM-AP
algorithm is similar to the original AP algorithm whenever
an update is required. However, the SM-AP algorithm sub-
stantially reduces the misadjustment.

5. CONCLUDING REMARKS

This paper presented the analysis of the set-membership
affine projection (SM-AP) algorithms in nonstationary en-
vironments. The closed form expressions, derived for the
excess of MSE of the SM-AP algorithms in nonstationary en-
vironments; are tools for the proper setup of these algorithms
in practical applications. Some simulation results were in-
cluded verifying that the analytical results match well the
experimental ones.
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Figure 3: Excess of MSE in nonstationary environments of
the SM-AP algorithms for L =0, L = 1, and L = 2, eigen-
value spread equal 20.

Appendix 1

The expression of the excess of MSE in the SM-AP algo-
rithm must take into consideration how often the algorithm
updates the coefficients after the transient. In [2] it is shown
that probability that the adaptive filter is updated can be
approximated by

o - Ea
Py~ ax[QQ <7\/m)>+m(\/§),1} (37)

where @[] is the complementary cumulative distribution
function, and o2 is the additional noise variance.

Appendix I1

The time-varying characteristic of the unknown system
is a source of excess mean-square error. In order to take
into account the excess MSE let’s consider that each element
of the actual coefficient vector is modeled as a first-order
Markov process [17], since it leads to simple derivations. The
first-order Markov process is described by

Wo(k) = Awwo(k — 1) + kwnw (k) (38)

where nw (k) is a vector whose elements are zero-mean white
noise processes with variance o, and A\w < 1. The fac-
tor kw = (1 — )\w)%7 for p > 1, is chosen such that
E[w,(k)wZ (k)] is bounded.

The value of the excess of MSE requires the covariance
of Aw,(k+1) = wo(k) — wo(k + 1), that is

cov[Aw, (k+1)] = E [(wo(k 11) — wo (k) (wo(k + 1) — wo (k)T

= E{[Ow = Dwo(k) + rwnw (B)][Ow — Dwo(k) + rwnw (k)]

(39)

Since each element of nw(k) is a zero-mean white noise
process with variance o, and Aw < 1, it follows that

covlAvwo(k +1)] = rbyod L2W)

WOW T3 I+ wwowl
w

11—\
. [ﬁ + 1} P | (40)
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