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ABSTRACT 
 
In this paper an optimized architecture of bit plane coder for 
Embedded Block Coding with Optimal Truncation 
(EBCOT) algorithm targeting its FPGA implementation is 
proposed. Although several speed up techniques exist, we 
present architecture whose performance is improved based 
on detailed analysis of data path used to obtain context 
windows. Multiplexer based coding style is adapted to 
utilize the resources optimally. The proposed design works 
at 67 MHz after post placement and routing on Xilinx 
XC2V1000 device. Even though 18 bit planes are used, the 
implementation results show that the consumption of logic 
resources in terms of LUTs, slices and flip-flop slices have 
reduced drastically compared to that of reported designs [1, 
2, 3, 4, 5 and 6]. Moreover, power consumption is also 
moderate.  
 
Index Terms- JPEG2000, EBCOT, Bit Plane Coder 
 

1. INTRODUCTION 
 

JPEG 2000 standard is designed to meet the needs of variety 
of applications such as multimedia, medical imaging etc. It 
is the only standard which supports lossy as well as lossless 
image compression [7]. The Discrete Wavelet Transform 
(DWT) and EBCOT algorithms used in this standard are 
computation and memory intensive. Hence dedicated and 
efficient hardware implementation of JPEG 2000 coding 
standard is need of the time. 

The block diagram of the JPEG 2000 coder is shown in 
Figure 1. It has three main processing phases: pre-
processing, quantization and entropy coding. During pre-
processing an image is partitioned into a number of tiles. All 
samples are level shifted to make their distribution 
symmetric about zero. Then wavelet transform is applied to 
obtain sequence of wavelet coefficients. These coefficients 
are quantized, if required, and stored into code block 
memory. EBCOT is a two-tier coder. Tier 1 is a context 
based adaptive arithmetic coder and Tier 2 performs layered 
bit stream formation. 

FPGA based EBCOT tier-1 architecture which can 
encode more than one bit per clock cycle is discussed in [1]. 
However, temporary buffer memory can be eliminated. 
Sample Skipping and Group of Sample Skipping  
architecture [2] reduces overall image encoding  time  at  the 
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 Figure 1. JPEG 2000 block diagram 
 
time at the cost of redundant bit access. The Dynamic 
Significant State Restoring technique [3] avoids use of state 
variable memory as it is possible to reconstruct state 
variables. However, data width used is too high. A three 
level high speed power efficient architecture [4] uses extra 
hardware in the data path to achieve multi-level parallelism. 
Another low power architecture is described in [5]. A Bit 
Plane Coder (BPC) which generates up to 10 context data 
pairs in a single clock is presented in [6]. 

In this paper, BPC data path is analyzed which leads to 
optimum and regular hardware. To exploit FPGA resources 
optimally, multiplexer based coding style is used which 
contributes to improve overall system performance. The 
BPC operation is briefed in Section 2. Detailed data path 
analysis is done in Section 3. In Section 4, proposed bit 
plane architecture is discussed. The detailed data path 
architecture is explained in Section 5. Implementation 
results are given in Section 6 and the paper is concluded in 
Section 7.  

 
2. BIT PLANE CODER 

 
BPC is the first stage in tier1 of the EBCOT algorithm. It 
generates contexts and decision based on quantization 
indexes grouped in code-blocks. The wavelet coefficients 
are converted from two’s complement format to sign-
magnitude format and stored in a Code Block (CB) memory 
as binary numbers [1]. Each binary number can be seen as a 
sequence of bits with position index from N to 1, where N is 
number of bits and the binary number has N bits. Bits those 
are at the same significant position compose a bit plane. 

Within bit plane, every four rows form a stripe. JPEG 
2000 standard has two types of scanning methods:  regular 
and vertical causal, to scan the stripe data. In a bit plane, 
scanning order is stripe by stripe from top to bottom. In 
every stripe, data is scanned bit by bit from top to bottom 
and column by column from left to right. 
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Figure 2. The stripe surrounded with zero padding 

 
Table 1.  Neighbors necessary to process elements starting form first column

 
 
 
 
 
 

 
 

Table 2. Frame wise neighbors and their location in SIPO 
 

 
 
 

 
 
 

 
There are three primitive coding passes – Significance 

Propagation Pass (SPP), Magnitude Refinement Pass (MRP), 
and Cleanup Pass (CUP). These passes are applied on each 
bit plane of a CB except the most significant bit plane, on 
which only CUP is applied. Due to the initial condition none 
of the most significant bit plane bits will be coded in the SPP 
and MRP. Rest of the bit planes will be coded sequentially 
using SPP, MRP and CUP [7]. 
 

3. DATA PATH ANALYSIS 
 
In vertical causal scanning mode each stripe is considered as 
a separate entity. In this mode stripe is padded with zero as 
shown in Figure 2. The BPC processing starts from the 0th 
row and column, then it moves down to 1st row and so on. 
After processing 3rd row, next element to be processed is the 
0th row of next column to right and process repeats until it 
reaches the end of the stripe. The operating principle reveals 
that it is a sliding window architecture. As window slides the 
neighborhood positions change. First 6 data elements and 
their corresponding context frames, for the stripe shown in 
Figure 2, are listed in Table 1. The convention used for 
identifying neighbors of a frame is shown in Figure 3.  

For analysis purpose, Table 1 contents can be rearranged 
as shown in Table 2. Comparing rows of Table 1 with the last  
row of Table 2, it is observed that elements numbered 1 to 9 
 

represent the first frame of the stripe shown in Figure 2. 
Similarly elements 4 to 12 form second frame, elements 7 to 
15 form third frame and elements 10 to 18 form last frame of 
the stripe given in Figure 2. The first and last three elements 
of Table 2 are labeled as ‘0’ because all through they remain 
zero. Hence there is no need to implement hardware for it. So 
it is possible to implement data path by using four 3 bit Serial 
In Parallel Out (SIPO) registers. Complete data path is 
discussed in Section 5. 
 

4. PROPOSED ARCHITECTURE 
 
The proposed BPC architecture is shown in Figure 4. The 
DWT engine used produces 17 bit coefficients which are 
converted into sign magnitude format and stored in the CB 
memory. Hence in the proposed architecture 32x32x18 size 
CB is used. While writing data in CB, sign bit information is 
separated and stored in a 32x32 bit sign memory. The state 
variables (σ,σ’and η) required at the time of primitive coding 
are stored in separate 32x32 bit memory planes. 

To process any magnitude bit, one has to read its sign and 
state variables information along with eight neighbors. This 
information is produced with the help of data path 1 and 2. 
Based on run time conditions generated, BPC controller 
decides which pass is to run, selects a particular coding 
primitive and stores context data in the context buffer. 

 

0 1 2 3         31 32 Column No. 
              

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 4 8           0 
0 1 5 9           0 
0 2 6 A           0 
0 3 7 B           0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Zero padding 

Stripe data D0 V0 D1 
H0 X H1 

D3 V1 D2 

Figure 3. Scanned element and 
its neighbors 

Frame D0 V0 D1 H0 X H1 D3 V1 D2 
1 0 0 0 0 0 4 0 1 5 
2 0 0 4 0 1 5 0 2 6 
3 0 1 5 0 2 6 0 3 7 
4 0 2 6 0 3 7 0 0 0 
5 0 0 0 0 4 8 1 5 9 
6 0 4 8 1 5 9 2 6 A 

Element No.  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Element labeled 

 in SIPO  0 0 0 K L M N P Q R S T U V W 0 0 0 

Stripe data 0 0 0 0 0 4 0 1 5 0 2 6 0 3 7 0 0 0 
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5. DATA PATH ARCHITECTURE 
 

In Figure 4 two distinct data paths are marked. These data 
paths read data from a selected stripe. However, after 
processing, sign and magnitude bits will not change so there 
is no need of write operation whereas based on certain 
conditions state variables update and new values have to be 
registered for further processing. Therefore data path 2 
slightly differs from data path 1. Data path analysis in 
Section 3 has shown that it is possible to obtain current 
context window with the help of four 3 bits SIPO, a mod 5 
row counter and nine 4:1 multiplexers as shown in Figure 5.   

BPC processes one magnitude bit at a time. However, to 
reduce number of memory read/write cycles we have chosen 
to read/write one column data in single cycle. Data just read 
from a column is stored in the M, Q, T and W elements of 
the SIPO. The column data which will be processed in 
current cycle is present in L, P, S and V elements of the 
SIPO. The column data which is processed in earlier cycle is 
present in remaining SIPO elements. Thus, four SIPO holds 
12 data bits corresponding to 3 columns. These bits are fed 
to nine 4:1 multiplexers which outputs 9 bits at a time 
forming the current context window. A mod 5 counter is 
used to select a particular row to be processed as well as to 
control the select lines of multiplexer chain as shown in 
Figure 5. First 4 states of this counter correspond to the row 
in a column whereas the fifth state is used to pre-fetch next 
data column and store updated variables. 

In data path 2 only one extra 4:1 decoder is required. The 
decoder outputs are fed to the asynchronous set input of 
middle (i.e. L, P, S and V) flip-flop in the SIPO register. 
Whenever a state variable updates, its value is forced at the 
decoder output setting the flip-flop. The mod 5 counter 
controls this decoder too. 
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Figure 5. Detailed data path Architecture 
 

5. RESULTS 
 

The proposed architecture is coded using Verilog HDL. The 
design has been implemented using Xilinx Foundation 
Series ISE 7.1i version. The target device is XC2V1000-
5BG575. Design is simulated using Modelsim XE simulator. 
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Table 3. BPC implementation results    Table 4. Comparison with other designs 

 
The implementation design summary is listed in Table 3. 
The analysis of data path confirms that it is possible to speed 
up BPC design with optimum hardware. Gangadhar et al. 
have used 8 bit planes whereas in the proposed design 18 bit 
planes are used and for the same device the consumption of 
logic resources in terms of LUTs, slices, and flip flop slices 
have reduced significantly at the same time system 
performance has improved. It is possible because the 
architecture is more regular and multiplexer based coding 
style is adapted wherever possible such that the device is 
utilized optimally. 

The proposed architecture is compared with various other 
similar designs and summary is given in Table 4. Although 
the platforms are different, proposed design operates on 18 
bit planes and shows significant reduction in hardware with 
improved speed. Memory requirement is higher because of 
higher number of bit planes. Power consumption is 
measured using Xilinx XPower tool and moderate power 
consumption is observed. 
 

7. CONCLUSION 
 
In this paper, an optimized BPC architecture for EBCOT 
algorithm is proposed. Though this architecture processes 
bits in serial manner, it speeds up operating frequency 
because of optimized data path design and appropriate CB 
data handling technique. The design is coded with 
multiplexer based approach wherever possible such that the 
device utilization is optimal. The estimated working 
frequency is 67 MHz with Xilinx XC2V1000 target device. 
The maximum operating frequency shoots up to 82 MHz 
when implemented on Virtex-II Pro family of devices. With 
this speed, the proposed architecture may encode on an 
average 27.33 Msamples/s which is equivalent to encoding 
89 gray scale VGA frames per second.  In addition to this, 
the consumption of logic resources in terms of LUTs, slices, 
and flip flop slices is much less. Hence high throughput 
requirement of real-time systems, like medical imagery 
requiring lossless compression to digital transmission of 
images through communication networks, may be met. With 

 
slight modification in BPC controller, performance can be 
further improved by processing multiple stripes 
concurrently. 
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Parameters Gangadhar 
et al. [1] 

Proposed 
Architecture 

No. of bit 
planes 8 18 

Frequency of 
operation 

(MHz) 
50 67 

No. of 4 input 
LUTs used 4,430 2,149 

Total Slices 
used 3,024 2,488 

Total flip flop 
slices used 1,200 105 

Both designs implemented using XC2V1000 

Architecture 
No. of 

bit 
planes 

CLK 
(MHz) 

Gate count  
+ memory 

Power 
(mW) 

Technology 
used 

[2] 8 50.00 19,000 + 
13kb  115 TSMC 

0.35um 1P4M 
[3] 10 66.00 ~ 8,500 --- Altera Stratix 

[4] --- 75.00 5,200 + 
6Kb  410 AMS 0.35um 

CMOS  

[5] 16 43.47 27,069 22 Altera  
EPXA10DDR 

[6] 16 51.70 631 --- APEX20KE 

Proposed 18 67.28 12,952+ 
21 Kb 330 XC2V1000 
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