
A HIGH SPEED BIT PLANE CODER FOR JPEG 2000 AND IT’S FPGA IMPLEMENTATION

Kishor Sarawadekar and Swapna Banerjee

Department of E & ECE, I.I.T. Kharagpur

ABSTRACT

In this paper an optimized architecture of bit plane coder for
Embedded Block Coding with Optimal Truncation
(EBCOT) algorithm targeting its FPGA implementation is
proposed. Although several speed up techniques exist, we
present architecture whose performance is improved based
on detailed analysis of data path used to obtain context
windows. Multiplexer based coding style is adapted to
utilize the resources optimally. The proposed design works
at 67 MHz after post placement and routing on Xilinx
XC2V1000 device. Even though 18 bit planes are used, the
implementation results show that the consumption of logic
resources in terms of LUTs, slices and flip-flop slices have
reduced drastically compared to that of reported designs [1,
2, 3, 4, 5 and 6]. Moreover, power consumption is also
moderate.

Index Terms- JPEG2000, EBCOT, Bit Plane Coder

1. INTRODUCTION

JPEG 2000 standard is designed to meet the needs of variety
of applications such as multimedia, medical imaging etc. It
is the only standard which supports lossy as well as lossless
image compression [7]. The Discrete Wavelet Transform
(DWT) and EBCOT algorithms used in this standard are
computation and memory intensive. Hence dedicated and
efficient hardware implementation of JPEG 2000 coding
standard is need of the time.

The block diagram of the JPEG 2000 coder is shown in
Figure 1. It has three main processing phases: pre-
processing, quantization and entropy coding. During pre-
processing an image is partitioned into a number of tiles. All
samples are level shifted to make their distribution
symmetric about zero. Then wavelet transform is applied to
obtain sequence of wavelet coefficients. These coefficients
are quantized, if required, and stored into code block
memory. EBCOT is a two-tier coder. Tier 1 is a context
based adaptive arithmetic coder and Tier 2 performs layered
bit stream formation.

FPGA based EBCOT tier-1 architecture which can
encode more than one bit per clock cycle is discussed in [1].
However, temporary buffer memory can be eliminated.
Sample Skipping and Group of Sample Skipping
architecture [2] reduces overall image encoding time at the

Encoding stages

Wavelet
Transform Quantization Tier 1

Tier 2
Decoding stages

Pre -
processing

EBCOT

 Figure 1. JPEG 2000 block diagram

time at the cost of redundant bit access. The Dynamic
Significant State Restoring technique [3] avoids use of state
variable memory as it is possible to reconstruct state
variables. However, data width used is too high. A three
level high speed power efficient architecture [4] uses extra
hardware in the data path to achieve multi-level parallelism.
Another low power architecture is described in [5]. A Bit
Plane Coder (BPC) which generates up to 10 context data
pairs in a single clock is presented in [6].

In this paper, BPC data path is analyzed which leads to
optimum and regular hardware. To exploit FPGA resources
optimally, multiplexer based coding style is used which
contributes to improve overall system performance. The
BPC operation is briefed in Section 2. Detailed data path
analysis is done in Section 3. In Section 4, proposed bit
plane architecture is discussed. The detailed data path
architecture is explained in Section 5. Implementation
results are given in Section 6 and the paper is concluded in
Section 7.

2. BIT PLANE CODER

BPC is the first stage in tier1 of the EBCOT algorithm. It
generates contexts and decision based on quantization
indexes grouped in code-blocks. The wavelet coefficients
are converted from two’s complement format to sign-
magnitude format and stored in a Code Block (CB) memory
as binary numbers [1]. Each binary number can be seen as a
sequence of bits with position index from N to 1, where N is
number of bits and the binary number has N bits. Bits those
are at the same significant position compose a bit plane.

Within bit plane, every four rows form a stripe. JPEG
2000 standard has two types of scanning methods: regular
and vertical causal, to scan the stripe data. In a bit plane,
scanning order is stripe by stripe from top to bottom. In
every stripe, data is scanned bit by bit from top to bottom
and column by column from left to right.

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 2231

Figure 2. The stripe surrounded with zero padding

Table 1. Neighbors necessary to process elements starting form first column

Table 2. Frame wise neighbors and their location in SIPO

There are three primitive coding passes – Significance

Propagation Pass (SPP), Magnitude Refinement Pass (MRP),
and Cleanup Pass (CUP). These passes are applied on each
bit plane of a CB except the most significant bit plane, on
which only CUP is applied. Due to the initial condition none
of the most significant bit plane bits will be coded in the SPP
and MRP. Rest of the bit planes will be coded sequentially
using SPP, MRP and CUP [7].

3. DATA PATH ANALYSIS

In vertical causal scanning mode each stripe is considered as
a separate entity. In this mode stripe is padded with zero as
shown in Figure 2. The BPC processing starts from the 0th
row and column, then it moves down to 1st row and so on.
After processing 3rd row, next element to be processed is the
0th row of next column to right and process repeats until it
reaches the end of the stripe. The operating principle reveals
that it is a sliding window architecture. As window slides the
neighborhood positions change. First 6 data elements and
their corresponding context frames, for the stripe shown in
Figure 2, are listed in Table 1. The convention used for
identifying neighbors of a frame is shown in Figure 3.

For analysis purpose, Table 1 contents can be rearranged
as shown in Table 2. Comparing rows of Table 1 with the last
row of Table 2, it is observed that elements numbered 1 to 9

represent the first frame of the stripe shown in Figure 2.
Similarly elements 4 to 12 form second frame, elements 7 to
15 form third frame and elements 10 to 18 form last frame of
the stripe given in Figure 2. The first and last three elements
of Table 2 are labeled as ‘0’ because all through they remain
zero. Hence there is no need to implement hardware for it. So
it is possible to implement data path by using four 3 bit Serial
In Parallel Out (SIPO) registers. Complete data path is
discussed in Section 5.

4. PROPOSED ARCHITECTURE

The proposed BPC architecture is shown in Figure 4. The
DWT engine used produces 17 bit coefficients which are
converted into sign magnitude format and stored in the CB
memory. Hence in the proposed architecture 32x32x18 size
CB is used. While writing data in CB, sign bit information is
separated and stored in a 32x32 bit sign memory. The state
variables (σ,σ’and η) required at the time of primitive coding
are stored in separate 32x32 bit memory planes.

To process any magnitude bit, one has to read its sign and
state variables information along with eight neighbors. This
information is produced with the help of data path 1 and 2.
Based on run time conditions generated, BPC controller
decides which pass is to run, selects a particular coding
primitive and stores context data in the context buffer.

0 1 2 3 31 32 Column No.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 8 0
0 1 5 9 0
0 2 6 A 0
0 3 7 B 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Zero padding

Stripe data D0 V0 D1
H0 X H1

D3 V1 D2

Figure 3. Scanned element and
its neighbors

Frame D0 V0 D1 H0 X H1 D3 V1 D2
1 0 0 0 0 0 4 0 1 5
2 0 0 4 0 1 5 0 2 6
3 0 1 5 0 2 6 0 3 7
4 0 2 6 0 3 7 0 0 0
5 0 0 0 0 4 8 1 5 9
6 0 4 8 1 5 9 2 6 A

Element No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Element labeled

 in SIPO 0 0 0 K L M N P Q R S T U V W 0 0 0

Stripe data 0 0 0 0 0 4 0 1 5 0 2 6 0 3 7 0 0 0

2232

5. DATA PATH ARCHITECTURE

In Figure 4 two distinct data paths are marked. These data
paths read data from a selected stripe. However, after
processing, sign and magnitude bits will not change so there
is no need of write operation whereas based on certain
conditions state variables update and new values have to be
registered for further processing. Therefore data path 2
slightly differs from data path 1. Data path analysis in
Section 3 has shown that it is possible to obtain current
context window with the help of four 3 bits SIPO, a mod 5
row counter and nine 4:1 multiplexers as shown in Figure 5.

BPC processes one magnitude bit at a time. However, to
reduce number of memory read/write cycles we have chosen
to read/write one column data in single cycle. Data just read
from a column is stored in the M, Q, T and W elements of
the SIPO. The column data which will be processed in
current cycle is present in L, P, S and V elements of the
SIPO. The column data which is processed in earlier cycle is
present in remaining SIPO elements. Thus, four SIPO holds
12 data bits corresponding to 3 columns. These bits are fed
to nine 4:1 multiplexers which outputs 9 bits at a time
forming the current context window. A mod 5 counter is
used to select a particular row to be processed as well as to
control the select lines of multiplexer chain as shown in
Figure 5. First 4 states of this counter correspond to the row
in a column whereas the fifth state is used to pre-fetch next
data column and store updated variables.

In data path 2 only one extra 4:1 decoder is required. The
decoder outputs are fed to the asynchronous set input of
middle (i.e. L, P, S and V) flip-flop in the SIPO register.
Whenever a state variable updates, its value is forced at the
decoder output setting the flip-flop. The mod 5 counter
controls this decoder too.

Current
Magnitude
bit plane
32 x 32

Sign bit
plane

32 x 32

ρ plane
32 x 32

ρ' plane
32 x 32

η plane
32 x 32

State Variables memory

Data path #1

Magnitude bit, its sign and corresponding state variables with

Magnitude
Refinement

Coding (MRP)

Run
Length

Coding (RLC)

Sign
Coding

(SC)

Zero
Coding
(ZC)

Context and Decision Bus

To CxD buffer

B
P
C

C
O
N
T
R
O
L
L
E
R

Code Block memory

Figure 4. Proposed architecture for BPC

DWT coefficients in
sign magnitude

Data path #1 Data path #2 Data path #2 Data path #2

 1’b0

From Memory

From Memory

From Memory

Figure 5. Detailed data path Architecture

5. RESULTS

The proposed architecture is coded using Verilog HDL. The
design has been implemented using Xilinx Foundation
Series ISE 7.1i version. The target device is XC2V1000-
5BG575. Design is simulated using Modelsim XE simulator.

 From Memory

To Memory

To Memory

To Memory

To Memory

K K

L

M

N

P

Q

R

S

T

U

V

W

3 bit SIPO
N-1 column bits

N’th column bits
N+1 column bits

D0N
R

1’b0
L V0P
S

1’b0
D1

D2

D3

H0

H1

V1

X

K
N
R
U

N
R
U

1’b0

1’b0

L
P
S

M
Q
T

M
V

Q
T
W

1’b0

Q
T

W

P
S
V

Mod 5 row
counter

2233

Table 3. BPC implementation results Table 4. Comparison with other designs

The implementation design summary is listed in Table 3.
The analysis of data path confirms that it is possible to speed
up BPC design with optimum hardware. Gangadhar et al.
have used 8 bit planes whereas in the proposed design 18 bit
planes are used and for the same device the consumption of
logic resources in terms of LUTs, slices, and flip flop slices
have reduced significantly at the same time system
performance has improved. It is possible because the
architecture is more regular and multiplexer based coding
style is adapted wherever possible such that the device is
utilized optimally.

The proposed architecture is compared with various other
similar designs and summary is given in Table 4. Although
the platforms are different, proposed design operates on 18
bit planes and shows significant reduction in hardware with
improved speed. Memory requirement is higher because of
higher number of bit planes. Power consumption is
measured using Xilinx XPower tool and moderate power
consumption is observed.

7. CONCLUSION

In this paper, an optimized BPC architecture for EBCOT
algorithm is proposed. Though this architecture processes
bits in serial manner, it speeds up operating frequency
because of optimized data path design and appropriate CB
data handling technique. The design is coded with
multiplexer based approach wherever possible such that the
device utilization is optimal. The estimated working
frequency is 67 MHz with Xilinx XC2V1000 target device.
The maximum operating frequency shoots up to 82 MHz
when implemented on Virtex-II Pro family of devices. With
this speed, the proposed architecture may encode on an
average 27.33 Msamples/s which is equivalent to encoding
89 gray scale VGA frames per second. In addition to this,
the consumption of logic resources in terms of LUTs, slices,
and flip flop slices is much less. Hence high throughput
requirement of real-time systems, like medical imagery
requiring lossless compression to digital transmission of
images through communication networks, may be met. With

slight modification in BPC controller, performance can be
further improved by processing multiple stripes
concurrently.

ACKNOWLEDGEMENT

The authors would like to thank GE Healthcare India Pvt.
Ltd. for supporting this research work.

REFERENCES

[1] Manjunath Gangadhar, Dinesh Bhatia, “FPGA Based
EBCOT Architecture for JPEG 2000,” Microprocessors and
Microsystems, Vol.29, pp. 363 – 373, November, 2005.
[2] Chung - Jr. Lian, Kua - Fu Chen, Hong - Hui Chen, and
Liang - Chen, “Analysis and Architecture Design of Block
Coding Engine for EBCOT in JPEG 2000,” IEEE
Transactions on Circuits and Systems for Video
Technology, Vol.1, No.3, pp. 219 - 230, March, 2003.
[3] Grzegorz Pastuzak, “A High-Performance Architecture
for Embedded Block Coding in JPEG 2000,” IEEE
Transactions Circuits and Systems for Video Technology,
Vol. 15, No. 9, pp. 1182–1191, September, 2005.
 [4] Yijun Li, Magdy Bayoumi, “A Three-Level Parallel
High-Speed Low-Power Architecture for EBCOT of
JPEG2000,” IEEE Transactions Circuits and Systems for
Video Technology, Vol. 16, No. 9, pp. 1153–1163,
September, 2006.
[5] Tien-Wie Hsieh and Youn-Long Lin, “A Low-Power
and High Performance EBCOT Architecture of JPEG2000
Encoding,” IEEE Symposium on Circuits and Systems, Vol.
1, pp. 773–776, May, 2002.
[6] Amit Kumar Gupta, David Taubman and Saied
Nooshabadi, “High-Speed VLSI Architecture for Bit Plane
Encoder of JPEG2000,” 47’th IEEE Midwest Symposium
on Circuits and Systems, Vol. 2, pp. 25-28, 2004.
[7] K. Andra, C. Chakrabarti, and T. Acharya, “A High
Performance JPEG2000 Architecture,” IEEE Transactions
Circuits and Systems for Video Technology, Vol. 13, No. 3,
pp. 209–218, March, 2003.

Parameters Gangadhar
et al. [1]

Proposed
Architecture

No. of bit
planes 8 18

Frequency of
operation

(MHz)
50 67

No. of 4 input
LUTs used 4,430 2,149

Total Slices
used 3,024 2,488

Total flip flop
slices used 1,200 105

Both designs implemented using XC2V1000

Architecture
No. of

bit
planes

CLK
(MHz)

Gate count
+ memory

Power
(mW)

Technology
used

[2] 8 50.00 19,000 +
13kb 115 TSMC

0.35um 1P4M
[3] 10 66.00 ~ 8,500 --- Altera Stratix

[4] --- 75.00 5,200 +
6Kb 410 AMS 0.35um

CMOS

[5] 16 43.47 27,069 22 Altera
EPXA10DDR

[6] 16 51.70 631 --- APEX20KE

Proposed 18 67.28 12,952+
21 Kb 330 XC2V1000

2234

	A HIGH SPEED BIT PLANE CODER FOR JPEG 2000 AND IT’S FPGA IMPLEMENTATION

