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ABSTRACT

The radio astronomy community is currently building a
number of phased array telescopes. The calibration of
these telescopes is hampered by the fact that covariances
of signals from closely spaced antennas are sensitive to
noise coupling and to variations in sky brightness on
large spatial scales. These effects are difficult and com-
putationally expensive to model. We propose to model
them phenomenologically using a non-diagonal noise co-
variance matrix. The parameters can be estimated us-
ing a weighted alternating least squares (WALS) algo-
rithm iterating between the calibration parameters and
the additive nuisance parameters. We demonstrate the
effectiveness of our method using data from the low fre-
quency array (LOFAR) prototype station.

1. INTRODUCTION

The radio astronomical community is currently con-
structing a number of large scale phased array telescopes
such as the low-frequency array (LOFAR) [1] and the
Murchison wide field array (MWA) [2]. These instru-
ments need to be calibrated regularly to track varia-
tions in the electronics of the antennas and receivers,
as well as direction dependent variations of the iono-
sphere [3]. E.g., LOFAR will consist of order 50 sta-
tions (distributed over an area of a hundred kilome-
ters or more), where each station consists of 96 “low
band” dual-polarized dipole antennas (10–90 MHz) and
96 “high band” antennas (110–240 MHz). The latter
antennas are in turn composed of 16 beamformed dual-
polarized droopy dipole antennas. Each station provides
a number of beamformed outputs, which in turn are cor-
related at a central location to form images and other
astronomy products.

In this paper we focus on the calibration of the sta-
tion antennas. The general aim is to estimate the direc-
tion independent gains and phases of each sensor, as well
as the direction dependent gains corresponding to each
source. This is done for the 2–10 brightest sources in
the sky, assuming a point source model. The problem
is complicated by the fact that the covariances of sig-
nals from closely spaced antennas within a station are
sensitive to noise coupling (for the lowest frequencies,
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the antennas are spaced closer than half a wavelength).
Also, the point source model does not entirely hold be-
cause of bright emission from the plane of the galaxy,
extending over the entire sky. Fortunately, this emission
is spatially smooth, which implies that it is dominant on
the short spatial scales in the array aperture, i.e. on the
short baselines. In this paper we propose to model both
short baseline effects by an additive noise covariance ma-
trix, which in this case is not diagonal and has unknown
entries for each short baseline. If we can estimate this
matrix, a simple point source model will be sufficient
to calibrate the array, which reduces the problem to a
problem for which solutions are readily available [4–6].

Direction finding problems for calibrated arrays in
the presence of unknown correlated noise have been
extensively studied in the 1990s. It was proven that
the general problem is not tractable without imposing
some appropriate constraints on the noise covariance
matrix or exploiting differences in temporal character-
istics between source and noise signals [7]. Radio astro-
nomical signals generally behave like noise, thus tempo-
ral techniques (instrumental variables) are not applica-
ble. Instead, we should rely on an appropriately con-
strained parameterized model of the noise covariance
matrix. Starting with [8], a series of papers were pub-
lished; see [9] for an overview. ML estimators for the
source and instrument parameters under a generalized
noise covariance parameterization is provided in [9, 10],
whereas nonlinear least squares estimators were stud-
ied in [10–12]. In either case, an analytic source and
instrument parameter dependent solution is derived for
the noise model parameters which is substituted back
into the cost function. This cost function then has to be
minimized using a generalized solving technique, such
as Newton iterations. This approach works well if the
number of instrument and source parameters is small.
For larger problems (we consider 100 antenna/source pa-
rameters and over 750 noise covariance parameters), it
is convenient to exploit suboptimal but closed-form an-
alytic solutions, at least for initialization. We therefore
propose a weighted alternating least squares (WALS)
approach which iterates over noise, source and instru-
ment parameters. The proposed method can thus be
regarded as an extension to the methods proposed in [6]

Notation: The transpose operator is denoted by
T , the complex conjugate (Hermitian) transpose by H ,

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1146



complex conjugation by (·) and the pseudo-inverse by
†. An estimated value is denoted by (̂·). ⊗ denotes the
Kronecker product and ◦ is used to denote the Khatri-
Rao or column-wise Kronecker product of two matri-
ces. vec(·) converts a matrix to a vector by stacking the
columns of the matrix.

2. DATA MODEL AND PROBLEM
STATEMENT

We consider an array of P antennas. The measured
P × P array covariance matrix can be modeled as

R = R0 (θ) + Σn (1)

where R0 (θ) is the signal model for an ideal noise free
array, which depends on a number of unknown real val-
ued parameters accumulated in a column vector θ, and
Σn is a P × P matrix describing the noise corruption.
Note that Σn must be Hermitian, since the array covari-
ance matrix is a Hermitian matrix. In our application,
the data covariance model is

R0 (θ) = G1AG2ΣsG
H
2 AHGH

1 (2)

where Σs is the covariance of the point sources (assumed
to be known from tables), A contains the direction
vectors, G1 a (diagonal) instrumental gain/phase ma-
trix, and G2 a (diagonal) direction dependent gain ma-
trix [6]. If the direction dependent gains are unknown,
we can introduce Σ = G2ΣsG

H
2 , which implies that we

should estimate the apparent source powers. The direc-
tion dependent gains follow directly from the apparent
source powers if the actual source powers are known,
e.g. from tables. If the source positions are unknown
or perturbed by propagation conditions, A may be pa-
rameterized [6]. The contents of the parameter vector
θ therefore strongly depend on the available knowledge
on the instrument, the propagation conditions and the
sources.

As in [8] and subsequent papers, the unknown noise
covariance matrix is modeled as a linear sum of known
matrices, in this case simple selection matrices Eij which
are zero everywhere except for a ’1’ in entry (i, j),

Σn =
∑

(i,j)∈S

σijEij .

The set S contains the index pairs of the short base-
lines, including the autocorrelation entries (i, i). The
unknown coefficients σij are the nuisance parameters.

In the absence of the noise corruptions, i.e., R =
R0 (θ), the estimation problem to find the parameter
vector θ is commonly formulated either as a ML prob-
lem, or as a generalized least squares estimation problem

θ̂ = argmin
θ

wwwW
(
R̂ − R0 (θ)

)
W

www
2

F
, (3)

where R̂ is the measured array covariance matrix. It is
known that with W = R−1/2 this estimator is asymp-
totically unbiased and asymptotically efficient [10, 12].
Indeed, the simulations in [10] show only a small im-
provement of the ML solution as compared to the WLS

solution. For R0(θ) given in (2), this problem, as well
as the case with an unknown diagonal noise covariance,
was studied by us in [6], in the present paper, we will
assume that a solution to this problem is available.

In the presence of correlated noise on the short base-
lines, the problem is extended to

{
θ̂, σ̂n

}
= argmin

θ,σn

wwwW
(
R̂ − R0 (θ) − Σn

)
W

www
2

F
,

(4)
where σn is a vector containing all unique real valued
parameters required to describe the nonzero entries of
Σn. This vector can be related to Σn using a selection
matrix Is such that vec (Σn) = Isσn. By choosing the
selection matrix appropriately, we can ensure that the
estimated Σn is Hermitian.

3. PARAMETER ESTIMATION

3.1 Weighted Alternating Least Squares

We propose to solve the problem in Eq. (4) by alternat-
ing between weighted least squares (WLS) estimation
of the desired parameters θ and WLS estimation of the
nuisance parameters σn. The first WLS problem can be
formulated as

θ̂ = argmin
θ

wwwW
((

R̂ − Σn

)
− R0 (θ)

)
W

www
2

F
. (5)

which is identical in form to Eq. (3) for which a solution
is assumed to be available.

The second WLS problem can be formulated as

σ̂n = argmin
σn

wwwW
((

R̂ − R0 (θ)
)
− Σn

)
W

www
2

F

= argmin
σn

www
(
W ⊗ W

)
vec

(
R̂ − R0 (θ)

)
−

(
W ⊗ W

)
Isσn

www
2

F
. (6)

The solution to this problem is given by

σ̂n =
((

W ⊗ W
)
Is

)† (
W ⊗ W

)
vec

(
R̂ − R0 (θ)

)
.

(7)

In section 2 it was mentioned that W = R−1/2 pro-
vides optimal weighting for the LS cost function. Since

R is not known, R̂ is used instead in many applications.
It can be shown that this may lead to a bias in the es-
timate of σ̂n for a finite number of samples [6]. This
bias can be avoided by using the best available model

R
(
θ̂, σ̂n

)
instead of R̂.

Estimation of receiver noise powers is a special case
of the general problem treated here. In this case Σn is
a diagonal, and Is = I ◦ I where I is the P × P identity
matrix. This form of selection matrix simplifies Eq. (7)
considerably [6]. In some problems, for example in es-
timating the receiver based gains, it is then possible to
simply ignore the diagonal entries instead of including
nuisance parameters [5]. It can further be shown that
ignoring the corrupted entries instead of including them
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using nuisance parameters does not change the Cramèr-
Rao bound of the parameters of interest [13]. This can
be explained intuitively by regarding the matrix equa-
tion describing the WLS problem as a set of scalar equa-
tions. If a unique nuisance parameter is added to one of
those scalar equations, that equation is required to solve
for the nuisance parameter and can thus not be used to
solve any other parameters. This implies that this equa-
tion could have been ignored if one would only focus on
the parameters of interest. In practice, however, it may
be hard to develop an algorithm that ignores the cor-
rupted entries in a statistically efficient way.

3.2 Algorithm

The resulting algorithm is as follows:

1. Initialization Set the iteration counter i = 1 and ini-
tialize σ̂

[0]
n based on any prior information if avail-

able, otherwise initialize σ̂
[0]
n to zero. Initially use

W = R̂−1/2.

2. Estimate θ̂
[i]

by solving the WLS problem formu-

lated in Eq. (5) using σ̂
[i−1]
n as prior knowledge.

3. Estimate σ̂
[i]
n using Eq. (7) using θ̂

[i]
as prior knowl-

edge.

4. Update W = R−1/2 to avoid the bias mentioned in
the previous section.

5. Check for convergence, otherwise continue with step
2.

An algorithm that alternatingly optimizes for dis-
tinct groups of parameters, in our case θ and σn, can
be proven to converge if the value of the cost function
decreases in each iteration. We assume that a suitable
method is available to find θ. Since we propose to es-
timate σn using the well known standard solution for
least squares estimation problems, the value of the cost
function will decrease in both steps, thus ensuring con-
vergence. Although there is no guarantee that the al-
gorithm will converge to the global optimum, practical
experience with LOFAR and results from Monte Carlo
simulations in this paper and in earlier papers [5, 6] in-
dicate that the proposed method produces good results
for most reasonable initial estimates.

4. EXPERIMENTAL RESULTS

4.1 The LOFAR prototype station

The first full-scale LOFAR prototype station with real-
time backend became operational in the second quar-
ter of 2006 [14]. This station consisted of 48 dual-
polarization antennas operating between 10 and 90 MHz
arranged in a randomized configuration based on rings
with exponentially increasing radii as shown in Fig. 1.
Each of the two signals from every antenna was filtered
and digitized using a 12-bit 200 MHz ADC. A real-time
FPGA based digital processing backend splits the 100
MHz Nyquist sampled base band in 512 subbands, each
195 kHz wide, using a polyphase filter. The backend
also provides a correlator which can correlate in real-
time the data from the 96 input channels for a single
subband. This subband may be any of the 512 available
subbands and this choice may change every second.
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Figure 1: Array configuration of the 48 antenna LOFAR
prototype station.
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Figure 2: Calibrated all-sky map for a single polariza-
tion at 50 MHz from the 48-element LOFAR prototype
station. The image shows the sky projected on the hori-
zon plane of the station.

4.2 Results

For the demonstration in this paper we used data from a
single 1 s snapshot observation in the 195 kHz subband
centered at 50 MHz. This observation was done on 14
February 2008 at 1:42:07 UTC. We will calibrate the
data using the method described in Sec. 3.2, where we
will model correlated noise terms on all baselines shorter
than four wavelengths. The complete WLS problem
thus implies estimation of the amplitudes (48 param-
eters) and phases (47 parameters) of the antenna based
complex gains, the source power ratio of the two bright-
est sources (1 parameter) and 764 real valued nuisance
parameters describing all non-zero entries of the noise
covariance matrix for a total of 860 free real valued pa-
rameters per polarization. In this experiment we show
that use of such nuisance parameters can reduce the
complex source structure on the sky to a simple model
with just two point sources.
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Figure 3: Calibrated all-sky map of extended emission
observed at baselines shorter than four wavelengths for
a single polarization at 50 MHz.

Figure 2 shows a calibrated all sky map for a sin-
gle polarization. There are two bright point sources
near the northeastern horizon. The image also shows
a lot of extended emission from the galactic plane (on
the northwestern horizon) and the north polar spur (on
the eastern horizon). This extended emission is hard
to model accurately, but only affects the short baselines
since short distances in the aperture plane of a phased
array correspond to low spatial frequencies, which de-
scribe the structure on large spatial scales.

It was found that most of this extended emission is
captured by the correlations on baselines shorter than
four wavelengths. This affects 358 crosscorrelations and
the 48 autocorrelations resulting in the aforementioned
764 real valued parameters to describe the non-zero en-
tries of Σn. Using the procedure outlined in the pre-

vious section, σ̂n was estimated simultaneously with θ̂

containing the other parameters. Σ̂n can therefore be
interpreted as an estimate of the extended source struc-
ture, noise coupling and receiver noise powers. This
is nicely demonstrated in Fig. 3 which shows an image

based on Σ̂n after the calibration was completed.
Figure 4 shows the difference between the maps

shown in Figs. 2 and 3. This shows that Σn provides a
description of the extended emission that is sufficiently

accurate to reduce R̂−Σ̂n to an array covariance matrix
that can be described by a model consisting of only two
point sources. This thus reduces our original problem
to one that has been discussed extensively in the array
signal processing literature.

5. IMPROVING THE COMPUTATIONAL
EFFICIENCY

The calculation of σ̂n using Eq. 7 forms the most expen-
sive part of the algorithm in terms of CPU and memory
usage due to the Kronecker products. These Kronecker
products can only be reduced to simpler Khatri-Rao or
Hadamard products in a number of special cases, such as
a diagonal noise covariance matrix treated in [6]. How-
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Figure 4: Difference between the calibrated all-sky map
shown in Fig. 2 and the contribution of extended emis-
sion shown in Fig. 3 showing that the remainder can be
accurately modeled using a model with just two point
sources.

# l m σ2
q

1 0.24651 -0.71637 1.00000

2 -0.34346 0.76883 0.88051

3 -0.13125 -0.31463 0.79079

4 -0.29941 -0.52339 0.74654

5 0.39290 0.58902 0.69781

Table 1: Source powers and source locations used in the
simulations

ever, the parameterization of Σn chosen here implies
that each entry of the array covariance matrix with a
contribution from Σn is affected by a unique additive
parameter. Intuitively, one would therefore expect that
the weighting in Eq. (7) would not make much differ-
ence. Omitting this would reduce the CPU and memory
requirements considerably, since the Kronecker products
and the inverse increase the numerical complexity from
o
(
NP 2

)
to o

(
N3 + P 6

)
and the size of the largest ma-

trix from P 2 × N to P 2 × P 2, where N is the number
of noise parameters stacked in σn.

This idea was therefore tested in Monte Carlo sim-
ulations. For these simulations, a five armed array was
defined, each arm being an eight-element, one wave-
length spaced ULA. The first element of each arm
formed an equally spaced circular array with half wave-
length spacing between the elements. The source model
is presented in Table 1. This source model was gener-
ated with a random number generator to verify that the
proposed approach works for arbitrary source models.

Figure 5 compares the variance on the estimates for
the omnidirectional complex gains of the receiving ele-
ments and the source powers obtained after 100 runs of a
Monte Carlo simulation with weighted LS estimation of
σ̂n and the computationally more efficient unweighted
LS estimation of σ̂n. The complex receiving element
gains and the source powers, stacked in θ, were esti-
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Figure 5: Comparison of the variance on the direc-
tion independent complex gain and the source power
estimates obtained in Monte Carlo simulations with
weighted LS estimation of σ̂n and unweighted LS es-
timation of σ̂n.

mated using weighted least squares in both cases. Both
algorithms generally converged within three iterations
to relative error per parameter of ∼ 10−4, i.e. well below
the Cramèr-Rao bound. The convergence rate in these
simulations was one digit per iteration down to the nu-
merical accuracy provided by double precision floating
point numbers.

The results indicate that the variance on these esti-
mates is the same in both cases within the accuracy
provided by the simulations. We therefore conclude
that it is viable to discard the weighting in Eq. (7).
With this modification all 860 free parameters in the
experiment described in the previous section could be
extracted from the actual data using Matlab running
on a standard dual core 2.4 GHz CPU in only 0.4 sec-
onds. This implies that a single 2.4 GHz core can keep
up with the data from the correlator at the LOFAR
station, which real-time correlates the antenna signals
for a single subband with one second integration time.
This update rate is required to track variations in the
electronic gains and the ionosphere.

6. CONCLUSIONS

We have demonstrated using data from a LOFAR proto-
type station that the effects of noise coupling, receiver
noise powers and extended emission on a radio astro-
nomical phased array can be phenomenologically de-
scribed by a non-diagonal noise covariance matrix with
non-zero entries on short baselines. These entries can be
computationally efficient and accurately estimated by a
WALS algorithm alternating between estimation of the
correlated noise parameters and calibration parameters.
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