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ABSTRACT 

We present a novel approach to modelling time-variant 

harmonic content in audio signals. We show that both ampli-

tude and fundamental frequency time variations can be 

compactly captured in a single time polynomial which 

modulates the fundamental harmonic component. A correct 

estimation of the fundamental frequency is assured through 

the fully automated spectral analysis method (ASA).The 

best-fit is easily obtained by linear least-squares, given the 

fact that the set of equations is linear-in-parameters. In con-

trast to the existing methods, the proposed approach is de-

signed to properly describe harmonic structures in audio 

signals under conditions of both AM and FM modulations 

and low signal-to noise ratios. 

 

1. INTRODUCTION 

Most audio signals are efficiently described by time-varying 

harmonic structures plus additive noise. The harmonic mod-

elling, usually referred to as the detection and estimation of 

the harmonic parameters, is a key issue in audio signal proc-

essing. It has been widely used in signal synthesis, compres-

sion, transformation etc. 

Modelling of the harmonic content of audio signals has 

often been carried out by least-squares (LS) solution of sets 

of linear equations derived from minimizing the mean square 

error (MSE) between the original and estimated signal [1, 2]. 

They first obtain the fundamental frequency estimate by 

some non-linear search and then compute the parameters 

estimate by means of linear LS. Those equations are linear-

in-parameters and therefore the computational effort is small 

even for a large number of harmonics. The modeling errors 

are/or an underlying assumption of quasi-stationarity are, 

however, the principal drawback of these methods. 

Another approach to harmonic modelling is based on the 

analysis of the signal’s STFT or some other conveniently 

chosen time-frequency representation. Typically the har-

monic features are detected in the spectrum on a local level 

by examining spectral peaks [3, 4]. Next, the harmonic pa-

rameters are estimated from the peaks considered sinusoidal 

[5, 6] and then some harmonic consistency over the time is 

enforced to obtain time-varying partials [7, 8]. The fact that 

there is no need for an a priori knowledge about the funda-

mental frequency makes these methods attractive not only for 

harmonic, but also for more general sinusoidal modelling. 

Although the estimation of the harmonic components can be 

done in a very efficient way, the overall performance still 

strongly depends on the correct detection of the harmonic 

components in the time-frequency representation. 

A statistical approach [9] deserves to be mentioned too. 

It implements a Bayesian network with a particular prior 

structure, built from conditional probabilities which establish 

the relationship among the harmonic parameters. Apart from 

the strong computational complexity, a large number of pa-

rameters that must be a priori known make the algorithm 

highly application dependent. 

Herein we describe a novel approach to time-variant 

harmonic modeling, which differs substantially from the 

aforementioned methods in the following aspect. Under the 

assumption of the fundamental frequency variation around 

some mean value F0 within the analysis window, we model 

both AM and FM by a single time polynomial. The F0 esti-

mation is a critical step due to the presence of modulations 

and noise. It is, however, efficiently performed by the fully 

automated spectral analysis method (ASA) [10], based on 

iterative leakage reduction in the discrete spectrum of an 

audio signal. In addition, the ASA behaves very well in con-

ditions of low signal-to-noise ratios, which improves sub-

stantially the harmonic approximation. Once F0 is estimated, 

the rest of the harmonic parameters can be easily estimated 

from a linear least-squares (LS) cost function which is linear-

in-parameters. 

The present paper is organized as follows: in Section 2 

we propose a harmonic model used to describe amplitude 

and frequency time-variations in audio signals. Section 3 is a 

summary of the fully automated spectral analysis method 

used to estimate the mean fundamental frequency F0. In Sec-

tion 4 we pose the estimation problem as linear LS. In Sec-

tion 5 we present a comparative study among different meth-

ods together with an illustrative example. The conclusions 

appear in Section 6.  
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2. THE HARMONIC MODEL  

A general model for single-source N-sample discrete audio 

signals is given by the following expression: 
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The deterministic part is given as a superposition of I har-

monically related components with time-variant amplitudes 

and frequencies, while the additive disturbance r(n) is typi-

cally a Gaussian sequence or colored noise. The model (1) is, 

strictly speaking, unidentifiable because we have N meas-

urements for estimating I(N + 1) + N parameters. We, how-

ever, assume that the harmonic parameters evolve continu-

ously and slowly in the time domain, the fact which is satis-

fied for most real-world audio signals. 

By applying the trigonometric identity regarding sum of 

angles we can rewrite (1) as follows: 
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The parameters ai(n), bi(n) and F0(n) are time-variant func-

tions and are often modelled by polynomials or sets of basis 

functions. As common in harmonic modelling, we will as-

sume that the amplitude and fundamental frequency vary 

approximately linearly along the analysis window: 
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By substituting (4) and (5) into (2) and applying again the 

trigonometric identities regarding sum of angles, we obtain a 

linear combination of sine/cosine products with the argu-

ments 2πF0n and 2πβn
2
 and corresponding amplitude 

weights. This form is not suitable for harmonic parameter 

estimation, but a simplification can be done based on the 

following argumentation.  

In most real-world audio signals, the harmonic compo-

nents generated by a combined action of AM and FM often 

pose serious difficulties to analysis. Among them, the vibrato 

signals are perhaps the most representative, as they usually 

contain quasi-sinusoidal AM and FM mutually coupled in an 

arbitrary way. For a well-performed vibrato, a typical fre-

quency deviation is a quarter tone, i.e. 3% fundamental fre-

quency (pitch) variation or 50 cents [11]. If we model a quar-

ter of the vibrato FM period by the linear trend (5), we may 

use the following approximations: 
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By means of the last expression, we can rewrite (2) as: 
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Regarding the last expressions, a few important things need 

to be stressed.  In spite of modelling the amplitude and fre-

quency variations as separate polynomials (4), the last ex-

pressions describe them in a more compact way through a 

single polynomial. In addition, the expressions (8) can be 

given a deeper interpretation through the concept of covari-

ance for signals.  

Let us recall that the covariance between two arbitrary 

time-variant signal parameters x = x(t) and y = y(t) is defined 

as the following combination of time averages [12]: 
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In (9) all the averages are calculated with respect to signal’s 

normalized energy time density. In a view of (9) and by as-

signing the time origin to the geometric centre of the analysis 

window, we can rewrite (8) as: 
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We observe that each polynomial captures the harmonic pa-

rameters’ dynamics by modelling its coefficients through the 

covariance terms describing the amplitude time-variations 

(Cat, Cbt), frequency time-variations (Cft) and mutual ampli-

tude-frequency variations (Caf, Cbf). The parameter σT
2 
is the 

duration of the analysis window. These polynomials, hence, 

provide a rough estimate of the variation trends in the signal. 

This property can be very useful in applications where only 

an overall measure of variation is needed without an a priori 

knowledge about the harmonic parameters. 

The models (4) and (5) can be extended to 2-order poly-

nomials. The approximation (6) remains valid and accord-

ingly, the polynomials (8) increase in order. It can be shown 

that the new coefficients can also be expressed as in terms of 

covariance similar to (10). We will, however, omit this step 

because it is not necessary in the context of the present appli-

cation.  

 

3. F0 ESTIMATION – THE ASA METHOD 

There are various strategies that aim to estimating the 

fundamental frequency of quasi-harmonic signals in either 

time or frequency domain e.g. [13]. They all try to evaluate 
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the periodicity hypothesis in the search range. However, they 

often shift from the optimal performance due to noise or/and 

subharmonic errors. Non-linear F0 estimates [10, 14] are 

potentially good candidates for our goal. They use different 

non-linear search procedures to yield the desired estimate. 

We have opted for the fully automatic spectral analysis 

(ASA) method [10]. The choice was motivated by the fact 

that the ASA performs the F0 estimation independently of the 

rest of the harmonic parameters. Although it has been devel-

oped for periodic signals, it has been proven heuristically to 

work well for most real-world audio signals which are inher-

ently non-periodic. We summarize in the following para-

graphs only the main features of the algorithm. 

 

3.1 Initial F0 estimate 

 

The initial estimate is performed through the classical corre-

lation-based method. The goal is to detect the distance be-

tween the successive peaks in the autocorrelation sequence of 

the audio signal. In case of a wideband signal with a flat 

spectrum, the estimate will be correct. However, this ap-

proach will fail in many special cases regarding narrow-band 

signals. In order to handle properly this kind of signals, the 

correlation method has been refined as follows. 

 

3.2  Improved F0 estimate 

 

From the initial F0 estimate, we know that the analysis win-

dow cover more than M periods of the signal s(n). In addi-

tion, the signal itself is not strictly periodic, because of the 

time-varying harmonic parameters. Consequently, the DFT 

analysis of the signal will produce a discrete spectrum S(k) 

with leakage. Nevertheless, we make use of this spectrum to 

define a particular measure of periodicity through the follow-

ing cost function: 

 

( )
( )

( )∑

∑

=

=

−++
=

N

k

N

k

FMkS

FMkSFMkS

FV

1

2

0

1

2

0

2

0

0

,

,1),1(
   ,     (11) 

 

where F0 is the fundamental frequency of the signal to be 

estimated. The function V(F0) expresses the ratio of the 

power at the harmonic and non-harmonic frequencies. Ac-

cordingly, the estimate of F0 is defined as: 
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The minimization problem in (12) is non-linear in F0, hence a 

non-linear search is used. Since V(F0) can have various local 

minima, the search is split in coarse search by scanning the 

cost function around the initial guess. The final estimate is 

obtained by a fine search based on parabolic interpolation. 

The algorithm converges rapidly in usually only a few itera-

tions. More details on the algorithm performance can be 

found in [10]. 

 

4. LS PARAMETER ESTIMATION 

Once F0 is estimated, the coefficients of the polynomials ps
(i)
 

and pc
(i) 
are estimated by LS as they are linear-in-parameters: 
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 Assuming that the data is available at times (n - N, ..., n), the 

following regression equation results: 
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The vectors s and r contain the input data and additive noise 

respectively. Accordingly, the LS estimate LSp̂  is given by: 
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5. EXPERIMENTAL RESULTS 

In this section we quantitatively evaluate the efficiency of 

the proposed harmonic modelling approach through a com-

parative study. The comparison reference methods are cho-

sen to be [1] (from now on the Time-variant LS) and [3] 

(from now on the Peak selection method), as they represent 

completely different approaches to harmonic modelling. 

The Time-variant LS models the harmonic component of 

an audio signal by means of a two-level LS algorithm. In the 

first level the fundamental frequency variation within the 

analysis window is estimated. In the second level this varia-

tion is incorporated into the harmonic model and the har-

monic parameters are estimated. The Peak selection method 

is based on spectral peak selection in the STFT of an audio 

signal. First a harmonic model is defined and the harmonic 

parameters are estimated for each peak in the STFT. From 

those parameters the corresponding harmonic component is 

generated and its spectral peak calculated. Finally, the origi-

nal and estimated peak are compared through a complex 

correlation and if the maximum of the correlation if above a 

certain threshold, the component is considered harmonic. 
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Figure 1 – Harmonic approximation mean square error (MSE). The 

SNRp is expressed with reference to the smallest harmonic. 

 

 

From all possible modulation laws we have chosen the sinu-

soidal amplitude and frequency modulation for the test sig-

nal. The choice is motivated by the fact that a wide range of 

FM and AM conditions can be covered. For example, if the 

window size is significantly smaller than the modulation 

period then our model creates approximately linear FM and 

AM. Otherwise, we get a vibrato-like signal component. The 

phase relationship between the modulation laws for the real-

world vibrato signals will in general be arbitrary [11, 15]. 

Because part of the AM modulation is induced by the FM 

and the resonator filter of the sound source, the dominant AM 

rate may either be the same as the FM rate, or twice as high. 

As the letter case is more critical, we chose it for our model. 

Accordingly, the test signal st(n) is defined as follows: 
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According to the aforementioned discussion, we set FAM = 

2FFM.. In order to guarantee the correct operation of the Peak 

selection method we must assure the presence of the domi-

nant mainlobe at the harmonic frequencies in the STFT. If L 

is the size of the analysis window, then this constraint is ac-

complished by letting AAM = 0.5, AFM  = 2 and FFM = (4L) 
-1
 

for arbitrary combinations of α, γ and δ in the range (-π, π). 

The noise impact in (20) is controlled in an intuitive way 

through the Peak Signal-to-Noise ratio (SNRp) which we 

define as the peak power of the smallest harmonic above the 

neighbouring noise floor. The DFT size NFFT is chosen in 

such a way to assure that the Picket-Fence effect has minimal 

impact on a peak representation in the discrete spectrum. The 

remaining parameters do not have any impact on the result,  

 
Figure 2 – Residual energy in the harmonic subbands. 

 

 

so they can be chosen arbitrary (e.g. L = 20ms, NFFT = 4096, 

Fo = 1kHz, Sampling rate = 44 kS/s). 

In order to evaluate the performance of the methods we 

let the SNRp vary in range [0, 30]dB and for each value we 

calculate the MSE of the approximation over 100 realiza-

tions. The resulting curves are plotted on Figure 1. We ob-

serve that the proposed and Peak selection method follow a 

similar trend but the proposed method is clearly better for 

low SNRp. This is due to the fact that the Peak selection 

method is no longer able of making a clear distinction be-

tween harmonic and noise peaks. The Time-variant LS pro-

duces an approximately constant MSE along the analysis 

range. This comes from the fact that amplitude modulation is 

not accounted for in this method. Hence, we have a superpo-

sition of modelling and measuring errors. 

Next we want to examine the approximation error along 

the frequency grid. For SNRp = 0dB we divide the spectrum 

corresponding to the harmonic band in 10 subbands. Then for 

each subband delimited by the DFT indices (ki, ki+1) we cal-

culate the residual energy ER
(i)
 as follows: 
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where H(k) and ( )kĤ  are the DFTs of the harmonic part in 

(20) and its approximation respectively. Accordingly, the 

mean residual energy variation over 100 realizations is 

shown on Figure 2. The Peak selection method reaches the 

performance of the proposed method only in the lowest sub-

band. The residual error is maximal at the highest subband 

for both methods, due to the maximal modulation and mini-

mal SNRp. The time-variant LS approximation is dominated 

by the modelling errors and therefore the residual energy is 

fairly uniform over the analysis bandwidth.  

A representative example of the performance of the pro-

posed method is a japanese flute, whose time record contains 

a strong convolutive noise (air flow) and very complex fre-

quency and amplitude variations over time. The analysis re-
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sults are shown on Figure 3. The proposed method captures 

the harmonic time-variation trend, even at the time instants 

where the parameters change abruptly. In addition, the per-

ceived approximation quality is high, as the listening con-

firms that there are no audible artefacts in the residual signal. 

 

6. CONCLUSIONS 

We have proposed a compact and computationally efficient 

description of time-variant harmonicities in audio signals 

through a single polynomial that captures both amplitude 

and frequency variations and an equivalent stationary fun-

damental harmonic component. The estimation of the mean 

fundamental frequency is performed by a noise-robust algo-

rithm which significantly improves the original LS estima-

tor. The performance of the proposed method has been 

tested against techniques belonging to different approaches 

to harmonic modelling. According to the experimental re-

sults, the proposed method achieves the best performance 

for vibrato-like signals in noisy conditions. Its performance 

has also been tested for a variety of real-world audio signals, 

among which an illustrative example is shown. 
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