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ABSTRACT

The robustness of classification of isolated phoneme segments us-
ing generative classifiers is investigated for the acoustic waveform,
MFCC and PLP speech representations. Gaussian mixture models
with diagonal covariance matrices are used followed by maximum
likelihood classification. The performance of noise adapted acous-
tic waveform models is compared with PLP and MFCC models that
were adapted using noisy training set feature standardisation. In the
presence of additive noise, acoustic waveforms have significantly
lower classification error. Even for the unrealistic case where PLP
and MFCC classifiers are trained and tested in exactly matched noise
conditions acoustic waveform classifiers still outperform them. In
both cases the acoustic waveform classifiers are trained explicitly
only on quiet data and then modified by a simple transformation to
account for the noise.

Index Terms— Speech Recognition, Robustness, Generative
Classification, Phoneme, Acoustic Waveforms

1. INTRODUCTION

One of the key problems in automatic speech recognition (ASR) is
to find phoneme classification methods that are robust to additive
noise. ASR systems can attribute much of their performance to lan-
guage and context modelling, the principle being that classification
errors made by the front-end can be remedied at a higher level [11].
Clearly, this approach can only decode messages sent via speech sig-
nals if the input sequence of elementary speech units is sufficiently
accurate. In the extreme case where the predicted input sequence
is close to random guessing no useful information can be extracted
at the later stages of recognition. Indeed, it has been observed that
most of the inherent robustness of human speech recognition occurs
early in the process, without access to context and language process-
ing, e.g. already at−18dB SNR humans can still recognise isolated
speech units above the level of chance [9]. The ultimate aim for an
automatic speech classifier is to achieve performance close to that of
the human auditory system in severe noise conditions. Developing
methods for phoneme recognition, and the closely related problem
of classification, that are robust to additive noise is a major step to-
wards achieving that goal.

The current preferred speech representation is generally some
variant of mel-frequency cepstral coefficients (MFCCs) [11] or per-
ceptual linear prediction features (PLP) [6]. These representations
are derived from the short term magnitude spectra followed by non-
linear transformations that model the processing of the human au-
ditory system. They have the advantage of removing such variation
from speech signals as is considered unnecessary for recognition and

have a much lower dimension than acoustic waveforms. This can al-
low for more accurate modelling when data is limited. However,
it is not known whether this dimension reduction loses some infor-
mation that gives communication by speech its inherent robustness.
The alternative approach investigated in the paper is to use directly
the acoustic waveform representation where the high dimensional
space may give greater separation of the distributions of the differ-
ent phonemes. If this is the case, classification from such represen-
tations should be more robust to additive noise. Additionally, noise
modelling in the acoustic waveform domain is exact compared to
approximations required for front-end representations which involve
nonlinear processing.

In the following study Gaussian mixture models (GMMs) have
been used to estimate the class-conditional densities of phonemes in
all three representations considered: acoustic waveforms, PLP and
MFCC. Classification in the presence of noise is performed using
speech models adapted to account for particular noise conditions.
Exact modelling of noisy data, given models trained in quiet and
noise statistics, is straightforward in the acoustic waveform domain,
and these exact models are used for classification of acoustic wave-
forms degraded by additive noise. Nonlinearities and dimension re-
duction involved in PLP and MFCC feature extraction make exact
modelling of noisy speech in these two feature spaces very intricate.
Hence, for classification in the PLP and MFCC domains, two ap-
proaches to noise adaptation are considered: a realistic one where
PLP and MFCC models are trained in quiet conditions and then
tested on features standardised [7] using the statistics of a training
set that matches the testing conditions; and the unrealistic ideal ap-
proach where a separate model is trained for each noise condition
and then the model that matches the testing condition in each case is
used. This matched condition scenario is taken as an optimal base-
line [12] for the MFCC and PLP representations. In order to give a
fair comparison of this new approach to existing work we evaluate
standard baseline classifiers with and without time derivatives.

The work presented in this paper significantly develops the ex-
periments of our initial pilot study [1]. In that study we concentrated
on a select subset of six phonemes, with the noise level fixed at the
phoneme level. The data was extracted exactly from the centre of
each segment and stops were exactly aligned at the release point.
The PLP baseline used there did not include delta and delta-delta
features. Additionally a PLP-waveform combined classifier was re-
quired to achieve adequate performance in low noise conditions.

The following experiments are more realistic, namely we have
extended the ideas from [1] to the TIMIT core test set making our
results directly comparable to existing benchmarks on the task. Here
the signal to noise ratio (SNR) is specified at the sentence level, con-
sequencely the local phoneme level SNRs will necessarily vary. Fur-
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thermore the baseline is more stringent, i.e. results for MFCC and
PLP with deltas and delta-deltas are considered. We also study three
noise types, white, pink and speech weighted noise with model av-
eraging to reduce the dependence on the number of model compo-
nents. We see that the noise adaptation of the acoustic waveforms
classifiers extends well to these more realistic conditions, even when
the noise spectrum is estimated.

The results show the acoustic waveform representation to be sig-
nificantly more robust to both white and pink noise than MFCC or
PLP classifiers adapted using feature standardisation. The improve-
ment is most significant at 12dB SNR when the absolute reduction
in classification error rate compared to PLP is 17.6%. Even in the
unrealistic case of matched condition training and testing for MFCC
or PLP, acoustic waveform classifiers reduce the absolute error by
11.1% at 0dB SNR. Performance in pink noise is similar and al-
though speech weighted noise is more challenging, acoustic wave-
forms still have lower error rates for all noise types below 18dB
SNR.

2. GENERATIVE CLASSIFICATION IN THE PRESENCE
OF ADDITIVE NOISE

Generative classification is particularly suited for robust speech clas-
sification as the estimated density models can capture the distribution
of the noise corrupted phonemes. There are two approaches to de-
rive the noisy class densities from data. The first method takes clean
training data and corrupts it with generated noise followed by den-
sity estimation. Although this procedure will give good estimates
with large datasets it has the obvious drawback that training must be
repeated for each noise condition. The second approach combines
density models of the clean training data and noise statistics that
have been estimated independently. A clear advantage here is that
the training data densities only need to be estimated once. However,
such model combination methods can only be used where they are
computationally tractable.

With that in mind we focus on acoustic waveforms, a speech
representation where additive noise trivially acts additively. It im-
mediately follows that the signal and noise distributions can be com-
bined exactly by convolution. We considered white Gaussian noise,
pink noise sampled from the Noisex-92 database and Gaussian noise
generated to have the speech-weighted spectrum described in [10].
In all cases a range of noise levels were tested, parameterised by the
global wideband SNR.

Without assuming any additional prior knowledge about the pho-
neme distributions we use Gaussian mixture models to estimate the
class densities. We have chosen to train the models using maximum
likelihood methods, in order to have a standard training platform on
which the three different speech representations can be fairly com-
pared. Other, discrimative, training objectives could be considered
in due course, for example the large margin methods [13] that have
recently shown promise.

In general a large number of parameters are required to spec-
ify GMMs, namely the mean, covariance matrix and weight of each
component in the mixture. The number of parameters can be reduced
by using diagonal covariance matrices. This will be a good approxi-
mation provided the data are presented in a basis where correlations
between features are weak. For the acoustic waveform representa-
tion, this is clearly not the case on account of the strong temporal cor-
relations in speech waveforms. We therefore systematically investi-
gated candidate low-correlation bases derived from PCA, wavelet
transforms and DCTs. Although the optimal basis for decorrelation
is indeed the set of principal components, this initial investigation

showed that the lowest test error is in fact achieved with a DCT ba-
sis. The parameter count of the waveform models can be further
reduced by observing the sign-invariance property of speech signals;
it follows by symmetry that the phoneme distributions can be con-
strained to have zero mean. Hence the waveform classifiers use only
diagonal covariance and mixture weight information.

One of the standard approaches used to select the number of op-
timal number of components in a mixture model is to minimise the
classification error on a development set. As an alternative we in-
vestigate taking a model average (see e.g. [14]) over the number of
components, i.e. to calculate the mean likelihood across models for
a given data point. This gives uniformly better results in quiet condi-
tions and can be interpreted as taking a uniform mixture of the mix-
tures. It is computationally helpful because it removes the need to
optimise the number of components as a parameter during training.
More importantly, the model averaging also gave better performance
in all noise conditions, where it improved on any individual mixture.

With the models trained, classification is performed by predict-
ing the class with the maximum likelihood weighte by the prior prob-
abilities. The classification functionC(x) that maps a test pointx to
a corresponding class label is defined as

C(x) = arg max
c=1,...,k

L
(c)(x) + log(πc) , (1)

whereL(c)(x) is the log likelihood ofx given the model for class
c andk is the total number of classes.πc is the prior probability of
classc, computed as the relative proportion of class c in the training
dataset.

Local time alignment is an additional issue for acoustic wave-
forms. It would clearly be beneficial for the purpose of density mod-
elling to align the data in a consistent manner; however, it is not
straightforward to even define such an optimal alignment precisely.
Rather than attempting to explicitly align the acoustic waveform
data, a sliding window with a 1.6ms shift over a range of±3.2ms
was therefore used. This gives 5 shifted instances for each represen-
tativex. The log likelihood of the test pointx is then taken as the
log mean likelihood [1] taken over the shifts:

Ls(x) = log
“ 1

2n + 1

n
X

p=−n

exp(L(xp∆))
”

(2)

where∆ (=1.6ms) is the shift increment,[−n∆, n∆] is the shift
range (n = 2 in our case), andxp∆ denotes a time-shifted versions
of x. Explicitly, xp∆ is the segment of the same length and extracted
from the same acoustic waveform asx but starting from a position
shifted byp∆ in time. These modified log likelihoods are compared
among the different classes to produce the classification. As MFCC
and PLP use frames of magnitude spectra that are not sensitive to
local time alignment there is no benefit in considering a similar aver-
aging over shifts in these two domains; this was also experimentally
verified.

We now consider the problem of noise adaptation for the differ-
ent representations. One of the key advantages of the waveform rep-
resentation is that the fitted density models can easily be modified to
account for the presence of additive noise. Assuming that the noise
power spectrum is known or can be estimated reliably, we simply
need to perform a convolution with the appropriate Gaussian noise
model. In this work we assume Gaussian noise of known variance
σ2; the resulting adapted density model has component covariance
matricesC̃ given by

C̃(σ2) =
C + σ2

N

1 + σ2
, (3)
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where1 + σ2 is a sentence-level normalisation factor as explained
in Section 3.N is the covariance matrix of the noise, normalised to
have traced. For white noise,N is the identity matrix, otherwise it
has been estimated empirically from noise samples.

As MFCC and PLP features are highly non-linear transforms
of the waveform data it is not possible to combine models of the
training data and noise exactly. For MFCC an approximate combi-
nation [4] is possible. An alternative approach is to use models that
are trained in quiet conditions and then tested on features standard-
ised [7] using the statistics of a training set that matches the testing
conditions. The other, less realistic, scenario we also consider is
matched conditions. Here training and testing noise levels are the
same, with a separate classifier trained for each noise condition.

3. DATASETS

Realisations of phonemes were extracted from the SI and SX sen-
tences of the TIMIT database [5]. The training set consists of 3,696
sentences sampled at 16kHz. Each sentence is then normalised to
have on average unit energy per sample. Noisy data is generated
by applying noise samples additively at nine SNRs followed by the
same average unit energy per sample normalisation. This ensures
that the level of the input to the classifier is consistent and realistic.
The SNRs were set at the sentence level and it is important to note
that the local SNR of the individual phonemes may then differ signif-
icantly from the set value. In total ten testing and training conditions
were run;−18dB to30dB in 6dB increments and quiet (Q).

Following the extraction of the phonemes there are a total of
140,225 phoneme realisations. The glottal closures are removed and
the remaining classes are then combined into 48 groups in accor-
dance with [8, 13]. This is done to improve modelling by merging
similar classes. Even after this combination some of the resulting
groups have too few realisations. The smallest groups with fewer
than 1,500 realisations were increased in size by the addition of
shifted versions of the training data, as described – for the purpose
of testing – in Section 2. These additions allow a greater number of
mixture components to be reliably fitted and gave a small improve-
ment for the acoustic waveform classifier of 0.6% when tested in
quiet conditions.

MFCC and PLP features are obtained in the standard manner
from frames of width 25ms, with an overlap of 15ms between neigh-
bouring frames. A standard implementation [3] of MFCC and PLP
with default parameter values is used to produce, from each frame,
a 13-dimensional feature vector. (With the inclusion of first and sec-
ond time derivatives this dimension increases to 39.)

Phonemes are extracted using the standard TIMIT segmentation.
Our previous work gave successful classification using a 64ms win-
dow. For the MFCC and PLP representations, we therefore consider
the five frames closest to the centre of each phoneme and concate-
nate their feature vectors to give 65-dimensional vector. In addition
standard practice dictates that first and second time derivative fea-
tures should be appended to the representation. We show results for
both representations, those with and those without the time deriva-
tives giving dimensions of 195 and 65 respectively.

For comparison, each sentence was divided into a sequence of
10ms non-overlapping frames to give the acoustic waveform rep-
resentation, with the seven frames (70ms) closest to the centre of
each phoneme resulting in a 1120-dimensional representation. The
frames are individually processed using a 10ms DCT. A framewise
DCT was used instead of a DCT over the full 70ms window as it
gives a finer time resolution to capture features that are not station-
ary over that period. This DCT representation is nothing more than
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Fig. 1. Model averaging for acoustic waveforms, PLP and MFCC
models, all trained and tested in quiet conditions. Dashed: GMMs
with number of components shown; solid: average over models up
to number of components shown. The model average reduces the
error rate in all cases.

an orthogonal transformation of the original waveform segment and
therefore the noise adaptation of (3) remains valid in the transformed
domain for the case of white noise. The adaptation readily gener-
alises to arbitrary coloured Gaussian noise; full covariances matri-
ces would then in principle be required for the noise contribution on
the right hand side of (3). We present results for two other noise
types and see that this approximation using diagonal covariances in
the DCT basis is sufficient to give good performance.

4. RESULTS

In the experiments Gaussian mixture models were tested with up
to 64 components for all representations. We comment briefly on
the results for individual mixtures, i.e. fixed number of components.
Typically performance on quiet data improved with the number of
components, although this has significant cost for both training and
testing. The optimal number of components for MFCC and PLP
models in quiet conditions was 64, i.e. the maximum considered
here. However, in the presence of noise the lowest error rates were
obtained with few components; typically the error rate stopped de-
creasing for mixtures with more than 4 components.

As explained above, rather than working with models with fixed
numbers of components, we averaged over models, i.e. over the
number of mixture components, in all the results reported below.
Figure 1 shows that the improvement obtained by this in quiet condi-
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Fig. 2. Comparison of adapted acoustic waveform classifiers in the
DCT basis with MFCC and PLP classifiers trained in quiet condi-
tions adapted by matched feature standardisation. All classifiers use
the model average of mixtures up to 64 components. When the SNR
is less that 24dB, acoustic waveforms are the significantly better rep-
resentation; with an error rate below chance even at -18dB SNR.
Dotted line indicates chance level at 93.5%.

tions is approximately 2% for both acoustic waveforms and PLP with
a small improvement seen for MFCC also. We checked (data not
shown) that the model average likewise improved results in noise.

Our key results comparing the error rates for phoneme classi-
fication in the three domains are shown in Figure 2. The MFCC
and PLP classifiers are adapted to noise using feature standardisa-
tion. This method is comparable with the adapted waveform models
in so much as it only requires knowledge of the noise spectrum and
the models trained in quiet conditions. The curve for acoustic wave-
forms is for models trained in quiet conditions and then adapted to
the appropriate noise level using (3). We see that in quiet condi-
tions the PLP representations gives the lowest error. The error rates
for MFCC and PLP are significantly worse in the presence of noise,
however, with acoustic waveforms giving an absolute reduction of
37.0% and 35.0% compared to MFCC and PLP respectively, both
with delta and delta-deltas at 0dB SNR. These results strengthen the
case that the adaptability of acoustic waveform models gives them a
definite advantage in the presence of noise with the crossover point
occuring above 30dB SNR. Curves are also shown for MFCC and
PLP with deltas and delta-deltas. Again the same trend holds; per-
formance is good in quiet conditions but quickly deteriorates as the
SNR decreases. The cross-over point is around to 24dB for both rep-
resentations. The chance-level error rate of 93.5% can be seen be-
low 0dB SNR for the MFCC and PLP representations without deltas
and below 6dB SNR when they are included, whereas the acoustic
waveform classifier performs significantly better than chance with
an error of 76.7% even at -18dB SNR.

The curves shown in Figure 3 compare the performance in white
Gaussian noise of MFCC and PLP models adapted using feature
standardisation with models that were trained in ideal matched con-
ditions where the sentence level SNRs of the training data are ex-
actly the same as those in testing. This is an unrealistic scenario that
should give the best performance for the chosen representation and
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Fig. 3. Comparison of training set standardisation with matched con-
dition training for PLP and MFCC. Training set standardisation is
more realistic as it only requires a set of transforms to be stored
rather than retraining the classifiers at each condition. Matched con-
dition training is expected to be optimal and accordingly improves
accuracy for both representations, but would be difficult to achieve
in practice.

noise level [12]. Even relative to this baseline, however, acoustic
waveforms perform better for all noise levels in our tests, with e.g.
an absolute improvement in error rate over MFCC and PLP of 9.3%
and 4.8% respectively at 0dB SNR. The cross-over occurs between
24dB and 30dB SNR.

The baseline results shown in Figure 3 do not include time deriva-
tives as no analoguous derivative features are used in the acoustic
waveform representation. Results for GMM classification on the
TIMIT benchmark have previously been reported in [13, 2] with
errors of 25.9% and 26.3% respectively. These studies use MFCC
features and first and second time derivatives. To ensure that our
baseline is valid we compared our experiment in quiet conditions for
PLP with first and second derivatives included and obtained a com-
parable error rate of 26.3%. Beyond validating our implementation,
this has implications for how fixed length representations are con-
structed from variable length phonemes. Previous work has concen-
trated on generating fixed length representations [2] via frame aver-
aging across the entire phoneme. We have instead used representa-
tions derived from windows of fixed length: in line with our eventual
goal of moving towards continuous speech recognition, these could
be implemented directly in existing continuous ASR systems. It is
then worth noting that the representation we have considered con-
tains only 5 frames (or less in the case of very short utterances) from
the centre of each phoneme, but performs essentially identically to
the frame averaging method of [2] where information across the en-
tire length of a phoneme is captured in the features.

Figure 4 shows a comparison of acoustic waveforms adapted to
white, pink and speech-weighted noise using (3). Similar results are
obtained in white and pink noise although the effect speech-weighted
noise is most significant below 18dB SNR. The curves are compared
to PLP with deltas and delta-deltas using training set statistics that
match the test conditions. We see that the error rates for the PLP
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Fig. 4. Comparison of performance in pink noise and speech-
weighted noise of adapted acoustic waveform classifiers in the DCT
basis with PLP classifiers trained in quiet conditions adapted by
matched feature standardisation. All classifiers use the model av-
erage of mixtures up to 64 components.

classifier is similar for speech-weighted noise, although the best per-
formance crosses to acoustic waveforms below 18dB SNR.

In order to have a direct comparison with the existing delta and
delta-delta results we must develop analoguous derivatives in the
acoustic waveform domain. Alternatively we are currently inves-
tigating the use of additional consecutive frames to include the extra
information used by the deltas.

5. CONCLUSIONS

This study has compared phoneme classification using generative
classifiers, by considering the MFCC, PLP and waveform represen-
tations. Our results show that the waveform representation is more
robust than PLP or MFCC in the presence of three types of noise. We
emphasise that this performance was achieved with a waveform clas-
sifier trained exclusively on quiet data, with the noise being included
via a simple transformation of the fitted class-conditional densities.
For MFCC and PLP, we firstly took classifiers that were likewise
trained on quiet data and adapted using features standardised on an
appropriate noisy training set. Here waveforms perform significantly
better in white Guassian noise improving by over 35% compared to
both MFCC and PLP at 0dB. The performance of the acoustic wave-
form classifiers is consistently better for SNRs less than 24dB.

In a second scenario, under matched training we allowed the
MFCC and PLP classifiers access to training data corrupted with
exactly the same noise distribution as in testing. Such idealised
conditions would clearly be difficult to achieve in practice, espe-
cially when dealing with general Gaussian rather than white noise
and where in principle separate MFCC and PLP classifiers would
need to be trained for a range of different noise power spectra. Even
compared to this stringent baseline performance from the waveform
classifiers is superior, with absolute improvements in white Gaussian
noise of 14.6% and 11.1% at 0dB with the performance cross-over
between 24dB and 30dB SNR.

Our study has shown that phoneme classification with improved
robustness to additive noise can be achieved in the acoustic wave-
form domain. The results support the conclusions and extend our
previous work [1] to more realistic and challenging conditions. There
are a number of directions for further development of the methods
demonstrated here. In particular the issue of finding an optimal basis
transformation for the waveforms could be generalised to be class
dependent, rather that using the same transform for all classes. It
would also be interesting to compare explicitly with the phoneme
sets used in experiments on human speech recognition [10]. We have
had obtained some promising preliminary results using the DCT rep-
resentation in conjunction with HMMs on such a consonant-vowel
classification task. Our future work is focused on extending the re-
sults to continuous speech recognition in the presence of noise.
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