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ABSTRACT on the unit circle.

The state-space realization of the multivariable rational _ 1he state-space realization of a transfer funct@(a) with m
interpolant with bounded McMillan degree is given by thedio MPUtS,moutputs andh states is denoted by
discrete-time Schwarz form. A characterization of the fhsi
realness of the block discrete-time Schwarz form is givenaby
linear matrix inequality.

G(z) =C(zI-A)"B+D.

The McMillan degree of the transfer functi@®z) is defined by the
size of the matriXA. We also use a notation

o[22

to denoteG(z). We note useful identities

1. INTRODUCTION

Given covariance matrices

[Ro Ru R ],

r -1 -1
consider the class of infinite extensions Gz = A-BD™C | —BD
| D | bt
Rni1,Rni2,Rays, - [ Ay B1Co | B1iD2
. . . G1(29G2(2) = 0 A B2
of the firstn+ 1 covariance matrices such that | 'Ci DiC, | DiD;

2. PRELIMINARIES
We review the Whittle-Wiggins-Robinson algorithm (WWRA) [

1
f(2):= ER0+R12‘1+R22‘2+-~,

is positive real. This is an well-known covariance extengioob-
lem[2, 10].

For applications to the spectral estimation, it is commatt the
spectral density is a rational model [11], and that less dekxily of
the rational model is required for some applications [2]efifore,
it is desirable to incorporate a degree constraint on a peteniza-
tion of the positive rational extensions of the covarianegugnce.
If the positive realness constraint is removed, a pararnzetén of
all solutions to the scalar interpolation problem with bded de-
gree is given in [2, 5]. The generalization of [2, 5] to the tivalri-
able case is given in this paper, where the coprime factiioizs
by matrix orthogonal polynomials [1, 12] describe the pasgari-
zation of the interpolants with bounded McMillan degree.

In this paper, we show the state-space realization of trempear
terization of the multivariable interpolants with boundédMillan
degree by the block discrete-time Schwarz form [7, 4]. Tlaest
space realization is the generalization of the result osttsdar case
[5]. We also present a characterization of the positivenesd of
this parameterization by a linear matrix inequality.

the theory of the matrix orthogonal polynomials [1, 12], sore-

sults of the block discrete-time Schwarz form [7, 4]. We show

a parameterization of the multivariable rational integoas with
bounded McMillan degree.

2.1 WWRA and Matrix Orthogonal Polynomials
Assume that the Toeplitz matrix

Ry Ri - Ry
rn+1: F\?l )
R - - R

is positive definite, and also assume tRat= 1. Consider the upper
Cholesky factorization of the Toeplitz matidg 1

M1 =Unt1Zn41Up 1,

. where
Notations
R andC denote real numbers and complex numbers. Denote by Qon 0 8
RI*K j x k real matrices.A* denotes the transpose of matAx | s Qn-1 -
denotesm x m identity matrix, and 0 denotes x m zero matrix. 1= : : :
We use the notation& > 0 andA > 0 to denote that the matrig 0 0 o Qo

is Hermitian positive definite and Hermitian positive seefidite.

The matrix square rock? of the Hermitian positive definite matrix andQo = I sinceRo = I. We denote the inverse bk, 1 by

Alis defined byA = AZAZ. Let us definef (2)* := f(z 1)T. The

function f (2) is called positive real if it is analytic in the the outside

of the closed unit disc, and it satisfies

f(z)+f(2* >0. 1)
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Similarly, let us consider the lower Cholesky factorizatiof the  Let us define
Toeplitz matrixl 1

= 1
Mot = 5l M)
M1 =Vas1Ans1Vi 1, ) 2 e Ml
[ R Rn
where _ .
_ | R
$ 0 - 0 - : .
(0] S_I. . 0 N _:
/\n+1 — . . L “ *_1 |
5 0 .- S 1 2R - 2Ry
0 0 Sh 0 | co 2Rn1
andS = I. We denote the inverse ¥f,,1 by Maia = Do :
0 O I
| 0 “e 0 B
1 Bn1 ' - 0 Then, the left matrix orthogonal polynomials of the secoimdilare
Vil = : : ol given by
Bnn Bnoin-1 o0 | Ca(2) | Cp1 - Chn zn|1
Then, it is well-known that the WWRA gives the solution to the Cn-1(2) _ 0 I Chana 2
Yule-Walker (YW) equation in a recursive way [9]. The sotutito : : : : : ’
the YW equation I 0O 0 - |
I Ani11 0 Aniin Aniinil | ) where
Bnrin+t Bnyin 0 Bny1t n - c
nl N
:{ Q1 0 - 0 O } 0 | - Cupint
0 0 -+ 0 S . . . = UnjrlanJrl
is given by 0 O I-
=Uph-
{ I Anr11 0 Angrin Angingl }
Bniint1 Bnyin - Bny1a Similarly, the right matrix orthogonal polynomials of thecond
B { | RSt } { | Ang - Aqn O } kind are given by
_p;QEll | 0 Bnn -+ Bpp | (1 Di@ - Dn(@ ]
Qni1=Qn—PS Py I Di; -~ Dpan
S1=Qn—PiQy P o a0 Pana
Ph=Rnt1+An1Rn+- -+ AnnRe. =1 ] S : ’
The initial values for the recursion are the following 0 0
Aii = -Ry where
Bii1 = -R; I Di; - Bﬁ,n
Q = 1+ALR; 0 I Dppa | MLy
. . . = Mhp1Vnia
S = I+BuiR. - :
_ _ _ o o0 -- |
The WWRA s equivalent to the theory of the matrix orthogonal o
polynomials [1, 12]. The left matrix orthogonal polynonsiaif the = Vg1

first kind are given by _
Then, the upper Cholesky factorization of the Toeplitz mélti 1

An(2) I An1 - Ann 2l is given by
An 1(2) 0O I - Ajraina 21 — - -
. = . " } , M1 =Unt1Zni1Uny g,
I- 0 O | |' and the lower Cholesky factorization 6f1+1 is given by
and the right matrix orthogonal polynomials of the first kiage M1 :\7r1+lAn+l\7r;F+1'
iven b
g y Those Cholesky factors give the solution to the YW equatibn o
[1 Bi(z) - Bn(@ ] M+1. The solution to the YW equation
! Bllal B?”sn I Cni1z1 -+ Ghian Cniinil |F )
=[1 z - 2] 0 L Dniintt Dnyin - Dny1z n
: _[Qu1 0 = 0 0
0 0 0 0 - 0 Syt
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is given by
| Cni11  GChran Chiinn
Dnizntt Dniin -+ Dni1z [
_ I ~-Th§ ! I Ch1 - Can O
T TRt | 0 Dnn -+ Dna |

Qni1=Qn—PS,'P;
Sht1=Qn—PRiQy P ~
Thn=Rn1+CriRn+--+CqynRe.

The initial values for the recursion are the following,

Cip = Ry

D11 = -R;
Q. = | +C171F\?£
S = 1+D11Ry.

We shall use.emmabelow.
Lemmal. [9]: Th = —F, holds.

2.2 Block Discrete-time Schwarz Form

We give a brief review of the block discrete-time Schwaravian
[7, 4]. Consider the YW equation &, 1

FEAIREEE

where
Uy = [ Bn7n Bn"]_ ]*
It gives
Uy = *rEan
S = 1-piMa on. @
Let us define
1 _*
Fn = /\r%VrT (Zn - Une;)vn_*/\n 2
= AV (Zn+T i on€ )V A 2 (3)
_1 _x
Kny1 = Qn’Ph& %,
where
0 0 00
I 0 0 0
7, = |0 0 0
00 )
en = [0 O -~ O I
We can verify
_1 _x
| —F Fn=An e[l — ol onjeiAn 2 @
and
_1 _*
&l —FiFn)en = €Anen[l —p;il, "onl€h/An 2en
_1 _x
= §4%85
= 1 —K!Kn.

The equation (4) implies that the matiig is almost orthogonal,
i.e., its firstn— 1 block columns form an orthogonal set and its last
block column is orthogonal to this set, but it is not normadiz This
and Hessenberg property force a particular structuré&priet us

define
Ko Kn KS
n-.-= Kr:I;Ok *Kﬁ ’

where the matriceKS, KT ¢ andKS are given by

KSKS = | —KnK};
Ki“Ki® = 1-KiKy
K = (KTOHGKS

The matrixKy, satisfies;iKn = 1.

Lemma 2. [4]: The block upper-Hessenberg matrix Batisfying
(4) can be expressed as

Ki KKz  K§KSKz -+ KEKS---KE ;Kn

KI® KKy, —K§KSKg -+ —K$KS---KS ;Ky

Fom | O K™ —K$Kg o —K3KE-KSiKn
0 0 o —KS_,Kn

We call this form of matrix the block discrete-time Schwarz
form as the natural generalization of the scalar case [7,#]e
salient feature oF, is the nesting property, i.ef,,1 hasF, in the
upper block. Let us define

1

gn =ANZViey, e:=[1 0 -~ 0 0]
Then, the covariance matrices are given by

R¢=0FXgn, k=0,....n—1.

2.3 Multivariable Rational Interpolation with McMillan De-
gree Constraint

We review the result of a parameterization of the multiialeaatio-
nal interpolants with bounded McMillan degree, which is gen-
eralization of the scalar case [2, 5]. A class of rationaktions to
be considered here is

f(z) = =N(z2M(2)~L. 5)
whereM(z) andN(z) aremx m matrix polynomials of degree.
We denote this class of rational functions %y.

Lemma 3. All functions in%;, of which power series expansion
begins with

1
5R0+Rlz‘1+~-~+an—”,

admit the right coprime factorization

f(2)= NE@ME) ™, ©

and the right coprime factors are parameterized by

M(2) Bn(2) +Bn_1(2)01+---+an
N(z) = Dn(2)+Dp-1(20a1+---+an,

where the matricesy € R™M, k=1,...,n, are free parameters.
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The proof is omitted due to the space limitation. The choice o It is equivalent to
the free parametegy =0, k= 1,...,n, yields the so-called maxi-

mum entropy interpolant [1], Ba(2 [ | Bi(?) Bn 1(2) |=ej(zl—F) 1, 9)
1 . and (9) implies
f(2) = 5Dn(@Bn(2) Bn(2) ! =€zl - Fn) ter (10)

Similarly, for the right matrix orthogonal polynomials dfe second
kind, we obtain

Dn(2~*[ | D1(2)

The matrixF, is obtained by replacing; by —K; of F, by Lemma
1. Due to the structure d¥,, this replacement does not affect any
element ofF, except for those in the first block row, which change

It is positive real, and maximize the entropy rate of the séc
density

m . ) =2 e “3(, _FEN-1
]I(f):%Kﬂlogde{f(e’%%—f(e'e)*]de. Pn-1(2) 1An * = &/ * (21 =Fo)™".

3. MAIN RESULTS

We give the state-space realization of the parameterizaitio
Lemma3 by the block discrete-time Schwarz form. We also give
a characterization of the positive realness of the paraimat®n

by a linear matrix inequality.

3.1 State-space Realization by Block Discrete-time Schwarz
Form

Let us define the normalized block discrete-time Schwannfor
Boi=An 2Ful\d,

and

Theorem 1. The state-space realization @) is given by
I - -
f@=5 +€Fn(zl—Fr+a€) Lo )

Proof. For the right matrix orthogonal polynomials of the first kind
consider the identity [3],

[Ba(®™t © 0]T=eyzl-F)*
where
FC = Zn—Une:fl
Izl Pty
0 | 22|
T = .
0 0

By (3), we obtain
[ Ba(®t © 0 TV " An? =€V *An 2 (21— Fn) L.

The left hand side of (8) is

®

%

0 ]TVy "An?
Br-1(2) |An2.

[ Ba(2t O

=Bn(27'[ | Bi(2

The right hand side of (8) is

&V An 2 (21— Fn) L = eiAn 2 (2 — Fn) L.

Thus, we obtain
Bn1(2) |An? = €An2(zl—Fn)~ L.

Bn(2 [ 1 Bi(2)

their signs. Thus, we conclude
Fn = Fn— 2e1€;Fn.
Let us define the normalized discrete-time Schwarz forrﬁ_nof

Fo = AnlFRA
=  Fn—2e€Fn. (11)
By multiplying a to (9), we obtain
Bn(2) Y[an+Bi(2)an_1+ - +Bn_1(2)a1] = €;(zl — Fy)a.
Thus,
M(2) = Bn(2)+Bn1(9a1+---Bi(z)an-1+0n
= Bn(2)[l +€,(zI—Fn)ta]. (12)
Similarly,
N(z) = Dn(2)+Dn 1(2)a1+---D1(2)an-1+0an
= Dn(2)[l +€(zl—F)ta]. (13)
By (10), the inverse of (12) is given by
M2t = [I+eizl—Fy) ta] 1Bn(2) !
_ _Ifnfae,’;|fa}{lfn|el}
& [T &0
[ Fn—aey —ae; | O
= 0 Fn e]_
G & |0
[ Fh—ae; Ole
= 0 Fnl &
T & ofo
_ ] 'fn—aerﬁ €
= | = 5
where we changed the coordinate of the state%tgly ll } Simi-

larly, by (11), the inverse of (13) is given by

N(Z)il — |: ﬁn_zeleiﬁn_ae; | €1 :|
e | O
We can verify that
[ Fi—2eigFn—ae,  2ei€) | e
N2 tf(z) = 0 Fn—a€ | e
| & 0 0
[ Fi—2e1gfF—ae;, 0 0
= 0 Fn—ae) |
i Ch & 10
_ [FR-ag|a
= 7= 3
-1

M(z)

396



where we changed the coordinate of the state% Ialy _ll } . O

3.2 Characterization of Positivity by Linear Matrix I nequality

A condition, which makes (7) positive real, is given by theelr
matrix inequality below. In [6], a similar result of anothearame-
terization of the solution to the Nevanlinna-Pick integdan prob-
lem is found.

Theorem 2. f(z), given by(7), is positive real if there exist B 0
andB € R™M™M gych that

P Pa PPy —e;
&P | &;Fn >0. (14)
FaP—enB” Frew P
Moreover, for given P ang@, we obtaina by
B =Pa. (15)

The linear matrix inequality gives

0<p<1

fp(pfl)(pfi

2
16)7[3 >0.

If p+#£ 0, then, the second inequality gives

B2 _qe. _(P=D(p—1p)
p? p
The right hand side takes the maximunpat 7, and, we obtain
9
2
< —.
“ =16

At each boundary value af, the parameterization (16) gives

Proof. By KYP lemma [8], (7) is strictly positive real if and only if

there exist$® > 0 anda such that

p-t er Fn— ae;
€ R eijFn > 0.
Fi—end® Fie P
P 0 O
Multiply | O | 0O | to both sides, we obtain
0 0 1
P Pe PF,—Pae;
. gP N €iFn >0.
FiP—ena*P Fieg P

12-1 3
flz) = 22 g=-2
@ = Gy a=y
1z+1 3
f -2 =2,
@ 27+1 2

Ata = f%, we realize the corresponding positive real function.
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LB
F
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i

p

p
1
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1
pi

Y
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