BLOCK DISCRETE-TIME SCHWARZ FORM OF MULTIVARIABLE RATIONAL INTERPOLANT AND POSITIVITY BY LINEAR MATRIX INEQUALITY

Yohei Kuroiwa
Royal Institute of Technology
100 44, Stockholm, Sweden
phone: +4687906660, email: yohei@kth.se

Abstract

The state-space realization of the multivariable rational interpolant with bounded McMillan degree is given by the block discrete-time Schwarz form. A characterization of the positive realness of the block discrete-time Schwarz form is given by a linear matrix inequality.

1. INTRODUCTION

Given covariance matrices

$$
\left[\begin{array}{llll}
R_{0} & R_{1} & \cdots & R_{n}
\end{array}\right],
$$

consider the class of infinite extensions

$$
R_{n+1}, R_{n+2}, R_{n+3}, \ldots
$$

of the first $n+1$ covariance matrices such that

$$
f(z):=\frac{1}{2} R_{0}+R_{1} z^{-1}+R_{2} z^{-2}+\cdots,
$$

is positive real. This is an well-known covariance extension problem [2, 10].

For applications to the spectral estimation, it is common that the spectral density is a rational model [11], and that less complexity of the rational model is required for some applications [2]. Therefore, it is desirable to incorporate a degree constraint on a parameterization of the positive rational extensions of the covariance sequence. If the positive realness constraint is removed, a parameterization of all solutions to the scalar interpolation problem with bounded degree is given in $[2,5]$. The generalization of $[2,5]$ to the multivariable case is given in this paper, where the coprime factorizations by matrix orthogonal polynomials $[1,12]$ describe the parameterization of the interpolants with bounded McMillan degree.

In this paper, we show the state-space realization of the parameterization of the multivariable interpolants with bounded McMillan degree by the block discrete-time Schwarz form [7, 4]. The statespace realization is the generalization of the result of the scalar case [5]. We also present a characterization of the positive realness of this parameterization by a linear matrix inequality.

Notations

\mathbb{R} and \mathbb{C} denote real numbers and complex numbers. Denote by $\mathbb{R}^{j \times k} j \times k$ real matrices. A^{*} denotes the transpose of matrix $A . I$ denotes $m \times m$ identity matrix, and 0 denotes $m \times m$ zero matrix. We use the notations $A>0$ and $A \geq 0$ to denote that the matrix A is Hermitian positive definite and Hermitian positive semidefinite. The matrix square root $A^{\frac{1}{2}}$ of the Hermitian positive definite matrix A is defined by $A=A^{\frac{1}{2}} A^{\frac{1}{2}}$. Let us define $f(z)^{*}:=\overline{f\left(\bar{z}^{-1}\right)^{T}}$. The function $f(z)$ is called positive real if it is analytic in the the outside of the closed unit disc, and it satisfies

$$
\begin{equation*}
f(z)+f(z)^{*} \geq 0 \tag{1}
\end{equation*}
$$

on the unit circle.
The state-space realization of a transfer function $G(z)$ with m inputs, m outputs and n states is denoted by

$$
G(z)=C(z I-A)^{-1} B+D .
$$

The McMillan degree of the transfer function $G(z)$ is defined by the size of the matrix A. We also use a notation

$$
G(z)=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

to denote $G(z)$. We note useful identities

$$
\begin{aligned}
G(z) & =\left[\begin{array}{c|c}
A-B D^{-1} C & -B D^{-1} \\
\hline D^{-1} C & D^{-1}
\end{array}\right] \\
G_{1}(z) G_{2}(z) & =\left[\begin{array}{cc|c}
A_{1} & B_{1} C_{2} & B_{1} D_{2} \\
0 & A_{2} & B_{2} \\
\hline C_{1} & D_{1} C_{2} & D_{1} D_{2}
\end{array}\right] .
\end{aligned}
$$

2. PRELIMINARIES

We review the Whittle-Wiggins-Robinson algorithm (WWRA) [9], the theory of the matrix orthogonal polynomials [1, 12], some results of the block discrete-time Schwarz form [7, 4]. We show a parameterization of the multivariable rational interpolants with bounded McMillan degree.

2.1 WWRA and Matrix Orthogonal Polynomials

Assume that the Toeplitz matrix

$$
\Gamma_{n+1}=\left[\begin{array}{cccc}
R_{0} & R_{1} & \cdots & R_{n} \\
R_{1}^{*} & \ddots & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
R_{n}^{*} & \cdots & \cdots & R_{0}
\end{array}\right]
$$

is positive definite, and also assume that $R_{0}=I$. Consider the upper Cholesky factorization of the Toeplitz matrix Γ_{n+1}

$$
\Gamma_{n+1}=U_{n+1} \Sigma_{n+1} U_{n+1}^{*}
$$

where

$$
\Sigma_{n+1}:=\left[\begin{array}{cccc}
Q_{n} & 0 & \cdots & 0 \\
0 & Q_{n-1} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & Q_{0}
\end{array}\right]
$$

and $Q_{0}=I$ since $R_{0}=I$. We denote the inverse of U_{n+1} by

$$
U_{n+1}^{-1}=\left[\begin{array}{cccc}
I & A_{n, 1} & \cdots & A_{n, n} \\
0 & I & \cdots & A_{n-1, n-1} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I
\end{array}\right]
$$

Similarly, let us consider the lower Cholesky factorization of the Toeplitz matrix Γ_{n+1}

$$
\Gamma_{n+1}=V_{n+1} \Lambda_{n+1} V_{n+1}^{*}
$$

where

$$
\Lambda_{n+1}=\left[\begin{array}{cccc}
S_{0} & 0 & \cdots & 0 \\
0 & S_{1} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & S_{n}
\end{array}\right]
$$

and $S_{0}=I$. We denote the inverse of V_{n+1} by

$$
V_{n+1}^{-1}=\left[\begin{array}{cccc}
I & 0 & \cdots & 0 \\
B_{n, 1} & I & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
B_{n, n} & B_{n-1, n-1} & \cdots & I
\end{array}\right] .
$$

Then, it is well-known that the WWRA gives the solution to the Yule-Walker (YW) equation in a recursive way [9]. The solution to the YW equation

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
I & A_{n+1,1} & \cdots & A_{n+1, n} & A_{n+1, n+1} \\
B_{n+1, n+1} & B_{n+1, n} & \cdots & B_{n+1,1} & I
\end{array}\right] \Gamma_{n+2}} \\
& =\left[\begin{array}{ccccc}
Q_{n+1} & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & S_{n+1}
\end{array}\right]
\end{aligned}
$$

is given by

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
I & A_{n+1,1} & \cdots & A_{n+1, n} \\
A_{n+1, n+1} \\
B_{n+1, n+1} & B_{n+1, n} & \cdots & B_{n+1,1} \\
I
\end{array}\right]} \\
& \quad=\left[\begin{array}{ccccc}
I & -P_{n} S_{n}^{-1} \\
-P_{n}^{*} Q_{n}^{-1} & I
\end{array}\right]\left[\begin{array}{ccccc}
I & A_{n, 1} & \cdots & A_{n, n} & 0 \\
0 & B_{n, n} & \cdots & B_{n, 1} & I
\end{array}\right] \\
& Q_{n+1}=Q_{n}-P_{n} S_{n}^{-1} P_{n}^{*} \\
& S_{n+1}=Q_{n}-P_{n}^{*} Q_{n}^{-1} P_{n} \\
& P_{n}=R_{n+1}+A_{n, 1} R_{n}+\cdots+A_{n, n} R_{1} .
\end{aligned}
$$

The initial values for the recursion are the following

$$
\begin{aligned}
A_{1,1} & =-R_{1} \\
B_{1,1} & =-R_{1}^{*} \\
Q_{1} & =I+A_{1,1} R_{1}^{*} \\
S_{1} & =I+B_{1,1} R_{1} .
\end{aligned}
$$

The WWRA is equivalent to the theory of the matrix orthogonal polynomials $[1,12]$. The left matrix orthogonal polynomials of the first kind are given by
$\left[\begin{array}{c}A_{n}(z) \\ A_{n-1}(z) \\ \vdots \\ I\end{array}\right]=\left[\begin{array}{cccc}I & A_{n, 1} & \cdots & A_{n, n} \\ 0 & I & \cdots & A_{n-1, n-1} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & I\end{array}\right]\left[\begin{array}{c}z^{n} I \\ z^{n-1} I \\ \vdots \\ I\end{array}\right]$,
and the right matrix orthogonal polynomials of the first kind are given by

$$
\begin{aligned}
& {\left[\begin{array}{llll}
I & B_{1}(z) & \cdots & B_{n}(z)
\end{array}\right]} \\
& =\left[\begin{array}{llll}
I & z I & \cdots & z^{n} I
\end{array}\right]\left[\begin{array}{cccc}
I & B_{1,1}^{*} & \cdots & B_{n, n}^{*} \\
0 & I & \cdots & B_{n, n-1}^{*} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I
\end{array}\right] .
\end{aligned}
$$

Let us define

$$
\begin{aligned}
\bar{\Gamma}_{n+1} & :=\frac{1}{2}\left(M_{n+1}^{-1}+M_{n+1}^{-*}\right) \\
& =\left[\begin{array}{cccc}
I & \bar{R}_{1} & \cdots & \bar{R}_{n} \\
\bar{R}_{1}^{*} & I & \cdots & \vdots \\
\vdots & \vdots & & \vdots \\
\bar{R}_{n}^{*} & \bar{R}_{n-1}^{*} & \cdots & I
\end{array}\right] \\
M_{n+1} & :=\left[\begin{array}{cccc}
I & 2 R_{1} & \cdots & 2 R_{n} \\
0 & I & \cdots & 2 R_{n-1} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I
\end{array}\right] .
\end{aligned}
$$

Then, the left matrix orthogonal polynomials of the second kind are given by

$$
\left[\begin{array}{c}
C_{n}(z) \\
C_{n-1}(z) \\
\vdots \\
I
\end{array}\right]=\left[\begin{array}{cccc}
I & C_{n, 1} & \cdots & C_{n, n} \\
0 & I & \cdots & C_{n-1, n-1} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I
\end{array}\right]\left[\begin{array}{c}
z^{n} I \\
z^{n-1} I \\
\vdots \\
I
\end{array}\right]
$$

where

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
I & C_{n, 1} & \cdots & C_{n, n} \\
0 & I & \cdots & C_{n-1, n-1} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I
\end{array}\right]=U_{n+1}^{-1} M_{n+1}} \\
& =: \bar{U}_{n+1}^{-1} .
\end{aligned}
$$

Similarly, the right matrix orthogonal polynomials of the second kind are given by

$$
\begin{aligned}
& {\left[\begin{array}{llll}
I & D_{1}(z) & \cdots & D_{n}(z)
\end{array}\right]} \\
& =\left[\begin{array}{llll}
I & z I & \cdots & z^{n} I
\end{array}\right]\left[\begin{array}{cccc}
I & D_{1,1}^{*} & \cdots & D_{n, n}^{*} \\
0 & I & \cdots & D_{n, n-1}^{*} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I
\end{array}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
I & D_{1,1}^{*} & \cdots & D_{n, n}^{*} \\
0 & I & \cdots & D_{n, n-1}^{*} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I
\end{array}\right]=M_{n+1}^{-1} V_{n+1}^{-*}} \\
& =: \bar{V}_{n+1}^{-*} .
\end{aligned}
$$

Then, the upper Cholesky factorization of the Toeplitz matrix $\bar{\Gamma}_{n+1}$ is given by

$$
\bar{\Gamma}_{n+1}=\bar{U}_{n+1} \Sigma_{n+1} \bar{U}_{n+1}^{*}
$$

and the lower Cholesky factorization of $\bar{\Gamma}_{n+1}$ is given by

$$
\bar{\Gamma}_{n+1}=\bar{V}_{n+1} \Lambda_{n+1} \bar{V}_{n+1}^{*} .
$$

Those Cholesky factors give the solution to the YW equation of $\bar{\Gamma}_{n+1}$. The solution to the YW equation

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
I & C_{n+1,1} & \cdots & C_{n+1, n} & C_{n+1, n+1} \\
D_{n+1, n+1} & D_{n+1, n} & \cdots & D_{n+1,1} & I
\end{array}\right] \bar{\Gamma}_{n+2}} \\
& =\left[\begin{array}{ccccc}
Q_{n+1} & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & S_{n+1}
\end{array}\right]
\end{aligned}
$$

is given by

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
I & C_{n+1,1} & \cdots & C_{n+1, n} \\
C_{n+1, n+1} \\
D_{n+1, n+1} & D_{n+1, n} & \cdots & D_{n+1,1} \\
I
\end{array}\right]} \\
& \quad=\left[\begin{array}{ccccc}
I & -T_{n} S_{n}^{-1} \\
-T_{n}^{*} Q_{n}^{-1} & I
\end{array}\right]\left[\begin{array}{ccccc}
I & C_{n, 1} & \cdots & C_{n, n} & 0 \\
0 & D_{n, n} & \cdots & D_{n, 1} & I
\end{array}\right] \\
& Q_{n+1}=Q_{n}-P_{n} S_{n}^{-1} P_{n}^{*} \\
& S_{n+1}=Q_{n}-P_{n}^{*} Q_{n}^{-1} P_{n} \\
& T_{n}=\bar{R}_{n+1}+C_{n, 1} \bar{R}_{n}+\cdots+C_{n, n} \bar{R}_{1} .
\end{aligned}
$$

The initial values for the recursion are the following,

$$
\begin{aligned}
C_{1,1} & =-\bar{R}_{1} \\
D_{1,1} & =-\bar{R}_{1}^{*} \\
Q_{1} & =I+C_{1,1} \bar{R}_{1}^{*} \\
S_{1} & =I+D_{1,1} \bar{R}_{1} .
\end{aligned}
$$

We shall use Lemma below.
Lemma 1. [9]: $T_{n}=-P_{n}$ holds.

2.2 Block Discrete-time Schwarz Form

We give a brief review of the block discrete-time Schwarz form in [7, 4]. Consider the YW equation of Γ_{n+1}

$$
\left[\begin{array}{cc}
\Gamma_{n} & \rho_{n} \\
\rho_{n}^{*} & I
\end{array}\right]\left[\begin{array}{c}
u_{n} \\
I
\end{array}\right]=\left[\begin{array}{c}
0 \\
S_{n}
\end{array}\right],
$$

where

$$
\begin{aligned}
\rho_{n} & :=\left[\begin{array}{lll}
R_{n}^{*} & \cdots & R_{1}^{*}
\end{array}\right]^{*} \\
u_{n} & :=\left[\begin{array}{lll}
B_{n, n} & \cdots & B_{n, 1}
\end{array}\right]^{*} .
\end{aligned}
$$

It gives

$$
\begin{align*}
& u_{n}=-\Gamma_{n}^{-1} \rho_{n} \\
& S_{n}=I-\rho_{n}^{*} \Gamma_{n}^{-1} \rho_{n} . \tag{2}
\end{align*}
$$

Let us define

$$
\begin{aligned}
F_{n} & :=\Lambda_{n}^{\frac{1}{2}} V_{n}^{*}\left(Z_{n}-u_{n} e_{n}^{*}\right) V_{n}^{-*} \Lambda_{n}^{-\frac{*}{2}} \\
& =\Lambda_{n}^{\frac{*}{2}} V_{n}^{*}\left(Z_{n}+\Gamma_{n}^{-1} \rho_{n} e_{n}^{*}\right) V_{n}^{-*} \Lambda_{n}^{-\frac{*}{2}} \\
K_{n+1} & :=Q_{n}^{-\frac{1}{2}} P_{n} S_{n}^{-\frac{*}{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
Z_{n} & :=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
I & 0 & \cdots & 0 & 0 \\
0 & I & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & I & 0
\end{array}\right] \\
e_{n} & :=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & I
\end{array}\right]^{*} .
\end{aligned}
$$

We can verify

$$
\begin{equation*}
I-F_{n}^{*} F_{n}=\Lambda_{n}^{-\frac{1}{2}} e_{n}\left[I-\rho_{n}^{*} \Gamma_{n}^{-1} \rho_{n}\right] e_{n}^{*} \Lambda_{n}^{-\frac{*}{2}} \tag{4}
\end{equation*}
$$

and

$$
\begin{aligned}
e_{n}^{*}\left(I-F_{n}^{*} F_{n}\right) e_{n} & =e_{n}^{*} \Lambda_{n}^{-\frac{1}{2}} e_{n}\left[I-\rho_{n}^{*} \Gamma_{n}^{-1} \rho_{n}\right] e_{n}^{*} \Lambda_{n}^{-\frac{*}{2}} e_{n} \\
& =S_{n-1}^{-\frac{1}{2}} S_{n} S_{n-1}^{-\frac{*}{2}} \\
& =I-K_{n}^{*} K_{n} .
\end{aligned}
$$

The equation (4) implies that the matrix F_{n} is almost orthogonal, i.e., its first $n-1$ block columns form an orthogonal set and its last block column is orthogonal to this set, but it is not normalized. This and Hessenberg property force a particular structure on F_{n}. Let us define

$$
\bar{K}_{n}:=\left[\begin{array}{cc}
K_{n} & K_{n}^{c} \\
K_{n}^{T c *} & -K_{n}^{s}
\end{array}\right],
$$

where the matrices $K_{n}^{c}, K_{n}^{T c}$ and K_{n}^{s} are given by

$$
\begin{aligned}
K_{n}^{c} K_{n}^{c *} & =I-K_{n} K_{n}^{*} \\
K_{n}^{T c *} K_{n}^{T c} & =I-K_{n}^{*} K_{n} \\
K_{n}^{s} & =\left(K_{n}^{T c}\right)^{-1} K_{n}^{*} K_{n}^{c} .
\end{aligned}
$$

The matrix \bar{K}_{n} satisfies $\bar{K}_{n}^{*} \bar{K}_{n}=I$.
Lemma 2. [4]: The block upper-Hessenberg matrix F_{n} satisfying (4) can be expressed as
$F_{n}=\left[\begin{array}{ccccc}K_{1} & K_{1}^{c} K_{2} & K_{1}^{c} K_{2}^{c} K_{3} & \cdots & K_{1}^{c} K_{2}^{c} \cdots K_{n-1}^{c} K_{n} \\ K_{1}^{T c *} & -K_{1}^{s} K_{2} & -K_{1}^{s} K_{2}^{c} K_{3} & \cdots & -K_{1}^{s} K_{2}^{c} \cdots K_{n-1}^{c} K_{n} \\ 0 & K_{2}^{T c *} & -K_{2}^{s} K_{3} & \cdots & -K_{2}^{s} K_{3}^{c} \cdots K_{n-1}^{c} K_{n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & -K_{n-1}^{s} K_{n}\end{array}\right]$.
We call this form of matrix the block discrete-time Schwarz form as the natural generalization of the scalar case [7, 4]. The salient feature of F_{n} is the nesting property, i.e., F_{n+1} has F_{n} in the upper block. Let us define

$$
g_{n}:=\Lambda_{n}^{\frac{1}{2}} V_{n}^{*} e_{1}, \quad e_{1}:=\left[\begin{array}{lllll}
I & 0 & \cdots & 0 & 0
\end{array}\right]^{*} .
$$

Then, the covariance matrices are given by

$$
R_{k}=g_{n}^{*} F_{n}^{k} g_{n}, \quad k=0, \ldots, n-1
$$

2.3 Multivariable Rational Interpolation with McMillan Degree Constraint

We review the result of a parameterization of the multivariable rational interpolants with bounded McMillan degree, which is the generalization of the scalar case [2,5]. A class of rational functions to be considered here is

$$
\begin{equation*}
f(z)=\frac{1}{2} N(z) M(z)^{-1} . \tag{5}
\end{equation*}
$$

where $M(z)$ and $N(z)$ are $m \times m$ matrix polynomials of degree n. We denote this class of rational functions by \mathscr{R}_{r}.

Lemma 3. All functions in \mathscr{R}_{r}, of which power series expansion begins with

$$
\frac{1}{2} R_{0}+R_{1} z^{-1}+\cdots+R_{n} z^{-n}
$$

admit the right coprime factorization

$$
\begin{equation*}
f(z)=\frac{1}{2} N(z) M(z)^{-1} \tag{6}
\end{equation*}
$$

and the right coprime factors are parameterized by

$$
\begin{aligned}
M(z) & =B_{n}(z)+B_{n-1}(z) \alpha_{1}+\cdots+\alpha_{n} \\
N(z) & =D_{n}(z)+D_{n-1}(z) \alpha_{1}+\cdots+\alpha_{n}
\end{aligned}
$$

where the matrices $\alpha_{k} \in \mathbb{R}^{m \times m}, k=1, \ldots, n$, are free parameters.

The proof is omitted due to the space limitation. The choice of the free parameter, $\alpha_{k}=0, k=1, \ldots, n$, yields the so-called maximum entropy interpolant [1],

$$
f(z)=\frac{1}{2} D_{n}(z) B_{n}(z)^{-1} .
$$

It is positive real, and maximize the entropy rate of the spectral density

$$
\mathbb{I}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \operatorname{det}\left[f\left(e^{i \theta}\right)+f\left(e^{i \theta}\right)^{*}\right] d \theta .
$$

3. MAIN RESULTS

We give the state-space realization of the parameterization in Lemma 3 by the block discrete-time Schwarz form. We also give a characterization of the positive realness of the parameterization by a linear matrix inequality.

3.1 State-space Realization by Block Discrete-time Schwarz Form

Let us define the normalized block discrete-time Schwarz form

$$
\hat{F}_{n}:=\Lambda_{n}^{-\frac{*}{2}} F_{n} \Lambda_{n}^{\frac{\pi}{2}}
$$

and

$$
\begin{aligned}
\alpha & :=\left[\begin{array}{c}
\alpha_{n} \\
\vdots \\
\alpha_{1}
\end{array}\right] \\
e_{1} & =\left[\begin{array}{llll}
I & 0 & \cdots & 0
\end{array}\right]^{*} .
\end{aligned}
$$

Theorem 1. The state-space realization of (6) is given by

$$
\begin{equation*}
f(z)=\frac{I}{2}+e_{1}^{*} \hat{F}_{n}\left(z I-\hat{F}_{n}+\alpha e_{n}^{*}\right)^{-1} e_{1} . \tag{7}
\end{equation*}
$$

Proof. For the right matrix orthogonal polynomials of the first kind, consider the identity [3],

$$
\left[\begin{array}{llll}
B_{n}(z)^{-1} & 0 & \cdots & 0
\end{array}\right] T=e_{n}^{*}\left(z I-F_{c}\right)^{-1}
$$

where

$$
\begin{aligned}
F_{c} & :=Z_{n}-u_{n} e_{n}^{*} \\
T & :=\left[\begin{array}{cccc}
I & z I & \cdots & z^{n-1} I \\
0 & I & \cdots & z^{n-2} I \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & I
\end{array}\right] .
\end{aligned}
$$

By (3), we obtain
$\left[\begin{array}{llll}B_{n}(z)^{-1} & 0 & \cdots & 0\end{array}\right] T V_{n}^{-*} \Lambda_{n}^{-\frac{*}{2}}=e_{n}^{*} V_{n}^{-*} \Lambda_{n}^{-\frac{*}{2}}\left(z I-F_{n}\right)^{-1}$.
The left hand side of (8) is

$$
\begin{aligned}
& {\left[\begin{array}{llll}
B_{n}(z)^{-1} & 0 & \cdots & 0
\end{array}\right] T V_{n}^{-*} \Lambda_{n}^{-\frac{*}{2}}} \\
& =B_{n}(z)^{-1}\left[\begin{array}{llll}
I & B_{1}(z) & \cdots & B_{n-1}(z)
\end{array}\right] \Lambda_{n}^{-\frac{*}{2}} .
\end{aligned}
$$

The right hand side of (8) is

$$
e_{n}^{*} V_{n}^{-*} \Lambda_{n}^{-\frac{*}{2}}\left(z I-F_{n}\right)^{-1}=e_{n}^{*} \Lambda_{n}^{-\frac{*}{2}}\left(z I-F_{n}\right)^{-1}
$$

Thus, we obtain
$B_{n}(z)^{-1}\left[\begin{array}{llll}I & B_{1}(z) & \cdots & B_{n-1}(z)\end{array}\right] \Lambda_{n}^{-\frac{*}{2}}=e_{n}^{*} \Lambda_{n}^{-\frac{*}{2}}\left(z I-F_{n}\right)^{-1}$.

It is equivalent to

$$
B_{n}(z)^{-1}\left[\begin{array}{llll}
I & B_{1}(z) & \cdots & B_{n-1}(z) \tag{9}
\end{array}\right]=e_{n}^{*}\left(z I-\hat{F}_{n}\right)^{-1},
$$

and (9) implies

$$
\begin{equation*}
B_{n}(z)^{-1}=e_{n}^{*}\left(z I-\hat{F}_{n}\right)^{-1} e_{1} . \tag{10}
\end{equation*}
$$

Similarly, for the right matrix orthogonal polynomials of the second kind, we obtain
$D_{n}(z)^{-1}\left[\begin{array}{llll}I & D_{1}(z) & \cdots & D_{n-1}(z)\end{array}\right] \Lambda_{n}^{-\frac{*}{2}}=e_{n}^{*} \Lambda_{n}^{-\frac{*}{2}}\left(z I-\bar{F}_{n}\right)^{-1}$.
The matrix \bar{F}_{n} is obtained by replacing K_{i} by $-K_{i}$ of F_{n} by Lemma 1. Due to the structure of F_{n}, this replacement does not affect any element of F_{n} except for those in the first block row, which change their signs. Thus, we conclude

$$
\bar{F}_{n}=F_{n}-2 e_{1} e_{1}^{*} F_{n}
$$

Let us define the normalized discrete-time Schwarz form of \bar{F}_{n}

$$
\begin{align*}
\tilde{F}_{n} & :=\Lambda_{n}^{-\frac{*}{2}} \bar{F}_{n} \Lambda_{n}^{\frac{*}{2}} \\
& =\hat{F}_{n}-2 e_{1} e_{1}^{*} \hat{F}_{n} . \tag{11}
\end{align*}
$$

By multiplying α to (9), we obtain

$$
B_{n}(z)^{-1}\left[\alpha_{n}+B_{1}(z) \alpha_{n-1}+\cdots+B_{n-1}(z) \alpha_{1}\right]=e_{n}^{*}\left(z I-\hat{F}_{n}\right) \alpha
$$

Thus,

$$
\begin{align*}
M(z) & =B_{n}(z)+B_{n-1}(z) \alpha_{1}+\cdots B_{1}(z) \alpha_{n-1}+\alpha_{n} \\
& =B_{n}(z)\left[I+e_{n}^{*}\left(z I-\hat{F}_{n}\right)^{-1} \alpha\right] . \tag{12}
\end{align*}
$$

Similarly,

$$
\begin{align*}
N(z) & =D_{n}(z)+D_{n-1}(z) \alpha_{1}+\cdots D_{1}(z) \alpha_{n-1}+\alpha_{n} \\
& =D_{n}(z)\left[I+e_{n}^{*}\left(z I-\tilde{F}_{n}\right)^{-1} \alpha\right] . \tag{13}
\end{align*}
$$

By (10), the inverse of (12) is given by

$$
\begin{aligned}
M(z)^{-1} & =\left[I+e_{n}^{*}\left(z I-\hat{F}_{n}\right)^{-1} \alpha\right]^{-1} B_{n}(z)^{-1} \\
& =\left[\begin{array}{cc|c}
\hat{F}_{n}-\alpha e_{n}^{*} & -\alpha \\
\hline e_{n}^{*} & I
\end{array}\right]\left[\begin{array}{cc|c|c}
\hat{F}_{n} & e_{1} \\
\hline e_{n}^{*} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
\hat{F}_{n}-\alpha e_{n}^{*} & -\alpha e_{n}^{*} & 0 \\
0 & \hat{F}_{n} & e_{1} \\
\hline e_{n}^{*} & e_{n}^{*} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
\hat{F}_{n}-\alpha e_{n}^{*} & 0 & e_{1} \\
0 & \hat{F}_{n} & e_{1} \\
\hline e_{n}^{*} & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
\hat{F}_{n}-\alpha e_{n}^{*} & e_{1} \\
\hline e_{n}^{*} & 0
\end{array}\right]
\end{aligned}
$$

where we changed the coordinate of the states by $\left[\begin{array}{cc}I & I \\ 0 & I\end{array}\right]$. Similarly, by (11), the inverse of (13) is given by

$$
N(z)^{-1}=\left[\begin{array}{c|c}
\hat{F}_{n}-2 e_{1} e_{1}^{*} \hat{F}_{n}-\alpha e_{n}^{*} & e_{1} \\
\hline e_{n}^{*} & 0
\end{array}\right] .
$$

We can verify that

$$
\begin{aligned}
2 N(z)^{-1} f(z) & =\left[\begin{array}{cc|c}
\hat{F}_{n}-2 e_{1} e_{1}^{*} \hat{F}_{n}-\alpha e_{n}^{*} & 2 e_{1} e_{1}^{*} & e_{1} \\
0 & \hat{F}_{n}-\alpha e_{n}^{*} & e_{1} \\
\hline e_{n}^{*} & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
\hat{F}_{n}-2 e_{1} e_{1}^{*} \hat{F}_{n}-\alpha e_{n}^{*} & 0 & 0 \\
0 & \hat{F}_{n}-\alpha e_{n}^{*} & e_{1} \\
\hline e_{n}^{*} & e_{n}^{*} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|}
\hat{F}_{n}-\alpha e_{n}^{*} & e_{1} \\
\hline e_{n}^{*} & 0
\end{array}\right] \\
& =M(z)^{-1},
\end{aligned}
$$

where we changed the coordinate of the states by $\left[\begin{array}{ll}I & -I \\ 0 & I\end{array}\right]$.

3.2 Characterization of Positivity by Linear Matrix Inequality

A condition, which makes (7) positive real, is given by the linear matrix inequality below. In [6], a similar result of another parameterization of the solution to the Nevanlinna-Pick interpolation problem is found.

Theorem 2. $f(z)$, given by (7), is positive real if there exist $P>0$ and $\beta \in \mathbb{R}^{m n \times m}$ such that

$$
\left[\begin{array}{ccc}
P & P e_{1} & P \hat{F}_{n}-\beta e_{n}^{*} \tag{14}\\
e_{1}^{*} P & I & e_{1}^{*} \hat{F}_{n} \\
\hat{F}_{n}^{*} P-e_{n} \beta^{*} & \hat{F}_{n}^{*} e_{1} & P
\end{array}\right] \geq 0 .
$$

Moreover, for given P and β, we obtain α by

$$
\begin{equation*}
\beta=P \alpha \tag{15}
\end{equation*}
$$

Proof. By KYP lemma [8], (7) is strictly positive real if and only if there exists $P>0$ and α such that

$$
\left[\begin{array}{ccc}
P^{-1} & e_{1} & \hat{F}_{n}-\alpha e_{n}^{*} \\
e_{1}^{*} & I & e_{1}^{*} \hat{F}_{n} \\
\hat{F}_{n}^{*}-e_{n} \alpha^{*} & \hat{F}_{n}^{*} e_{1} & P
\end{array}\right]>0
$$

Multiply $\left[\begin{array}{lll}P & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I\end{array}\right]$ to both sides, we obtain

$$
\left[\begin{array}{ccc}
P & P e_{1} & P \hat{F}_{n}-P \alpha e_{n}^{*} \\
e_{1}^{*} P & I & e_{1}^{*} \hat{F}_{n} \\
\hat{F}_{n}^{*} P-e_{n} \alpha^{*} P & \hat{F}_{n}^{*} e_{1} & P
\end{array}\right]>0
$$

By changing $P \alpha$ as (15) and by extending the inequality to the boundary by continuity, we obtain $P \geq 0$ and (14). The change of the variable (15) is nonsingular if P is invertible. Thus, it is necessary that $P>0$.

4. NUMERICAL EXAMPLE

Consider a positive real function

$$
\begin{aligned}
g(z) & =\frac{1}{2} \frac{z-1}{z-\frac{1}{2}} \\
& =\frac{1}{2}-\frac{1}{4} z^{-1}-\frac{1}{8} z^{-1}+\cdots
\end{aligned}
$$

We consider the parameterization of the McMillan degree one. The Toeplitz matrix is given by

$$
\Gamma_{2}=\left[\begin{array}{cc}
1 & -\frac{1}{4} \\
-\frac{1}{4} & 1
\end{array}\right]
$$

The discrete-time Schwarz form is given by

$$
\begin{equation*}
\frac{1}{2}+\hat{F}_{1}\left(z-\hat{F}_{1}+\alpha\right)^{-1}=\frac{1}{2} \frac{z-\frac{1}{4}+\alpha}{z+\frac{1}{4}+\alpha} \tag{16}
\end{equation*}
$$

where $\hat{F}_{1}=-\frac{1}{4}$. The linear matrix inequality for the positive realness is given by

$$
\left[\begin{array}{ccc}
p & p & p \hat{F}_{1}-\beta \\
p & 1 & \hat{F}_{1} \\
\hat{F}_{1}^{*} p-\beta & \hat{F}_{1} & p
\end{array}\right]=\left[\begin{array}{ccc}
p & p & -\frac{1}{4} p-\beta \\
p & 1 & -\frac{1}{4} \\
-\frac{1}{4} p-\beta & -\frac{1}{4} & p
\end{array}\right]
$$

The linear matrix inequality gives

$$
\begin{aligned}
& 0 \leq p \leq 1 \\
& -p(p-1)\left(p-\frac{1}{16}\right)-\beta^{2} \geq 0
\end{aligned}
$$

If $p \neq 0$, then, the second inequality gives

$$
\frac{\beta^{2}}{p^{2}}=\alpha^{2} \leq-\frac{(p-1)\left(p-\frac{1}{16}\right)}{p}
$$

The right hand side takes the maximum at $p=\frac{1}{4}$, and, we obtain

$$
\alpha^{2} \leq \frac{9}{16}
$$

At each boundary value of α, the parameterization (16) gives

$$
\begin{aligned}
& f(z)=\frac{1}{2} \frac{z-1}{z-\frac{1}{2}}, \quad \alpha=-\frac{3}{4} \\
& f(z)=\frac{1}{2} \frac{z+\frac{1}{2}}{z+1}, \quad \alpha=\frac{3}{4}
\end{aligned}
$$

At $\alpha=-\frac{3}{4}$, we realize the corresponding positive real function.

REFERENCES

[1] Ph. Delsarte, Y. Genin, and Y. Kamp. Orthogonal polynomial matrices on the unit circle. IEEE Trans. Circuits and Systems, 25(3):149-160, March 1978.
[2] T. T. Georgiou. Realization of power spectra from partial covariance sequences. IEEE Trans. Acoustics, Speech and Signal Processing, 35(4):438-449, 1987.
[3] I. Gohberg, P. Lancaster, and L. Rodman. Invariant Subspaces of Matrices with Applications. John Wiley and Sons, 1986.
[4] T. Kailath and B. Porat. State-space generators for orthogonal polynomials. In V. Mandrekar and H. Salehi, editors, Prediction Theory and Harmonic Analysis, pages 131-163. NorthHolland, 1983.
[5] H. Kimura. Positive partial realization of covariance sequences. In C. I. Byrnes and A. Lindquist, editors, Modeling, Identification and Robust Control, pages 499-513. NorthHolland, Amsterdam, 1987.
[6] K. Mahata and M. Fu. A robust interpolation algorithm for spectral analysis. IEEE Trans. Signal Processing, 55(10):4851-4861, October 2007.
[7] M. Morf and D. T. Lee. State-space structure of ladder canonical form. In Proceeding of the 18st IEEE Conference on Decision and Control, pages 1221-1224, 1980.
[8] A. Rantzer. On the Kalman-Yakubovich-Popov lemma. Systems and Control Lett., 28:7-10, 1996.
[9] T. Söderström and P. Stoica. System Identification. Prentice Hall, 1989.
[10] P. Stoica, T. McKelvey, and J. Mari. MA estimation in polynomial time. IEEE Trans. Signal Processing, 48(7):1999-2012, July 2000.
[11] P. Stoica and R. Moses. Spectral Analysis of Signals. Prentice Hall, Englewood Cliffs, New Jersey, 2005.
[12] D. C. Youla and N. N. Kazanjian. Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle. IEEE Trans. Circuits and Systems, 25(2):57-69, February 1978.

