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ABSTRACT

A new framework is presented for identifying roadway pat-
tern in multi-viewpoint imagery. By applying fractal sam-
pling to scene and satellite imagery, chromatic complexity of
random texture is extracted and adapted for multi-viewpoint
association. The feasibility of the framework is investigated
through experimental studies.

1 Introductory Remarks

Computational resources combined with advanced vehicle
mechanisms rapidly expands the scope of ‘informatic vicin-
ity [7] in which machine perception is delegated and net-
worked to support human’s situation understanding and de-
cision making. For instance, students knowledge can be ex-
panded interactively by space craft to be operated from class-
room [3]. Final decision for social safety in large scale nat-
ural disaster is missioned to the governorship of information
gathering and damage evaluation systems [5]. The mobility
of computer controlled vehicles, in particular, exceeds by far
human’s inherent maneuverability for information gathering
and situation understanding [11]. As a consequence of evolu-
tion in uproarious illumination and reflection [12], the range
of human’s perception is restricted to physical perspective
from a specific view point. For on-going conformability of
such human centered systems, thus, perceptive delegation is
required to maintain direct access to as-is surroundings un-
der the schematics of serious contradiction: subsequent ma-
neuvering processes is anticipatively adapted to unstructured
scene. To make allowance for human’s decision, the infor-
matic vicinity should be supervenient to entire the real world.

Supported by the imagination of a bird’s eye view, the
maneuverability of vehicles is substantiated within multi-
aspect representation of scenes: two dimensional description
of local terrain and a sequence of 2.5D perspectives. This im-
plies that autonomous maneuvering processes guided by hu-
man and/or machine intelligence maintain their own integrity
within vehicles specific internal world to be generated as dy-
namic link of the two-aspect representations. The integrity
of maneuvering systems makes it possible to open a human
access pass to planning process on as-is map [13]. as well
as simultaneous mapping-navigation process based on in-situ
scene images [2]. To develop the human access pass to in-
tegrated planning-mapping-navigation scheme, however, the
comprehensiveness of the scene should be restored within the
vehicles beyond aspect specific processes.

Three decades of investigations in cognitive science have
revealed that humans are endowed with a priori concept of
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Figure 1: Multi-Aspect Approach to Complex Scene

space to integrate multiple aspects of the world into terrain-
perspective structure. Despite the inaccessibility to human’s
inherent concept of space, the terrain-perspective integration
process has been simulated on satellite-roadway-vehicle net-
work [8] where the expansion of a roadway area is identified
with the support of scale-chromatic randomness. By invok-
ing the robustness of the randomness distribution, the entire
sequence of scene images can be associated with a maneu-
vering plan along a roadway pattern in a satellite image.

On this terrain-perspective structure, two types of pre-
diction are implemented as essential part of for autonomous
road following mechanism: successive extension of roadway
pattern in a satellite image and one step prediction of the
scene to be encountered. For stable operation, the vehicle
control systems require geometric description of the roadway
in the predicted scene. In this paper, we consider terrain-
perspective association mechanism for as-is roadway model
generation.

2 Randomness-based Approach

Despite the diversity of the terrain and the discrepancy of
imaging conditions, we can exploit the randomness cover-
ing natural objects as a robust feature for associating multi-
viewpoint imagery [6] [9]. In this section, preliminary results
of randomness based approach are summarized.

Following the collage theorem within the context of
multi-fractal modeling [1], the expansion of the open space
in a bird’s eye view and scene perspectives can commonly be
identified with the same class of fractal attractor E satisfying

E = Jmwm®), (1)

mev



with a fixed set of contraction mappings v = { y; } as illus-
trated in Fig. 1. In this figure, a roadway segment in the
satellite image is modeled by Sierpinski’s ‘carpet’ generated
in the terrain aspect € by using the following mapping set
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where @ € Q denotes a pixel in the satellite image and a),{l.

denotes the vertices of the carpet. This segment is mapped
from the satellite image to associated scene images to yield
a skewed attractor called Sierpinski’s ‘gasket’ via the self-
similarity process (1) with
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in the perspective aspect Q = { @ }. In Eq. (3), a)f;, i=1,2,3
are specified in terms of the vanishing point and the width
of the roadway area in the scene image. Noticing that an
attractor point & € & can be mapped finally to entire pattern
E through random selection of u; € v, i.e.,

i1 wi(&r), “4)

the density of reachable points & can be visualized as a dis-
tribution x§ invariant under the self-similarity process (1).
Following multi-scale approach [10], [4], let 6, be the
estimate of scale information induced by the invariant mea-
sure x’; in the scene image Q. The variation of the scale
information is bounded by the following pixel wise evalua-

tion
6o = V2fo/lAfwl, Q)

where f,, denotes the brightness distribution in the scene im-
age. Through the perspective projection, randomness distri-
bution in the carpet is observed in terms of the linear scale
shift towards the vanishing point in the gasket. Hence we
have the following estimate

1 A =2
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of the perspective projection:
_ oo
= ———(do—d). 6b
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In Eq. (6), op denotes the maximal scale of the noise com-
ponent and d designates the depth parameter indexed along
the direction of the roadway. In many practical scene, the
maximal scale can be estimated by 6y = 2 - 6jn, Where Opin
denotes the minimal value of the estimate 6 in the image
plane.

Based on the ‘noisy’ observation )Zg , the expansion of the
roadway under the self-similarity condition (1) is indexed in
terms of the solution to the following equation:

= 0, @)
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where p =1log, || v||. By using the conditional probability (7),

the consistency of the mapping set v is verified through the
detection of finite invariant subset:

= {96@ | Huiev:ui‘l(e)ee)},
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Figure 2: Cooperative Decision in Informatic Vicinity

where @ is the local maxima of @(®|v).

Let f2°® = [Ry Gg Bo)  be the intensity vector of
three primaries and define ¢ = fo/|f3°"|. By applying
stochastic dynamics (4) to observed scene image, we have
the following ‘palette’ as a representation for the chromatic
complexity of roadway area in the scene image:

{‘P'g’ ’ 565}

The palette § is extracted in the satellite image and matched
with s to adjust the location of the roadway segment in the
satellite image. Due to the robustness of the palette represen-
tation, the roadway segment can be extended prior to phys-
ical arrival as shown in Fig. 2; the palette s was sampled
within the lane of start point with the scene image (lower left
sub-window); s was matched with the palette § extracted on
associated segment in the satellite image to extend the road-
way pattern; the extended roadway pattern reached a desti-
nation of the satellite image prior to physical arrival to the
scene (upper left sub-window). Such an anticipative road
following process provides initial guess of the depth and the
width of the roadway pattern in the scene image.

S
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3 Fractal Coding of Open Space

Let Q¢ be the vector towards the vanishing point in the scene
image and consider the projection of the roadway segments
detected a priori in the bird’s eye view into scene image.

By identifying the fixed points Q/ = { a)[; } in terms of the

depth and width of the roadway pattern, the scene image can
be partitioned into the following regions
Ai: {weQ | lo—ao),] < |a)—a),{j|, fora)fzj # a)ﬁi},

with statistical moments (®;,X;) conditioned by v:

[ (0= a)¢(@/v)dr(w) =0,

i
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where C; denotes normalization constant. In this partitioning,
the expansion of the domains A; is indexed in terms of the
following ‘Laplacian-Gaussian basin’:

A?:{it €A | <;£{Zi_ls;tl> <0}, (10

where €, = A — @;. To each basin Ai@, we have the following
circumscribing polygon

(Ez{j)TR(n/z) (8w—w,{j) = 0 (lla

(fz;?)TR(n/z) (Go—@) = 0,  (llb)

where d,, is the contact point with Ai@; ﬁl); and flf are unit

vector associating the fixed point a)[:j with w[li and ®;, re-

spectively; R denotes 2D rotation matrix. By adjusting dg,
to the boundary of the Laplacian-Gaussian basin (10) along

external normal vector f)i, we have the following adaptation
scheme of the fixed point Q/:

doj, = —xy;(of,—a)), (12)

v =

S/

In this scheme, the fixed points {a)ﬂj} are mutually sep-

arated by the expansion of the Laplacian-Gaussian basins
(10); on the other hand, the expansion of fractal attractor
to be generated by confined in terms of the contact points
{dw}. As the result of this antagonistic dynamics, the up-

date d w,j; are coordinated via the integration rule:

Z|y/j| —  min. (13)
j

Let the fixed points a)[; in Eq. (3) be adjusted following
Egs. (10) and (12). Then the mapping set v generates the
fractal attractor covering a part of the open space satisfying
the scale space model (6) directed to Q4 the projection of
the roadway segment. The consistency of the attractor with
the distribution of the randomness is verified via the compu-
tational test (8); the existence of invariant features @ implies
that the range of designed imaging process (4) generates a
version of fractal attractor E covering a part of roadway area.
Thus, the direction Q¢ of extended segment in the satellite
image provides sufficient information to induce a fractal code
of an open space with as-is visualization in observed scene.

4 Fractal Boundary Adaptation

732

Figure 3: Fractal Coding of Laplacian-Gaussian Basin

By the robustness of scale-chromatic randomness, we can
match roadway segments to be extended in the satellite im-
age with encountered scene self-reflectively; a pixel in a
Laplacian-Gaussian basin @ is randomly attracted to one of
fixed points in Q/ via the generativity of the self-similarity
process; despite such a nondeterministic allocation, the struc-
tural consistency of the set Q/ is verified by the existence of
the capturing probability ¢ (®|v) supporting invariant subset
@ in the local maxima @. In many practical scenes, however,
the maneuverable area should be confined by various objects
and/or sign patterns distributed in the roadway pattern. De-
spite the self-reflectivity on discrete features ©®, the fractal
code v spans the open space over obstacle images at which
the scale space representation (6) breaks down. To apply the
fractal code to the control of vehicle mechanisms, hence, the

fixed points Qf = { w{; } should be adapted for all the at-

tractor points & to be located in an obstacle-free sub-region.

To this end, left and right boundaries of the open space
model is defined in terms of the mapping set v = { 1; } and
relocated to avoid the obstacle objects and/or sign patterns
as illustrated in Fig. 3 where a)[zj and a){;. (a),f;k) denote the
vanishing point and left (right) boundary point, respectively.
It should be noted that the fractal attractor is identified with
the totality of the fixed points associated with all finite chains
of the contraction mappings. Noting this, in this figure, the
left and right boundaries, by and bg, are generated as the
fractal attractors associated with the mapping sets vé and vf
given by

(14a)
(14b)

bL: Vé‘:{ﬂpﬂl}
br: Ve = {1}

respectively. In Fig. 3, [£] denotes the nearest point to
the fixed point @, in the invariant subset ®. By using
the point [&], we can specify the horizon of the stochastic-
computational verification as well as depth of the boundary
information (bz, br) to be marked in the scene image.
Suppose that the break down pixels of the scale space
model (6) is detected as the boundary in the scene image and
consider the road relocation process: match the fixed points

Qf = { a)ﬁi } with the boundary image of open space to adapt



Figure 4: Fractal Coding

the fractal code v. Since the boundary image by, (bg) is gen-
erated via the following nondeterministic dynamics

ét+1 = .ur(ét)»

we have the following update scheme for the fixed points:

€ vi, (VE) (15)

doj, = vY w&lu), (16a)
u;ev
(& Vo(&lv)
V(&) = 5 (16b)
ALt |w£j_§t|2

where 7y is positive constant. In Eq. (16), the ‘repulsion’
by the boundary is evaluated within the framework of the
Hausdorff potential for each fixed point. Despite geometric

singularity, the random sequence & successively covers the

boundary points. In accordance with the ét-generation, the
scheme dynamically updates the fixed points combined with

the sequence & through the nondeterministic dynamics (14).
This implies that the open space model v can be adapted to
smoothly varying scene. Such a stable adaptation process
yields smooth control signal for practical vehicle mechanism
maneuvering through the real world.

S Experiments

The roadway model generation scheme was verified through
experimental studies. Experimental results for an example
scene are shown in Figs. 4 — 8. In these experiments, the
initial guess of the fixed point set Q/ is given as shown in
Fig. 4; the vanishing point and left (right) width are allocated
at center-top and left (right)-bottom of the scene image, re-
spectively. A system of the Laplacian-Gaussian basin {Af5 }
based on the initial guess is updated through the successive
process (12) to yield statistical estimate of Q/ as the steady
state of the iteration. Resulted mapping set v = { 1; } based
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Figure 5: Computational Verification

~ Image

Figure 6: Break Down Image

on the fixed point estimate Q/ is applied to visualize an es-
timate of the open space within the roadway area as shown
in Fig. 4. The consistency of the mapping set v is verified
through the finite invariance test (8) as shown in fig. 5 where
the invariant subset 6 is visualized as the closed link on the
local maxima ®. The existence of invariant subset ® implies
that a connected part of the open space in the scene is cov-
ered by the fractal attractor associated with the mapping set
V.

In the same scene, the break down pixels of the scale
space model are detected as shown in Fig. 6 to relocate the
boundaries as illustrated in Fig. 7, respectively. To relo-

cate the boundaries, the random point & generated through
the nondeterministic system (15) is matched with the break
down pixels to evaluate the repulsion concentrated on the
fixed points. By shifting the fixed points along the repul-
sion, the expansion of the attractor is confined within the ob-
stacle free region. The consistency of the reduced attractor
with the scale space model is verified via the finite invariance
test, again, to yield the closed link as shown in Fig. 7 (a). In
this figure, the effective part of the boundaries is specified in
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Figure 7: Model Refinement

terms of the nearest point [£]. The boundary estimate can be
used to visualize break down free region directly as shown in
Fig. 7 (b). In this refined area, IFS code Vv is redesigned for
in-situ adaptation of the roadway model as indicated in Fig.
8; re-designed mapping set v is applied to the scene image
for sampling the palette s in refined roadway area. The con-
nectedness of re-designed open space model is supported by
the existence of invariant subset ® with visualization on the
scene image. Thus, fractal roadway model v is fed back to
the satellite image to extend the segment model V.

6 Concluding Remarks

Fractal dynamics is introduced on ineluctable randomness
distributed in naturally complex scene. Based on anticipa-
tive information transferred via inter-viewpoint association,
geometry of the maneuvering affordance is structuralized to
design a fractal model for roadway pattern. Geometric dis-
parity of designed model is evaluated in terms of Hausdorff
potential for structurally consistent adaptation of the fractal
code. The next step is stochastic design of maneuvering pro-
cess cooperative with human’s possible decisions.
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Figure 8: Road Following Process
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