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ABSTRACT 2 < TY described by the positivity of some trigonometric

We propose a linear matrix inequality formulation of the Polynomials (and s¢ - || from (2) is no longer a norm).
Bounded Real Lemma (BRL) for multivariate trigonomet-  We provide in this paper a linear matrix inequality (LMI)
ric polynomials with matrix coefficients. This is a gener- characterization of (2), which allows solving optimizatio
alization of previous results regarding positive trigoretric ~ Problems involving (2) via semidefinite programming (SDP).
polynomials. The proposed BRL allows the formulation of The result can be seen as a generalization of the BRL from
several FIR filter design problems as semidefinite prograni2] to the multivariate case (including frequency domairs)
ming (SDP) problems. We employ the new BRL in threeof the BRL from [3] to matrix polynomials. Due to space
applications: matrix filter design, 2-D deconvolution ared d  restrictions, we omit the proofs. We describe and give de-
sign of 2-D filters with matrix coefficients. All applicatisn Sign examples for three applications: design of matrix fil-
are illustrated with examples that improve on previous workters [9, 13], 2-D deconvolution [11] and design of filterstwit
matrix coefficients [12]. Although we present our results fo

1. INTRODUCTION polynomials with real coefficients, they can be extended eas

. i " ) ily to the complex case.
The recent developments in the field of positive trigonomet-

ric polynomials [4] concern mainly polynomials with scalar 2. BOUNDED REAL LEMMA

coefficients. Although some basic results have been proven ] o ] o

to hold in (almost) the same form for polynomials with ma- The two main results we presentin this section are intingatel

trix coefficients [7, 5, 1, 2, 8], there are still issues ndtige  related to the theory of sum-of-squares polynomials. A sym-

vestigated. Moreover, while the generalization to matax ¢ metric trigonometric matrix polynomial has the form

efficients may be relatively easy from a mathematical view- N

oint, the applicative importance of the new results shbeld _ —k _nT

Pelevant engﬁgh to desgrve the investigation. R(z) = Z Riz ™ R =Ry “)
Let us consider a causal matrix polynomial (filter)dn

variables,

k=—n

n The coefficient®Ry have sizex x k. Forz € T9, R(z) is a
H(z) = z H,z . (1) Hermitian matrix and so it has real eigenvalues. The polyno-
“o mial (4) is sum-of-squares if it can be expressed as

We denotez = (z,...,24) the complex variable angk the v
monomialZ! . %‘1 with k € Z9. The matrix coefficients R(z) = /Z Fy(z)F(z )T, (5)
Hy have sizex; x Ko; we can sed(z) as a MIMO system =1
with k3 inputs andk; outputs. The degree of the filter (1)
isn e Zi and the sum runs for abl < k < n, where the
inequalities are valid elementwise. A Bounded Real Lemm
(BRL) is a characterization of the inequality

whereF,(z) are causal polynomials as in (1). It is clear that
for z € TY, the sum-of-squareR,(z) is a positive semidefi-
Qite matrix. Conversely, all polynomials (4) wiR(z) > 0,

Vz € TY, are sum-of-squares, see e.g. [1]; however, the de-

IH(2)|| <y, (2) grees of the polynomialB(z) from (5) may be arbitrarily
- high.
wherey is a positive number angl- || is a system norm. We The connection between sum-of-squares and SDP is

consider here thel., norm, which makes (2) equivalentto  made by expressing causal polynomials (1) using the stan-
dardd-dimensional basis

_ _ _ _ _ W(z)=yY(z)®...0P@)R ], (6)
wheregmax(-) is the maximum singular value of its matrix
argument and is the unit circle. We actually treat the more where® is the Kronecker product and
general case where the inequality (3) is valid on a subset
N=[1z ... Z"]" 7
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obtain a matrixH of sizeNky x kz, with N=1%,(ni+1)  holds true if and only if there exist sum-of-squafgz),
being the number of matrix coefficients in (1). For examplef = 0 : L, such that
for a 2-D polynomial withn; = 2, np = 1, the basis (6) is

L
W) = 21 21 21 221 221" (8) Yl =So(z) + 5 Du(2)Si(2) (1)
and the stacked coefficients matrix is and o
— Q H
H=[Hj, Hip Hjp Hy; Hi; H, ™. (9) [ "H I, =0, (16)
' , ’ ’ ’ ’ 2
Using the above ingredients, the causal filter can be exwhereQq is the Gram matrix associated wiy(z) through
pressed as . (11) and the matrixd contains the stacked coefficients of
H(z=y(z " -H (10)  H(z2) asin (10).

The parameterization of sum-of-squares trigonometri®roof. The proofis similar to the scalar case treated in [3] and
polynomials is the following [7]. A polynomid(z) defined  uses Theorem 1, a majorization result and the Schur comple-

asin (4) is sum-of-squares (of ordeyif and only if there ex-  ment. u
ists a positive semidefinite matr@ of sizeN«k x Nk (named Some comments on Theorem 2 are necessary. Relation
Gram matrix) such that (14) is equivalent to

S(z) =gz " Q- y(z). (11) H(z)H(z YT < y2L,,.

This relation connectinearly the coefficients of a sum-of- Accordingly, the matrix coefficients of the polynomialsiito
squares polynomial to the elements of a positive semidefinit(15) have size; x k1. As the size of Gram matrices is pro-

matrix. portional with the size of matrix coefficients and since the
We consider frequency domains nonzero singular values @ (z) andH(z)" are the same,
this form of the BRL is convenient whexy < k,. Other-
P={zc Td |Dy(z) >0, £=1:L} (12)  wise, itis more efficient to rewrite Theorem 2 fHi(z)".

Similarly to Theorem 1, the degrees of the sum-of-
defined by the positivity of trigonometric polynomials (it squares can be arbitrarily high. In our use of Theorem 2, we
scalar coefficients). The next theorem describes trigotomewill always consider the minimum degree, which e.g. implies
ric matrix polynomials that are positive definite on the do-that the degree d8o(z) is n. So (excepting the 1-D case),
main 2. we implement only a sufficient boundedness condition. In

) . ) N o the case where the degreeSif(z) is larger, the stacked co-
Theorem 1 A matrix polynomial (4) is positive definite on efficients matrixH that appears in (16) must contain zero
the set (12), i.eR(z) - 0, Vz € 7, if and only if there exist  cqefficients (in the appropriate positions) for the mondsnia

sum-of-squareS(z), { = 0:L, such that with degree not smaller than. Working with higher de-
L grees of the sum-of-squares may improve the quality of the
. results, but only marginally in most cases; however, the-com

R(z) = So(z) +ngZ(Z)SZ( ). (13) plexity always increases; so, practical consideratioxisoam

experience with the scalar coefficient case suggest to ese th

Proof. The theorem can be proved similarly to the scalarminimum degree. . .
coefficients result from [3]. The starting point is a result  Using the Gram matrix representation (11) for the sum-
from [8] on multivariateeal matrix polynomials that are pos- Of-squares appearing in (15), the relations (15)—(16) are a
itive definite on a domain described by the positivity of (fea LMI in which the coefficients ot (z) appear linearly. So, a
polynomials. m  score of optimization problems can be solved via SDP. The
As in other results of this type, the degree of the sum-ofsimplest example is the computation of tHe norm of a
squaresS,(z) from (13) can be arbitrarily high. Practically, System (1). It consists of the minimization g, subject
we have to bound the degrees, usually to the degrief,  to (15) and (16). Since in this case = TY, the equality
which makes (13) only a sufficient stability condition. How- (15) is reduced t¢?1«, = So(z) = ¢(z 1)T - Qo Y(z). The
ever, in the 1-D case, whe# is an interval described by variables of the problem ané, the coefficients oH(z) and
the positivity of a single polynomial, Theorem 1 holds truethe Gram matrixQo = 0. This is an SDP problem, since all
for sum-of-squareSq(z), S1(z) whose degrees are minimial the variables appear linearly in (15) and (16). The optinal
(i.e. nandn—2, respectively). (The proof has been providedis (an upper approximation) of the desitdd norm.
by C.W. Scherer in a personal communication.) Using the
representation (11) for the sum-of-squares appearingd) (1 3. DESIGN PROBLEMS AND RESULTS

polynomial positivity is expressed as an LMI. . . —
We can now present the BRL for trigonometric matrix W& discuss here three design applications of Theorem 2, per-
polynomials. taining to matrix filters, 2-D FIR deconvolution and 2-D FIR

filters with matrix coefficients. Other possible applicato
Theorem 2 LetH(z) be a causal matrix polynomial (1) and not touched here, are in filters for MIMO sampling and re-

y a positive real. The inequality construction [10] or the design (for nearly perfect recorst
tion) of a (multidimensional) synthesis filter bank giver th
omax(H(z)) <, Vz € 2, (14)  analysis bank.
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3.1 Matrix filter design 0

Matrix filters [9] process blocks of datac CN through the
linear transformation

y = Ax, a7

where A is a real (or complex) matrix of sizd x N (we -lof
consider square matrices only for the ease of presentation)
Such processing is useful for example in antenna arrays for
underwater acoustics.

We treat here the simplest design setup, in which we want
to design a minimax lowpass matrix filter (with real coeffi-
cients), which satisfies the conditions -20f

[AW(Ee1?) — (e ®)| < yp, Ywe 0,0,  (18)

-15}

[ Av(e=7)[|/VN (dB)

AW < g Vo£ @, (19) T Normalied foqueney (o)
where w, and ws are the edges of the passband and stop-
band, respectively, ang, andys are error bounds with re- Figure 1: Power response of the matrix filter designed in Ex-
spect to the desired response. The passband desired respoasiple 1.
is a vector of delays, see (7). The norms in (18) and (19) are

2-norms.
The matrix filter has the form fork=0:N—1 (& is the Kronecker symbol). For the pass-
N1 band, a similar reasoning transforms (18) into
_ ~1y _ —k ~ ~
H(z=Ay(z ") = k; az ¥, (20) V2 = tr[©4 Qo] + tr[(Ok_1 + Os1 — 2c0swp - ©)Q1]29)
N i Qo  AT-In |, g 30
whereay, € RN are the columns oA. The polynomial (20) ATy In = 0. (30)
hasd = 1 variable and the size of the matrix coefficients is
k1 =N, k2 = 1. The inequality (19) is equivalent to The minimax optimization problem can be formulated as
i follows. Given the ordeN, stopband edgeu,, passband
Omax(H(e'”)) < 6, Vo € [, 7). 1) edgec, minimize the maximum passband and stopband er-
This makes Theorem 2 applicable. The trigonometric poly!©F PY solving the SDP problem
nomial whose positivity define® = [, 1] is min 2
Ds(2) = 2cosus—z— 7L, 22) subjectto (28),(26),(29),(30),)Z = )2 (31)

. , Qo=0Q1~-0,Q=0,Q1=0
Sincek; > Ko, we apply Theorem 2 for the transposed filter.
It results that (19) holds if and only if there exist sum-of-\we note that the size of the matric& and Qg is N x N,

squares while the size 0fQ; andQj is (N—1) x (N—1). In (31),
T the passband and stopband errors are forced to be equal. In
S = ¥(@z) Quy(), (23) general, we can force a given ratio, or set one or both errors
S22 = YEzH'Quy(z) (24)  to presetvalues (in the latter case, the SDP problem regjuire
only feasibility).
(note that these are polynomials with scalar coefficienish s Example 1 We consider the specifications of the last ex-
that ample from [13], namelN = 15, w, = 0.27, ws = 0.37.
The power response of the filter designed by solving (31) is
¥ =S(2)+Ds(2%1(2), (25) shown in Figure 1. The optimal erroryg/+/N = —14.5 dB.
{ Qo AT ] -0 (26) In [13], the stopband error was set +d.2 dB, using semi-
A Iy |—7 infinite optimization techniques. However, in [13] the pass

. _ ~ band error energy was optimized. Since this energy is a pos-
Inthed = 1 case, which applies to (23,24), the Gram matrixitive quadratic function of the elements of the matéixit is

parameterization (11) has the form easy to insert its optimization in the SDP problem (31). The
time required for solving (31) was of about 4 seconds on a
s = tr[exQ), (27) " dual core PC at 1.86 GHz, with 4Gb memory.

wheres, are the (scalar) coefficients of the sum-of-square .
and © is the Toeplitz matrix with ones on diagoriaknd 3.2 2D FIR deconvolution
zeros elsewhere. Using this parameterization and thecpartiln the general deconvolution scheme shown in Figure 2, the
ular form of the polynomiabDs(2), relation (25) becomes signals passes through the chanr@lz), whose model is
known, and is contaminated by the noiseWe want to de-
V2o = tr[@y Qo] + tr[(2cosws- Ok — Ok_1 — Ok.1)Qu], sign a filterX (z) whose outpus approximates the ideal out-
(28) putDs. We assume that all filters are FIR. The output error
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Figure 2: General deconvolution scheme.
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The error functiorH (z) has the general form

H(z) = X(z)A(z) — B(2), (33) Figure 3: Frequency response of input-output error in the
deconvolution scheme optimized in Example 2.

where A(z), B(z) are given; in (32) we haveA(z) =
[G(z) 1], B(z) = [D(z) 0]. Lacking knowledge on input
and noise signals, the best way to control the output ertoris 3.3 Design of 2-D MIMO filters
minimize the norm oH(z), using inequalities like (2). Since The design of lowpass MIMO multidimensional filters was
the coefficients oH (z) depend linearly onthose 8#(2), the _ giscussed in [12] in the following setup. Given a desired re-
use of Theorem 2 transforms (2) into an LMI. Equality (15)sponseD(z) and a passhand error boupgland assuming
does not depend oX(z), while in (16) H is replaced by that the passband and stopband have rectangular shapes de-
Z(X) where? is the linear transformation that maps thefined by only two frequenciesy, and ws, find the optimal

coefficients ofX(z) into those ofti(z). minimax filter (1) which is the solution of the problem
The optimization scheme outlined above can be used for

several problems. Let us illustrate it for the case of HD min s

deconvolution of SISO systems. In this case, we lthve2, st Omax(H(e?) —D(e1?) < yp, V|w|<wp, i=1:d

K1 =1, K> =2. We assume th&i(z) is FIR of ordemg. We Omax(H(61?)) <y, Jiel:d,|w|> ws

want to design the FIR filteX(z) of orderny such that the (35)
error norm inequality (2) hold for the smallest possibleseal |f D(z) is a FIR system (typically a constant matrix or a de-
y. Taking into account the generalization of the parameteritay matrix), this problem can be expressed in SDP form using
zation (27) to the 2-D case (see [7, 3]), the use of Theorem Zheorem 2. The passbati can be described by a set (12)

leads to the following optimization problem with Dy(z) = z +z;1 — 2coswp, £ = 1:d. The stopband is
: a union
min  y? d
S.t. V26k1k2 =tr[(B, ®0))Q], —n < (ki,kz) <n Ds = U Dsjs
Q ; Z(X) -0 i=1
Z2X)" L |~ with
(34) Dsi={zeT|Ds(z) >0}, i=1:d,

wheren = ng+ ny is the degree of the error filtét(z).

Example 2We consider the example from [11], with whereDs(-) is the polynomial (22). The problem (35) is

equivalent to

G(z1,2) = 0.1(z; 1 +2%)%+0.12,%+ 0.1z, +8 min
8 0101017 [ 1 sit. amaxEHEz;)—D(z» < Vpé Vz €
1. 2_3|0 0 030 > Omax(H(2)) < %6, Vz € Zs1
= [1211212213] 0O 030 O 2222 . (36)
-3

010 0 O zZ, Omax(H(2)) < s, Vz € Dsgq

andD(z) = 1. Solving (34) withnx = (2,2), we obtain  Each of the constraints of (36) can be transformed into an
an optimal value of théd., error norm ofy = 0.1379=  LMI via Theorem 2. We note that similar problems can be
—17.2 dB. The error frequency responsg@ax(e’“) is shown  obtained for passband and stopbands that are not rectangula
in Figure 3. Increasing the degreeXfz) does notimprove (see [3] for examples of other shapes), while the resulta fro
the result. For comparison, the state-space approach fropn2] cannot be apparently generalized.
[11] gives an error of 0.15 for a system of deg(8e3). Example 3. The particular case treated in [12] is 2-D

In this example we have used a global error bound, i.e(d = 2), with D(z) = I,. So, the MIMO systems hag =
2 =T9%in Theorem 2, as so the error surface from Figure 3i2 inputs andk, = 2 outputs. The design specifications are
equiripple. By enforcing equalities (2) with differentuas  yp = 0.1, wp = 0.471, ws = 0.971. Due to the form of the
of y on different domains, it is possible to shape the error. desired response, the intuitive solution of (35) should be a
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guency domains (intervals in the first example). Finallg, th
implementation is modular and further applications can be
programmed without intimate knowledge of the theory de-

Magnitude

Frequency

Frequency

Figure 4: Frequency response of 2-D scalar filter lying on the
diagonal of the optimal MIMO filter designed in Example 3.

diagonal filter, with identical scalar filters on the diagbna
This is indeed what we have obtained by solving (36). The
frequency response of such a scalar filter of order (4,4)

is shown in Figure 4. The optimal stopband erronds=
0.44. The responses of the "cross-channels” filters (input 1
to output 2 and input 2 to output 1) are negligibly small. In
contrast, the FIR filters designed in [12] are not diagondl an
the optimal error is larger than 0.7. (The results in [12] are

based on a state space implementation and so are difficult tf£6]
compare to ours other but by examples.) Of course, itis more

sensible to choosB®(z) = diag(z; "z, ?); by taking; =
T, = 2, the optimal solution (again diagonal) has an error
¥s = 0.028.

3.4 Implementation details

We have implemented the SDP problems discussed in thi48]

section using the convex optimization library CVX [6]. We

have taken advantage of the possibility to describe convex

sets in CVX, and built functions for sum-of-squares polyno-
mials, polynomials that are positive on domains (as in The-
orem 1) and for the BRL described by Theorem 2. In the

latter case, the variables ay and the (vectorized) coeffi- [10]

cients of the filter (1). Although it might add a small compu-
tational overhead, this hierarchical construction leaddhé

scribed here.

Further work will be devoted to a Positivstellensatz for

polynomials with matrix coefficients, i.e. towards an LMI
form of the condition defl(z) # 0, Vz € 2, without com-
putation of the determinant.
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