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ABSTRACT

The analysis of data is typically accompanied by concern as to the
correctness of recorded data points; some of the points might be
contaminated, thereby distorting the result of the analysis. This
paper proposes a novel cluster-based and distribution-independent
method for outlier detection. Based on Monte Carlo simulations,
the new method is tested with different data distributions and com-
pared with the method of standardised residuals (also known as the
z-score). It is shown that the cluster-based approach identifies out-
liers more reliably, even for a normal data distribution, and the ad-
vantages are discussed in detail.

1. INTRODUCTION

Outliers, also called as mavericks or contaminant observations, are
data points that deviate so much from other points that they seem to
be generated by a different mechanism than the ‘good’ observations.

When observations are subject to data analysis, at least two sce-
narios have to be distinguished. Either (i) outliers negatively in-
fluence the results of analysis, or (ii) the search for outliers is the
main task of data analysis. In data mining, for instance, outlier
detection is also regarded as the detection of novelty or anomaly.
In many applications, a set of training values is required to define
‘normality’. Security applications are examples, in which atypi-
cal behaviour by people or technical systems has to be detected.
In applications with a small number of observations, however, the
detection method should be able to identify outliers without prior
training.

With respect to scenario (i), lively discussion can be found in
the past literature on outliers, as to whether to reject suspicious val-
ues or always to keep all observations. Beckman and Cook give
an overview of the history of attempts to find outliers in data sets
[1]. Unfortunately, no established ‘standard’ technique has evolved
to date. A comprehensive review of the tests developed for out-
lier detection can be found in Barnett and Lewis [2]. Outlier tests
(also known as discordance tests) are often tailored to the statistical
model generating the observations and presume some knowledge of
the number of putative outliers. Many of them can only cope with a
single outlier. With the focus on machine learning and data mining,
approaches to outlier detection have been surveyed in [3] and [4].

This paper proposes a novel method of cluster-based outlier
detection via scores ∆i (i = 0,1, . . . ,N − 1). These scores could
be, for example, the deviates yi − ŷi arising from least-squares ap-
proximation of N measured data points yi with a model function
ŷi = f (xi|a), whereas a is the vector of model parameters and xi

is the vector of conditions. The score ∆i also could be the number
of observations, which are within a certain radius around the ob-
servation yi enabling the processing of multi-variate data [5]. The
new method does not depend on a certain distribution of scores, nor
does it require prior training. It implicitly adapts itself and applies
a threshold based on distance measures separating putative outliers
from the bulk of good observations. Its advantages over the method
of standardised residuals are demonstrated via Monte Carlo simula-
tions.

2. APPROACHES TOWARDS OUTLIER DETECTION

In the abovementioned case of least-squares approximation, ∆i

would be centered on zero and typically follow a Gaussian distribu-

tion. Values of ∆i close to zero indicate good observations, whereas
large absolute values indicate suspicious ones. A threshold λO is
required to discriminate between good and bad observations. λO is
a hard threshold and its determination is the critical task in outlier
detection.

2.1 Standardised residuals

2.1.1 The Method

The criterion of standardised residuals assumes that the values of ∆i

are normally distributed with a mean of zero and a standard devia-
tion of σ∆

f (∆) =
1√

2π ·σ∆

· exp

[

−0.5 ·
(

∆

σ∆

)2
]

. (1)

The true value σ∆ is not known in advance and can only be esti-

mated to a certain degree of accuracy by σ̂∆ =
√

∑i(xi − xi)2/N,
because the number of observations i = 0,1, . . . ,N −1 is limited.

The majority of all observations drawn from a normal distribu-
tion are less distant from the mean than a certain multiple of its stan-
dard deviation. The method of standardised residuals (also called
the z-score) utilises this fact to identify contaminants

|∆|
σ̂∆

> κO . (2)

All observations leading to a standardised residual larger than κO

are considered to be outliers. Many texts propose values in the range
3 ≤ κO ≤ 4. The value could also be adapted to the number of
observations N according to Chauvenet’s criterion [6]

κO =
√

2 ·
[

inverf
(

1− ν0

N

)]

, (3)

where ν0 expresses the average number of observations with |∆i| >
λO = κO · σ̂∆ for a given N. Chauvenet proposed a proportion of
ν0 = 0.5. This, however, would imply 0.5 outliers per data set on
average. In practice, the outliers would not be evenly distributed
over all possible data sets, i.e. less then fifty percent of all data sets
would be said to contain outliers, but some would contain more than
one. The value ν0 = 0.5 is obviously much too high. In principle,
it is up to the implementer to choose another value ν0. In order to
tighten the limits for outliers, a lower value should be used.

2.1.2 Implications of the normal distribution

Although the normal distribution has its theoretical foundation,
most people are not willing to accept that a measurement can de-
liver a result that arbitrarily deviates from the correct value. This
is, however, exactly what the range of definition −∞ ≤ ∆ ≤ +∞ of
the normal distribution is telling us. In practical cases of limited
numbers N of values ∆i everybody may reject a value that is fur-
ther than, say, a certain multiple of the standard deviation σ∆ away
from the mean. Therefore, when talking about outliers, it seems ap-
propriate to consider a modification of the statistical model of the
observations. This will not be discussed further in this paper.
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Table 1: Threshold κ1 depending on the number of observations.
N 8 11 16 23 32 45 64 91 128 181 256 362 512 724 1024 1448 2048 2896
κ1 7.3 7.7 10.1 11.8 14.1 16.7 20.3 25.2 31.5 39.6 51.3 66.6 86.4 112 150 198 261 351

Choosing the cut-off value λO based on the estimated standard
deviation σ̂∆ raises another problem. Typically, it is expected that
the outlier criterion will separate the cluster of ‘good’ observations
from contaminants. There should be a certain distance between the
outer border of the cluster and the outliers. The standardised resid-
ual criterion, however, does not offer a separation of this kind by
definition.

The next subsection proposes a new approach to outlier detec-
tion based on cluster analysis that is independent of the estimated
standard deviation and takes into account that outliers should be re-
mote from the bulk of ‘good’ observations.

2.2 Cluster criterion

Outlier detection based on the standardised residuals discussed
above is dependent on the normal distribution of scores and the es-
timate of the standard deviation σ̂∆, which is rather uncertain where
there are small numbers of observations. The basic idea behind the
new method is to find a pattern, or strictly speaking a gap, in the
distribution of scores that might point to the existence of outliers.

It is presumed that all non-outliers form a one-dimensional
cluster in the sense that their corresponding scores are relatively
close to each other, while the scores of contaminant observations
are more or less remote from this cluster.

The new approach requires no special distribution of scores.
The distribution merely has to be one-sided. If the initial distribu-
tion of scores is Gaussian and centred on zero, for example, this
requirement can be simply achieved by mapping all negative values
into the range of positive values. Putative contaminants are identi-

fied by comparing the distances between the scores ∆i.
1

The decision regarding the existence of more than one single
cluster of scores is made using the following algorithm. First, the
scores have to be sorted in ascending order and numbered by n

∆s[0] ≤ . . . ≤ ∆s[n] ≤ ∆s[n+1] ≤ . . .∆s[N −1]

and the differences between them are calculated

d[n+1] = ∆s[n+1]−∆s[n] .

It is expected that the score of an outlier will show a significantly
higher difference (distance) from its nearest neighbour downwards,
i.e. the score will be more distant from the others than scores of
measurements drawn from the correct distribution.

What qualifies a distance db as a border (a gap) between a one-
dimensional cluster of good observations and possible outliers?

1. It must be distinctly larger than a typical distance:
db ≥ κ1 ·dglob (global criterion).

2. It should be substantially larger than its predecessors:
db ≥ κ2 ·dloc (local criterion).

We define the typical distance for a certain score as the weighted
average of distances belonging to scores which are smaller than the
score corresponding to the distance d[n] under investigation

dglob[n] =
1

C1,n
·

n−1

∑
j=1

d[n− j] ·w j with C1,n =
n−1

∑
j=1

w j . (4)

This avoids the influence of other potential outliers. The weighting
becomes smaller with increasing j

w j = exp

[

−1

2
·
(

j

2 ·N

)2
]

. (5)

1For simplicity, the same symbol ∆ is also used for the mapped values.

Table 2: Example of intermediate values of cluster-based outlier
detection, see text for details.

n ∆s[n] d[n] dglob[n]
d[n]

dglob[n]
dloc[n]

d[n]
dloc[n]

0 1.70 0.00 0.000 0.000 0.000 0.000
1 2.00 0.30 0.000 0.000 0.000 0.000
2 2.50 0.50 0.300 1.667 0.300 1.667
3 3.10 0.60 0.402 1.492 0.464 1.294
4 3.20 0.10 0.472 0.212 0.578 0.173
5 3.70 0.50 0.373 1.341 0.196 2.553
6 4.60 0.90 0.400 2.249 0.430 2.095
7 5.10 0.50 0.500 1.000 0.816 0.613
8 10.50 5.40 0.505 10.692 0.572 9.446
9 10.70 0.20 1.335 0.150 4.451 0.045

10 18.30 7.60 1.213 6.263 1.139 6.673
11 18.40 0.10 2.231 0.045 6.235 0.016

κ1: 8.18 κ2: 2.00

The local criterion utilises the same averaging process, but with
weights falling off more rapidly in order to express closeness

dloc[n] =
1

C2,n
·

n−1

∑
j=1

d[n− j] · exp

[

−1

2
·
(

j

12 ·N

)2
]

. (6)

The denominators 2N and 12N have been determined empirically.
Please note that both, dglob[n] and dloc[n] are different for each

distance d[n] reflecting the adaptive character of the approach.
In summary, the presence of one or more outliers is indicated

if there is a score ∆s[n] showing a distance d[n] from the next score
down ∆s[n−1], which has the two properties

d[n] ≥ κ1 ·dglob[n] and d[n] ≥ κ2 ·dloc[n] . (7)

The value of the corresponding score ∆s[n] is taken as the cut-off
value λO.

Experiments with different kinds of data sets have shown that
κ2 can be set to a fixed value of 2, while κ1 should be dependent on
the number of observations N. Suitable values for κ1 have been de-
rived from computer simulations, Tab. 1. If N is a number between
these points, the corresponding κ1 should be interpolated.

Using the approach described, even multiple outliers can be
eliminated at once, because the score ∆b corresponding to the dis-
tance db fulfilling Eqs. (7) only marks the border between the two
clusters of good observations and contaminants. It is evident that
all observations having higher absolute scores also belong to the
cluster of outliers.

The entire procedure of outlier detection based on distances is
explained in following example.

Example:
Tab. 2 shows the sorted scores {∆i} (first column) and also the
distances d[n], averaged distances dglob[n] and dloc[n], as well as

the relations q[n] = d[n]/dglob[n] and r[n] = d[n]/dloc[n].
The distances range from 0.10 to 7.60. Only one of them,

d[8], fulfils the global criterion d[n]/dglob[n] ≥ κ1. Since the lo-

cal criterion d[8]/dloc[8] ≥ κ2 is also satisfied, the detection is
successful.

Please note that the relation q[10] = 6.263 is below the
threshold κ1, although the corresponding distance d[10] = 7.6 is
higher than d[8]. This is caused by the effect of accommodation.
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Figure 1: Normally distributed observations: percentage of data sets
with at least one observation classified as outlier.

As one large distance has already been seen for predecessors, the
new occurrence of a similar distance is no longer an indication of
contaminant observations, but only of a sparse distribution. This
is an important feature of the proposed method.

In order to exclude all observations not belonging to the clus-
ter of good points, the value of the score corresponding to the
critical distance d[8] is taken as threshold λO, i.e. all observa-
tions with scores ∆i ≥ λO = ∆s[8] = 10.5 are marked as outliers.
�

3. ANALYSIS AND COMPARISON

3.1 Normally distributed data

It has been investigated whether the removal of observations ac-
cording to the ±κO · σ̂∆ rule of the standardised residuals method
(Eq.2) is in fact critical, and whether the proposed cluster-based ap-
proach leads to more reliable results. For different numbers N of

data points, 105 sets of observations yi, drawn from a normal dis-
tribution (σy = 1;y = 0), have been generated individually. The
function to be used to parameterise the data is simply the identity
∆i = |yi|.

3.1.1 Data sets without outliers

The method of standardised residuals has been tested in three
modes: with a constant value of κO = 3.5 and with two different
adaptive values according to Eq.(3), respectively. The cluster-based
outlier detection (ClubOD) has been applied as described in subsec-
tion 2.2.

The average percentage of data sets having at least one data
point declared as being an outlier has been recorded (Fig. 1). When
using a constant value of κO, the chance of classifying data points
as outlier naturally increases with increasing N, since the tails of the
Gaussian bell become more and more filled. The curve correspond-
ing to ν0 = 0.5 does not seem to converge to the value of 50%. The
reason for this lies in counting only the number of sets with outliers
without considering the number of outliers per set. If one counts
sets with two outliers twice, sets with three outliers three times, and
so on, the result will in fact converge towards 50%. According to the
chosen thresholds κ1 for the cluster-based method (ClubOD), each
set shows on average 0.15 outliers leading to about 10% – 12% sets
containing potential outliers.

The results of Figure 1 reveal one major problem. Even though
all values have been drawn from the same distribution, some of them
have been classified as outliers by definition. The question is, does
the removal of these falsely classified observations harm the data
analysis, i.e. the estimation of the true value of y? In order to an-
swer, the simulation mentioned above has also compared the mean
value ŷ of the entire set with the mean value ŷ′ of the reduced set,
i.e. the set after removal of putative outliers. Theoretically, ŷ should
be equal to zero, due to the parameters of the normal distribution
used. It has been found that the removal improves the estimate of
the mean value of y in less than fifty percent of all sets containing
one or more observations classified as being contaminant (Fig. 2).
There are no significant differences between all three cases, despite

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10  100  1000

s
e

ts
 w

it
h

 i
m

p
ro

v
e

m
e

n
t 

[%
]

N

κO=3.5
ν0=0.15
ClubOD

Figure 2: Normally distributed observations: percentage of data sets
with better estimates of y after the removal of observations classified
as outliers.
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Figure 3: Normally distributed data: percentage of data sets with at
least one observation classified as an outlier after insertion of one,
two or three contaminants; a) κO = 3.5, b) Chauvenet’s criterion
ν0 = 0.15, c) cluster criterion.

the different values of κO or the different methods.
It follows that the removal of putative outliers actually yields

poorer results if sets of normally distributed data are free of contam-
inants, whereby ClubOD shows for N < 30 less degradation than the
method of standardised residuals.

However, as the removal does not always negatively influence
the estimate of ŷ, there is a chance that this relation will change in
favour of removal where the presence of outliers can be expected.

3.1.2 Data sets containing outliers

In order to investigate the effects of real outliers, the simulations
have been run again with one, two or three of the original observa-
tions substituted by some values drawn from a normal distribution
with other parameters (σy = 1,y = 4.0). Fig. 3 shows the results
in comparison to the outlier-free case. Naturally, the percentage of
data sets with putative contaminants has increased. It is not 100%
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Figure 4: Normally distributed data: percentage of data sets with
better estimates of y after the removal of observations classified as
outliers. Data sets with insertion of one, two or three contaminants;
a) κO = 3.5, b) Chauvenet’s criterion ν0 = 0.15, c) cluster criterion.

because the inserted outliers may have values similar to the other
observations, and are not detected in these cases. Furthermore, the
chance of detecting outliers with the method of standardised resid-
uals decreases for small N with an increasing number of inserted
contaminants, because the estimate of σ∆ is strongly influenced by
the outliers and it becomes less likely that the remaining ‘good’ ob-
servations will form a distinct unit.

The proposed cluster-based approach proves advantageous
when detecting outliers in small data sets, because it is not de-
pendent on the estimation of σ∆. In larger data sets, observations
are more frequently located in the tails of the Gaussian distribu-
tion, closing the gap between the bulk of good observations and
outliers. Consequently, fewer outliers are detected on average. This
behaviour is also beneficial, as we have to ask ourselves whether the
outliers included deliberately can still be regarded as contaminant if
similar values are also common for true data points.

Fig. 4 clearly shows that, as soon as outliers are present, the
removal of outliers is statistically advantageous, especially for small
data sets. It should also be noted that the amount of improvement of
the estimated value ŷ is on average higher than its degradation (Fig.
5). The changes are given as absolute values. With increasing N,
the influence of outliers on the estimation of y decreases, and so do
the changes.

3.2 Non-Gaussian distribution

Albeit originally developed for normally distributed scores, the new
method also works well for other distributions. As a matter of
course, the method of standardised residuals will fail in these cases.
The distribution of scores is dependent on the function converting
the observations yi into scores ∆i. Two examples are discussed here.
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Figure 5: Normally distributed data: quantitative change of esti-
mated ŷ after the removal of observations classified as outliers. Data
sets with insertion of one, two or three contaminants; a) κO = 3.5,
b) Chauvenet’s criterion ν0 = 0.15, c) cluster criterion.
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Figure 6: Laplace distribution: percentage of data sets with at least
one observation classified as an outlier.

3.2.1 Laplace distribution

The Laplace distribution is a two-sided exponential distribution

f (∆) =
1

2 ·b · exp

(

−|∆−µ |
b

)

,

which was investigated with µ = 0 and b = 1. It turns out that
the standard deviation σ∆ is not suitable anymore as basis for dis-
crimination of good observations and outliers. In fact, it causes the
κO · σ̂∆ criterion to reject far too many observations with increasing
N. The cluster-based criterion, however, only shows a somewhat in-
creased tendency to declare observations as contaminant (Fig. 6, in
comparison with Fig.3, O=0). On average, about 1.5 samples from
the end of the tail are declared as contaminant. So it is resistant to
long tails in the distribution of scores.

Most interestingly, the removal of putative outliers improves the
estimated value on average. The proposed cluster-based method has
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Figure 7: Laplace distribution: percentage of data sets with better
estimates of y after the removal of observations classified as outliers.
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Figure 8: Uniformly distributed observations: a) percentage of data
sets with at least one observation classified as an outlier; b) per-
centage of data sets with better estimates of y after the removal of
observations classified as outliers.

here the highest percentage of improved data sets (Fig. 7).

3.2.2 Uniformly distributed data

When applying both outlier detection schemes to uniformly dis-
tributed and outlier-free data (−1 ≤ yi ≤+1), almost no outliers are
detected and the few cases of wrong classification mostly decrease
the quality of the estimated ŷ. Using a fixed threshold κO = 3.5,
none of the observations is classified as an outlier.

After the insertion of outliers, uniformly distributed in the range
of 2 . . .4, the proportion of sets classified as containing at least one
outlier significantly increases (Fig. 8 a). Only in cases of small
data sets, do the inserted outliers influence the determination of σ∆
(standardised residuals) or the computation of dglob (cluster-based
approach) so strongly that the outliers are likely to become part of
the cluster of ‘good’ observations. In terms of improvement after
removal of putative contaminants, there is no significant difference
between the approaches. That is why Fig. 8 b only shows the results
based on a single inserted outlier.

It might be of interest that if the data contains two outliers, the
proposed approach typically finds both, whereas the method of stan-
dardised residuals often detects only one (Fig. 9).

4. DISCUSSION AND SUMMARY

The Monte-Carlo simulations presented in this paper underline nu-
merically that the removal of observations decreases the estimation
accuracy if normal distribution is assumed and the data set contains
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Figure 9: Uniformly distributed observations: average number of
detected outliers per data set, with two outliers inserted on purpose.

no outliers. This result can be generalised for any unbounded distri-
bution. If any arbitrarily large value is an element of the distribution,
none of the observations may be regarded as an outlier, regardless of
the criterion that is used. The situation changes as soon the presence
of outliers can be assumed. In the majority of cases, the removal of
potential outliers improves the data analysis, and the improvements
are higher than the effect, by which the estimation becomes worse.

The simulations have also revealed that the method of standard-
ised residuals sometimes places the threshold λO in between similar
observations, which contradicts the intuitive decision as to the def-
inition of outliers. In contrast, the proposed method considers the
distances between scores, and only removes those points that are
in fact remote from the cluster of true observations. In addition,
the new cluster-based method is able to adapt itself to the possibly
sparse distribution of scores.

The benefits from the cluster-based approach become especially
apparent if the scores are not normally distributed. In the case of
Laplace distribution, the method of standardised residuals declares
far too many observations as contaminant, whereas the proposed
method is only slightly affected. In case of uniformly distributed
data, only the proposed approach is able to detect true outliers with
sufficient reliability, because it finds multiple outliers, while the
method of standardised residual often only finds one out of two in-
serted outliers, for example.

The statistical relevance of results has been obtained by large
scale tests based on simulated data. Presenting results of a particular
data set from a concrete application would not prove or disprove the
effectiveness of the proposed approach.

The inherent principle of the novel method is generally compat-
ible to any distribution of scores, as soon as the scores of outliers
are more distant to others than the scores of true data points making
it a very versatile method. Application-specific properties must not
taken into account, since these can be incorporated into the param-
eterisation of data points to scores. The method is also suitable for
online applications, where each newly occurring observation has to
be tested. Removing an old observation as soon as a new one is
included would make the approach adaptable to varying statistics.
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