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ABSTRACT 

The Jacket transform is a generalization of the Hadamard 
(Walsh) transform and useful in signal and image process-
ing. In this paper, we will further generalize the Jacket 
transform defined in previous papers. We use the sub or-
thogonality property of the columns of the Walsh transform 
to define a more general form of the Jacket transform. For 
an N-point Jacket transform, there are N parameters that 
can be freely chosen. Therefore, it is possible to make the 
generalized Jacket transform have a certain form (such as 
the sinusoid-like form) while preserving the advantages of 
the original Walsh transform (reversibility, no multiplica-
tion, and the fast algorithm). As with the original Walsh 
and Jacket transforms, the proposed generalized Jacket 
transform will be helpful for CDMA and signal analysis.   

1.     INTRODUCTION  

The Jacket transform is a generalization of the Walsh (Ha-
damard) transform. In [1], Lee found that the 4-point Walsh 
transform can be generalized as: 
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⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

4J .   (1) 

Then, in [2], the 4-point Walsh transform was further gen-
eralized into the following form:  
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or more general,  
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4J .  (3) 

They are called the Jacket transform. The values of w in 
(2) and a, b, and c can in (3) can be  
                               2k       or      j2k.       (4)     
These coefficients can also be chosen as the 2nth root of 
unity [3]. The inverse of the 4-point Jacket transform is:      
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− −⎣ ⎦

4H ,    =4 4H J I , (5) 

and the 2N-point Jacket transform can be obtained by the 
Kronecker product of the N-point Jacket transform and the 
2-point Hadamard matrix:   

                  = ⊗2N N 2J J W ,     
1 1
1 1
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
2W  (6) 

where ⊗ means the Kronecker product.  
Since the Jacket transform is more flexible than the 

Walsh transform and can preserve the advantages (such as 
the fast algorithm) of the original Walsh transform, it is 
suitable for signal processing. The Jacket transform can be 
used for image coding, ECG signal analysis, error control 
coding, CDMA, spread spectrum communication, and 
MIMO system analysis [1]-[6].          

In this paper, we will further generalize the Jacket 
transform. To preserve the properties of the original Walsh 
transform, we want the derived generalized Jacket trans-
form satisfies the following three constraints:   
(1) Bi-orthogonality: If JN and HN are the transform matri-
ces of the forward and inverse N-point Jacket transforms,    
                                   N NH J = I .    (7) 
(2) The entries of the forward and inverse transform matri-
ces have the reciprocal relation [6]:   

                          [ ] [ ]
1,

,
m n

N n m
=N

N

H
J

.      (8) 

With the second constraint, we can assure that if the entries 
of the forward transform are powers of two, then those of 
the inverse transform are also powers of two.  
(3) The fast algorithm of the original Walsh transform is 
preserved.   (9) 

If these three properties are satisfied, the advantages of 
the original Walsh transform can be preserved.  

We find that, using the rule of sub orthogonality ex-
tension, the derived Jacket transform can satisfy all the 
three constraints described above. Moreover, the derived 
Jacket transform is more general than proposed in previous 
papers and is more suitable for CDMA and other signal 
processing applications.  
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2.     SUB ORTHOGONAL EXTENSION   
We have known that the columns of the Walsh transform 
are orthogonal to each other. In fact, they are not only or-
thogonal but also form a sub orthogonal set.   

[Definition] Sub Orthogonality  
Suppose that the two sequences x[n] and y[n] are orthogonal.  

                          [ ] [ ]
1

0
0

N

n
x n y n

−
∗

=

=∑ .             (10) 

If the index {0, 1, 2, …., N−1} are classified into two sets:    
  N1 = {v1, v2, …., vk}, N2 = {w1, w2, …., wN−k},   
  N1 ∩ N2 = ∅,          N1 ∪ N2 = {0, 1, 2, …., N−1},       (11)  
and x and y are orthogonal with respect to the two index 
subsets:   
                  [ ] [ ] [ ] [ ] 0

n n
x n y n x n y n∗ ∗

∈ ∈

= =∑ ∑
V W

,       (12)  

then we say that x[n] and y[n] are sub orthogonal with 
respect to the index subsets N1 and N2.        
 

For example, for 8-point Walsh transform:  

          

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
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⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥= ⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

8W . (13) 

The 1st and the 2nd columns of W8 are 
  e0 = [1 1 1 1 1 1 1 1]T and  e1 = [1 −1 1 −1 1 −1 1 −1]T. (14) 
It is obviously that they are orthogonal. Furthermore, if we 
divide the index into  
         N1 = {0, 1, 2, 3}   and   N2 = {4, 5, 6, 7},     (15)    
then we find that e0 and e1 are sub orthogonal with respect 
to the two index subsets N1 and N2:  
     [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]0 1 0 1 0 1 0 10 0 1 1 2 2 3 3 0e e e e e e e e+ + + = ,             
     [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]0 1 0 1 0 1 0 14 4 5 5 6 6 7 7 0e e e e e e e e+ + + = .    (16) 
Moreover, if we denote the kth column of W8 by ek-1, then 
we find that e0 is also sub orthogonal to e2, e3, e5, e6, and e7 
with respect to N1 and N2. In fact, we can classify the col-
umns of the 8-point Walsh transform into two sets:     
           {e0, e4}  and   {e1, e2, e3, e5, e6, e7}.     (17)  
Then the columns in the first set are sub orthogonal to the 
columns in the second set with respect to N1 and N2.  

The concept of sub orthogonality is helpful for finding 
a more general form of the Jacket transform.       

[Theorem 1] Sub Orthogonality Extension (I)       

For an N-point Walsh transform matrix WN, we denote 
its columns by ek[n] (k = 0, 1, ….. , N−1). If  
           {ep[n] | p ∈ K1}   and    {eq[n] | q ∈ K2}  (18) 
are two subsets of {ek[n] | k= 0, 1, …. , N−1} and         
         K1 ∩ K2 = ∅,       K1 ∪ K2 = {0, 1, 2, …., N−1}, (19)  
when the column in the first sets {ep[n] | p ∈ K1} are sub 
orthogonal to the columns in the second set {eq[n] | q ∈ K2} 

with respect to the index subsets N1 and N2 (see (11)), then 
we can generalize the Walsh transform into JN where      
      [ ] [ ], ,m n a m n=N NJ W   when  m ∈ K1 and n ∈ N1,    
      [ ] [ ], ,m n b m n=N NJ W   when  m ∈ K1 and n ∈ N2,       
      [ ] [ ], ,m n c m n=N NJ W   when  m ∈ K2 and n ∈ N1,    
      [ ] [ ], ,m n d m n=N NJ W   when  m ∈ K2 and n ∈ N2.  (20)   
The inverse transform of JN can be defined as   
                    [ ] [ ]1, ,m n n mN= -1

N NH J .       (21) 

Then JN satisfy the bi-orthogonality constraint in (7) and 
can be viewed as a more general form of Jacket transforms.          
(Proof): If we define  
                                 N N NH J = G ,           (22) 
then from (21),   

  [ ] [ ] [ ] [ ] [ ]
1 1

0 0

1 1, , , ,
,

N N

l l
m n m l l n l nN l m

− −

= =

= =∑ ∑N N N N
N

G H J J
J

.  (23) 

We divide the discussion into several cases. First, suppose 
that m ∈ K1 and n ∈ K2. Then from (20),        

[ ] [ ] [ ] [ ] [ ]1 1 1 1, , ,
, ,l l

b dm n l n l nN a N cl m l m∈ ∈

= +∑ ∑
1 2

N N N
N NN N

G W W
W W

.     

           (24) 
Since for the Walsh transform, WN[m, n] = 1/WN[m, n],   
 [ ] [ ] [ ] [ ] [ ]1 1, , , , ,

l l

b dm n l m l n l m l nN a N c∈ ∈

= +∑ ∑
1 2

N N N N N
N N

G W W W W  

                [ ] [ ] [ ] [ ]1 1
l l

b dl l l lN a N c∈ ∈

= +∑ ∑
1 2

m n m n
N N

e e e e .        (25) 

Then, since m ∈ K1 and n ∈ K2, em and en are sub orthogo-
nal with respect to the index sets N1 and N2, therefore          
                 [ ] [ ] [ ] [ ] 0

l l
l l l l

∈ ∈

= =∑ ∑
1 2

m n m n
N N

e e e e ,           (26) 

          [ ], 0m n =NG     when m ∈ K1 and n ∈ K2.       (27) 
For the case where m ∈ K1 and n ∈ K1, (25) is written as       

 [ ] [ ] [ ] [ ] [ ]1 1, , , , ,
l l

a cm n l m l n l m l nN a N c∈ ∈

= +∑ ∑
1 2

N N N N N
N N

G W W W W  

               [ ] [ ]
1

0

1 , ,
N

l
l m l nN

−

=

= ∑ N NW W [ ] [ ]
1

0

1 N

l
l lN

−

=

= ∑ m ne e .  (28) 

Since the Walsh transform is an orthogonal transform: 

[ ] [ ]
1

,
0

N

m n
l

l l Nδ
−

=

=∑ m ne e , therefore,   

           [ ] ,, m nm n δ=NG    when  m ∈ K1 and n ∈ K1.    (29) 
From the similar processes, we can also prove that    
          [ ], 0m n =NG     when m ∈ K2 and n ∈ K1,   (30)      
          [ ] ,, m nm n δ=NG    when  m ∈ K2 and n ∈ K2.     (31) 
Combining (27), (29), (30), and (31), we can conclude that  
                   =NG I ,     N NH J = I ,   (32) 
and the bi-orthogonality property is hence proved.  # 
 

For example, for the 4-point Walsh transform:   

                 

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

4W ,      (33) 
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if we denote the kth column by ek-1 and classify the columns 
into two sets          
              {e0, e3}          and         {e1, e2}        (34) 
then the columns in the first set are sub orthogonal to the 
columns in the second set with respect to the index sets  
             N1 = {0, 3}   and     N2 = {1, 2}.      (35)   
Therefore, from Theorem 1, we can generalize the 4-point 
Walsh transform into:   

                  

a b b a
c d d c
c d d c
a b b a

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

4J                  (36) 

and its inverse is       

     

1 / 1 / 1 / 1 /
1 / 1 / 1 / 1 /1

4 1 / 1 / 1 / 1 /
1 / 1 / 1 / 1 /

a c c a
b d d b
b d d b
a c c a

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

4H ,      =4 4H J I .  (37)  

Compared with (3), the Jacket transform in (37) has four 
parameters a, b, c, and d, which is more general.  

Theorem 1 is also helpful for defining the 2k-point 
Jacket transform where k > 2. Instead of performing the 
Kronecker product with the 2-point Walsh transform as in 
(6), we can first search the sub orthogonal sets of the 2k-
point Walsh transform then applying (20) and (21).  

For example, for the 8-point Walsh transform, in (17), 
we have known that {e0, e4} and {e1, e2, e3, e5, e6, e7} form 
a sub orthogonal set pair with respect to the index subsets 
N1 = {0, 1, 2, 3} and N2 = {4, 5, 6, 7}. Therefore, we can 
construct the 8-point Jacket transform as  

           

a b b b a b b b
a b b b a b b b
a b b b a b b b
a b b b a b b b
c d d d c d d d
c d d d c d d d
c d d d c d d d
c d d d c d d d

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥= ⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

8J  (38) 

and its inverse is   

 

1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/1
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/8
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/

a a a a c c c c
b b b b d d d d
b b b b d d d d
b b b b d d d d
a a a a c c c c
b b b b d d d d
b b b b d d d d
b

− − − −
− − − −

− − − −
=

− − − −
− − − −

− − − −

8H

1/ 1/ 1/ 1/ 1/ 1/ 1/b b b d d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

,  

   =8 8H J I   (39)   
(38) is an 8-point Jacket transform. Note that it cannot be 
expressed as the form of the Kronecker product of the 4-
point Jacket transform and the 2-point Walsh transform as 
in (6). Therefore, Theorem 1 is a new way to define the 2k-
point Jacket transform where k ≥ 2.  

3.     MULTIPLE SUB BI-ORTHOGONAL EXTENSIONS 
In fact, Theorem 1 can be further generalized.  

Note that, in (17), we divide the columns of W8 into 
two sets. However, in the second set, e1 and e5 are also sub 
orthogonal to e2, e3, e6, and e7. It means that, instead of (18), 
we can further decompose the columns of the Walsh trans-
form more than two sub orthogonal sets. Moreover, in 
Theorem 1, we stated that the columns of the Walsh trans-
form are sub orthogonal with respect to two index subsets 
N1 and N2. In fact, the columns can be sub orthogonal with 
respect to more than two index subsets. For example, for 
the 8-point Walsh transform in (13) and (14), since   
  [ ] [ ] [ ] [ ]0 1 0 10 0 1 1 0e e e e+ = ,   [ ] [ ] [ ] [ ]0 1 0 12 2 3 3 0e e e e+ = ,   
  [ ] [ ] [ ] [ ]0 1 0 14 4 5 5 0e e e e+ = ,   [ ] [ ] [ ] [ ]0 1 0 16 6 7 7 0e e e e+ = , (40)      
thus, e0 and e1 are also orthogonal with respect to the index 
subsets of {0, 1}, {2, 3}, {4, 5}, and {6, 7}. These are help-
ful for defining a more general form of the Jacket transform                   

[Theorem 2] Sub Orthogonality Extension (II)     

For an N-point Walsh transform matrix WN, we denote 
its column by ek[n] (k = 0, 1, ….. , N−1, n = 0, 1, ….. , N−1). 
Suppose that the columns are classified into S subsets:  
  { }1| p ∈

1p 1e K ,   { }2| p ∈
2p 2e K ,  ……., { }| Sp ∈

Sp Se K  (41)  

    Kx ∩ Ky =  ∅ if  x≠ y,     
    K1 ∪ K2  ∪  ……∪ KS = {0, 1, 2, …., N−1},        (42) 
and the index n (n = 0, 1, 2, …., N−1) are also classified 
into T subsets N1, N2, N3, ….., NT,   
    Nx ∩ Ny = ∅    if  x≠ y,         
    N1 ∪ N2  ∪  ……∪ NS = {0, 1, 2, …., N−1}.    (43) 
When the columns belonging to different column sets are 
sub orthogonal with respect to the index subsets N1, N2, 
N3, ….., NT,     
 [ ] [ ] [ ] [ ]

x y x yp p p p
n n

e n e n e n e n
∈ ∈

= =∑ ∑
1 2N N

[ ] [ ] 0
x yp p

n
e n e n

∈

= =∑
SN

       

            for   px ∈ Kx, py ∈ Ky,   and x≠ y, (44) 
then we can generalize the N-point Walsh transform matrix 
WN into JN where    
     [ ] [ ],, ,s tm n a m n=N NJ W     when  m ∈ Ks and  n ∈ Nt. (45) 

The inverse of JN is HN where     
                       [ ] [ ]1, ,m n n mN= -1

N NH J .     (46) 

Then, using the process similar to (22)-(32), we can prove 
that JN and HN are bi-orthogonal:   
                               N NH J = I .         (47) 
The Jacket transform generated from (45) will be even more 
general than that generated from Theorem 1.     
 

For example, for the 8-point Walsh transform in (13), if 
we use ek-1 to denote the kth column of W8, then we find that 
the columns can be divided into four sets:   
          {e0, e4},     {e1, e5},     {e2, e6},    {e3, e7}.       (48) 
The columns vector in one set is sub orthogonal to the vec-
tors in other sets with respect to the index set N1 = {0, 1, 2, 
3} and N2 = {4, 5, 6, 7}, therefore, from (47), we can define 
the 8-point Jacket transform as:         
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11 21 31 41 11 21 31 41

11 21 31 41 11 21 31 41

11 21 31 41 11 21 31 41

11 21 31 41 11 21 31 41

12 22 32 42 12 22 32 42

12 22 32 42 12 22 32 42

12 22 32 42 12 22 32 42

12

a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a

− − − −
− − − −

− − − −
=

− − − −
− − − −

− − − −
−

8J

22 32 42 12 22 32 42a a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

,   (49)  

and its inverse is:  
11 11 11 11 12 12 12 12

21 21 21 21 22 22 22 22

31 31 31 31 32 32 32 32

41 41 41 41 42 42 42 42

11 11 11 11

1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/1
1/ 1/ 1/ 1/ 1/8

a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a

− − − −
− − − −

− − − −
=

−8H
12 12 12 12

21 21 21 21 22 22 22 22

31 31 31 31 32 32 32 32

41 41 41 41 42 42 42 42

1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/

a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

 

   =8 8H J I     (50) 
The 8-point Jacket transform defined in (49) has 8 parame-
ters that are free to choose and is even more general than 
the 8-point Jacket transform in (38).   

In addition to (49), there are many possible ways to de-
fine the 8-pt Jacket transform. For example, we can choose   
             N1 = {0, 3, 5, 6} and N2 = {1, 2, 4, 7}.           (51)    
Then the columns of the 8-pt Walsh transform can be clas-
sified into the following 4 sets and the columns belonging 
to different sets are sub orthogonal with respect to N1, N2:                         
        {e0, e7},     {e1, e6},     {e2, e5},     {e3, e4}.    (52) 
From (45), we can construct the 8-pt Jacket transform as  

  

11 21 31 41 41 31 21 11

12 22 32 42 42 32 22 12

12 22 32 42 42 32 22 12

11 21 31 41 41 31 21 11

12 22 32 42 42 32 22 12

11 21 31 41 41 31 21 11

11 21 31 41 41 31 21 11

12

a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a

− − − −
− − − −

− − − −
=

− − − −
− − − −

− − − −
−

8J

22 32 42 42 32 22 12a a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

. (53)     

We can also choose the following four index subsets:   
  N1 = {0, 1},   N2 = {2, 3},   N3 = {4, 5},   N4 = {6, 7}. (54) 
Then, if we classify the columns into the following two sets:          
            {e0, e2, e4, e6},        {e1, e3, e5, e7},  (55) 
the columns belonging to different sets are sub orthogonal 
with respect to N1, N2, N3, and N4. Thus, from Theorem 2, 
we can define the 8-point Jacket transforms as:     

  

11 21 11 21 11 21 11 21

11 21 11 21 11 21 11 21

12 22 12 22 12 22 12 22

12 22 12 22 12 22 12 22

13 23 13 23 13 23 13 23

13 23 13 23 13 23 13 23

14 24 14 24 14 24 14 24

14

a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a a a a a a a
a a

− − − −
− − − −

− − − −
=

− − − −
− − − −

− − − −
−

8J

24 14 24 14 24 14 24a a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

,  (56) 

Therefore, from Theorem 2, there are many ways to de-
fine the N-point Jacket transform. In fact, when N = 4, there 
are 5 possible ways to choose the index subsets:   
 (1) N1 = {0, 1, 2, 3},              (2) N1 = {0, 1}, N2 = {2, 3},        
 (3) N1 = {0, 2}, N2 = {1, 3},  (4) N1 = {0, 3}, N2 = {1, 2},      
 (5) N1 = {0},  N2 = {1},  N3 = {2},  N4 = {3}.    (57) 
Therefore, there are 5 possible ways to define the 4-point 
Jacket transform from Theorem 2.    

When N = 8, there are 16 ways to choose the index 
subsets. Thus, we have 16 possible ways to define the 8-
point Jacket transform from Theorem 2. In the following, 
we just list the index subset N1 for each case. Since if N1 is 
determined, other index subsets can also be determined.       
(1) N1 = {0, 1, 2, 3, 4, 5, 6, 7},      
(2) N1={0, 1, 2, 3}, (3) N1={0, 1, 6, 7}, (4) N1={0, 1, 4, 5},  
(5) N1={0, 3, 4, 7}, (6) N1={0, 3, 5, 6}, (7) N1={0, 2, 5, 7},       
(8) N1 = {0, 2, 4, 6}, (9) N1 = {0, 1},  (10) N1 = {0, 2},     
(11) N1 = {0, 3},  (12) N1 = {0, 4},  (13) N1 = {0, 5},  
(14) N1 = {0, 6}, (15) N1 = {0, 7},  (16) N1 = {0}.       (58) 
Moreover, there are 67 possible ways to define the 16-point 
Jacket transform and 374 possible ways to define the 32-
point Jacket transform.   
[Theorem 3] The N-point Jacket transform generated from 
Theorem 2 has N parameters that are free to choose and 
each parameter affects the values of N entries.          

For example, for the 8-point Jacket transforms in (49), 
(53), and (56), there are 8 parameters that are free to choose.  

Since Theorem 2 makes the generation of the Jacket 
transform much more flexible, we can use it to define the 
desired form of the Jacket transform. For example, in (53), 
we can choose a11  = a32 = a42 = 1, a21  = a22 = 2, and a31  = 
a41 = a12 = 4. Then, (53) becomes          

          

1 2 4 4 4 4 2 1
4 2 1 1 1 1 2 4
4 2 1 1 1 1 2 4
1 2 4 4 4 4 2 1
4 2 1 1 1 1 2 4
1 2 4 4 4 4 2 1
1 2 4 4 4 4 2 1
4 2 1 1 1 1 2 4

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥= ⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

8J . (59)       

We plot the former four rows of the 8-pt Jacket transform in 
(61) in Fig.1. Compared with the rows of the 8-point Walsh 
transform, the Jacket transform in (59) is more sinusoid-like.  
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Fig. 1 The former four rows of the 8-point Jacket transform in (59).  
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4.     FAST ALGORITHM    
Then we discuss the third requirement described in Section 
1, i.e., whether the derived Jacket transform has the fast 
algorithm. In fact, the Jacket transform defined from 
Theorem 2 always has a fast algorithm for implementa-
tion. The fast algorithm can be designed as follows.   
(Step 1) The order of inputs is determined by the column 

subsets in (41). For example, for the 8-point Jacket trans-
form in (49), the columns are divided into four sets: {e0, 
e4}, {e1, e5}, {e2, e6}, and {e3, e7}. Thus, in Fig. 2, {x[0], 
x[4]}, {x[1], x[5]}, {x[2], x[6]}, and {x[3], x[7]} are 
placed together.  

(Step 2) If there are M columns for each column subset, 
then we should perform an M-point Walsh transform for 
the inputs that correspond to the same column subset. For 
the example in (49), we should perform 2-point Walsh 
transforms for {x[0], x[4]}, {x[1], x[5]}, {x[2], x[6]}, and 
{x[3], x[7]}, as the 1st stage in Fig. 2.  

(Step 3) Then, we multiply proper coefficients for the out-
put of Step 2, as the output of the 1st stage in Fig. 2.  

(Step 4) Then for we perform the (N/M)-point Walsh trans-
form for the 

              (k+ gM)th outputs      (g = 1, 2, …, N/M )  (60) 
of Step 3 and for each of the (N/M)-point Walsh trans-
form k is fixed. See the example of the 2nd and the 3rd 
stage of Fig. 2, which perform the 4-points Walsh trans-
form for the even outputs and the odd outputs of Step 3.    

(Step 5) The order of the outputs is determined by the index 
subsets in (43). If there are N/M indexes in a index subset, 
then the outputs correspond to the kth index subset should 
be placed on the (k+ gM)th locations of the outputs. For 
the example in (49), the index subsets are N1 = {0, 1, 2, 3} 
and N2 = {4, 5, 6, 7}. Thus, in Fig. 2, {X[0], X[1], X[2], 
X[3]} should be placed on the 1st, 3rd, 5th, and 7th locations 
of the outputs and {X[4], X[5], X[6], X[7]} should be 
placed on the 2nd, 4th, 6th, and 8th locations of the outputs. 

(Step 6) The inverse of the Jacket transform can be imple-
mented by just reversing the direction of the forward 
Jacket transform, as Fig. 3.   

From these six steps, the fast algorithms of the general-
ized Jacket transform derived in Theorem 2 can be con-
structed easily. In Fig, 4, we give another example to show 
the fast algorithm of the 8-point Jacket transform in (53).  

 
Fig. 2  The fast algorithm of the 8-point Jacket transform in (49).   

 
Fig.3 Fast algorithm of the inverse 8-point Jacket transform in (50).   

 
Fig. 4 Fast algorithm of the 8-point Jacket transform in (53).   
 

5.     CONCLUSIONS              
In this paper, we use the sub orthogonality property of the 
original Walsh transform to define a more general form of 
the Jacket transform. The derived Jacket transform preserves 
the orthogonality property, no multiplication requirement, 
and the fast algorithm of the original Walsh transform. Since 
the proposed Jacket transform has a variety of prototypes 
and many parameters are free to choose, it will be more 
flexible and useful in signal processing applications.  
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