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ABSTRACT

In this paper, a high performance low complexity algorithm
for noise suppression in hearing aids, using spatial informa-
tion for estimating the required noise and speech power spec-
tral densities (PSDs), is proposed. The main assumption of
the scheme is that the target is directly in front of the hear-
ing aid user while the noise comes from the back hemisphere.
Furthermore, the goal is to develop a scheme that can be
implemented in real time on a comercially available hearing
aid. With the proposed approach, no statistical models are
needed to estimate the speech and noise PSDs, which results
in a robust and high performing noise suppression scheme.
In a first step, the noise suppression filter is implemented
in the FFT domain using a weighted overlap add scheme
(WOLA), as is common for digital hearing aids. In a sec-
ond step, to further reduce the computational complexity, a
carefully selected wavelet decomposition is used instead of a
WOLA. Hearing tests as well as objective performance mea-
sures show the excellent performance of the low complexity
algorithm in the FFT as well as in the wavelet domain.

1. INTRODUCTION

A classical approach for noise reduction in hearing aids is
the use of a beamformer, followed by some kind of speech
enhancement, e.g. [1, chapt. 3], which tries to extract the de-
sired speech signal from a noisy speech signal. In this paper,
a powerful but low complexity noise suppression algorithm,
not relying on statistical models for the estimation of the
required PSDs, is introduced. The lack of statistical models
results in a very robust scheme, that also performs well in
realistic settings, that is, with real data from real hearing
aids in real environments. Note that this paper presents the
most important results of a larger thesis (in German), which
can be found in [3]. Furthermore, the source code required
to generate the results presented in this paper can also be
found in [3].

The paper is organized as follows. In section 2, the no-
tation and the performance measures used throughout this
paper are introduced. In section 3, the main ideas behind
the proposed scheme are discussed and an implementation
in the FFT domain using a WOLA is presented. In sec-
tion 4, three alternative implementations based on wavelet
transforms requiring fewer computational resources are pre-
sented. Finally, the experimental results are shown in section
5, where the results of the proposed scheme are compared to
the well-known Elko-beamformer [4].

2. NOTATION AND PERFORMANCE
MEASURES

To quantify the computational complexity of the proposed
algorithm, the number of real additions and multiplications
are counted. The assumption is that complex multiplica-
tions need, in non-trivial cases, two real additions and four
real multiplications. To measure the final speech signal qual-
ity and the progress during the project itself, nine differ-
ent objective measures were implemented and evaluated [3].
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Figure 1: Notation

For the sake of simplicity and the length restrictions of
this paper, two representative objective speech quality mea-
sures will be used here: the segmental SNR (sSNR) and the
Itakura Distortion Measure (ID).

2.1 Segmental SNR

The segmental SNR is a simple and effective speech quality
measure which allows for good comparability:

sSNRdB = 10 · 1

M
·
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log
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s2[n]
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n=N·m

n2[n]

 (1)

where N denotes the segment width in samples. During
the project, various segment sizes suggested in the literature
were evaluated and 20ms = 410 Samples (at a sampling rate
of 20 480 Samples/s) resulted in the best performance. For
better comparability (e. g. for different sound files) a differ-
ential sSNR is used: the sSNR at the output of the algorithm
is supposed to be greater than the sSNR at the input (al-
ways between s and n in Fig. 1). Therefore the input sSNR
is subtracted from the output sSNR, resulting in a relative,
differential ∆sSNR. To calculate the instantaneous signal
and noise output powers, the algorithm is fed with the x = s
and x = n signals separately. However, all internal param-
eters are adapted as in the x = s + n case. In other words,
this allows the calculation of the output sSNR because the
response of the system only to the noise as well as only to
the signal can be measured.

2.2 Itakura Distance Measure

The well known Itakura Distance Measure, which is also
called the Log Likelihood Ratio, is selected as the second rep-
resentative objective speech quality measure. The Itakura
Distance Measure is defined as follows:

dID

(
Sm(k), Ŝm(k)

)
= ln

(
bT RSS b

aT RSS a

)
(2)

where k = n ∈ [N ·m, N ·m+N −1], RSS is the correlation
matrix of the clean signal and a and b are the LPC coefficient
vectors of the approximated (output) signal and the clean
signal, respectively. Again, segments of 20ms and LPC order
of 14 showed good results. In the end, all segmental values
are arithmetically averaged. Even though objective quality

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 160



measures are important, the final judgment of the speech
quality is reserved for human listeners. For this purpose, the
original and processed sound files can be found in [3].

2.3 Scenarios

During this project, carefully recorded sound files using a
KEMAR were used to test the algorithm. The KEMAR
manikin was equipped with two behind the ear (BTE) hear-
ing aids. Each hearing aid contained two microphones in
end-fire configuration that were connected to a digital audio
recording system. For the results reported in this paper, the
recording was done in an anechoic chamber. Experiments in
reverberant rooms were also conducted with results similar
to the ones reported here and can be found in [3].

Furthermore, several acoustic scenarios were used, the
four most common ones being shown here as examples. The
desired speech signal always comes from the front (0◦), but
the direction and the nature of the interfering signal differs.
This different direction of the interfering signal exhibits itself
in a time delay between the front microphone signal and the
back microphone signal.

SpeechSpeech or Noise
Speech 
or Noise

Speech 
or 

Noise

Figure 2: Acoustic scenarios

In the above figures, the interference is either a Gaus-
sian white noise or a female speech signal, while the desired
signal (the signal at 0◦) is a male speech signal and the lis-
tener stands in the middle of the circle. The three leftmost
scenarios show the interference at 90◦, 135◦ and 180◦, while
the rightmost scenario shows the so called cocktail-party sit-
uation, where there are multiple interferences (male and fe-
male) from all around the listener at 45◦, 90◦, 135◦, 180◦,
225◦, 270◦ and 315◦.

3. FUNDAMENTAL IDEA

The proposed low complexity algorithm, which has been
named LOCO, is based on an Elko-beamformer and a subse-
quent instantaneous Wiener filter using a WOLA (WOLA-
LOCO) to improve the resulting speech quality (see Fig. 3).
Instead of estimating the speech and the noise PSDs from the
beamformed signal using statistical assumptions, we make
direct use of the spatial information. In commercially avail-
able hearing aids, this information is used only for the beam-
former but not for the noise suppression filter. In recent
research hearing aid systems, such as [1, chapt. 12] and [2],
this spatial information is indeed used for the postfiltering,
though the proposed schemes are significantly more complex
than the one proposed in this paper. Indeed, most of them
are too complex to be implemented in real time on a commer-
cial hearing aid, whereas the presented scheme is currently
running on such a commercial hearing aid in real time.

Since we expect the desired speech signal to come from
the front and define everything from the back as noise, we
can use the front and back cardioid signals (which are already
available from the Elko-beamformer) as estimators of the
speech and noise signals (Fig. 3). The two PSDs are then
estimated as the square of the absolute values of the FFT
transformed cardioid signals. Note that together with the
FFT of the beamformed signal this results in three FFT
operations per frame.

The front and back cardioid signals as well as the beam-
formed signal show highpass characteristics (1− z−2 for sig-
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Figure 3: LOCO Algorithm

nals from the front with α = 1). The beamformed signal can
be equalized very efficiently with an IIR filter which has the
inverse transfer function

H(z) =
1

1− β · (1− α)− α · z−2
(3)

where β is the adaptive parameter which determines the di-
rectivity of the Elko-beamformer. Choosing α < 1 ensures
the stability of the equalizer.

The cardioid signals used for the PSD estimates do not
need an equalizer, since they appear in the Wiener formula
in both the numerator and the denominator and hence the
equalizer would be canceled.

The proposed WOLA-LOCO algorithm implements an
instantaneous Wiener filter in the FFT domain using a
WOLA structure (fs = 20 480 Hz). Table 1 shows the num-
ber of real additions and multiplications per input sample.
It is assumed that frames of length 128 (resulting in 65 dis-
tinct frequency bands) are transformed with a Radix-2 FFT
[5]. The frames are windowed (with a Hann window) and
overlapped by 75%. To suppress possible musical noise ar-
tifacts, the resulting Wiener weights are smoothed with a
simple first order IIR lowpass filter with a time constant of
τ = (−32/20480)/ ln(0.95) ≈ 30ms.

Additions Multiplications

Beamformer 7 11
3 Analysis-Windows 3 · 4
3 FFTs 3 · 72 3 · 48
Wiener-Filter 8 16
1 IFFT 72 48
1 Synthesis-Window 4
Overlap-Add 3

Total 306 235

Table 1: WOLA-LOCO

4. WAVELETS

The computational complexity of our algorithm can be fur-
ther reduced by replacing the WOLA with a wavelet trans-
form, since the WOLA transform results in a data expansion,
while a proper wavelet transform does not. Table 2 shows the
computational complexity for this approach. αDWT (M,N)
and µDWT (M,N) stand for the number of additions and
multiplications needed for a single wavelet composition or
decomposition. Using an efficient lattice structure, they be-
come

αDWT (M,N) =
3

2
· (N + 1) · (1− 2−M ) (4)

161



µDWT (M,N) = (N + 3) · (1− 2−M ) (5)

where M stands for the number of scales and N denotes the
filter order [6].

Additions Multiplications

Beamformer 7 11
3 DWTs 3 · αDWT 3 · µDWT

Wiener-Filter 2 5
1 IDWT αDWT µDWT

Total 9 + 4 ·αDW T 16 + 4 · µDW T

Table 2: Wavelet-LOCO

Directly translating the WOLA structure into the
wavelet domain requires three wavelet decompositions and
one wavelet composition. One wavelet decomposition can
be saved by implementing the adaptive part of the Elko-
beamformer (LMS) in the wavelet domain. This is not only
more efficient but also allows the adaptation of the beam-
former in several frequency bands independently and at dif-
ferent speeds. The resulting computational complexity is
shown in Table 3.

Additions Multiplications

Cardioids 4 4
2 DWTs 2 · αDWT 2 · µDWT

Beamformer 3 6
Wiener-Filter 2 5
1 IDWT αDWT µDWT

Total 9 + 3 ·αDW T 15 + 3 · µDW T

Table 3: Wavelet-LOCOBF

4.1 Wavelet evaluation
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Figure 4: ∆sSNR [dB] vs. Wavelet Order (5 Scales)

Several wavelet families were evaluated during this
project, including Daubechies (db1-db40), Symlets (sym2-
sym40), Coiflets (coif1-coif5), a discrete Meyer approxi-
mation and various biorthogonal and reverse-biorthogonal
wavelets. Measurements have shown that the Daubechies
and Symlets give the best results in quality and compu-
tational complexity. In the end, Daubechies showed even
slightly better results compared to the Symlets, and there-
fore the Daubechies wavelets where chosen for further evalu-
ation. To find the necessary wavelet order, several measures
were calculated and compared.

Figures 4 and 5 show measurements to evaluate the op-
timal wavelet order. As can be seen, after a wavelet order of
about 4 the signal-to-noise ratio stays almost constant, while
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Figure 5: Itakura Distance vs. Wavelet Order (5 Scales)

the distortions reach a minimum at order 7 or 8. These re-
sults were confirmed by some listening tests; while normal
hearing persons can still recognize a quality improvement
between the orders 4 and 8, it appeared that for people with
some hearing disabilities they are completely indistinguish-
able. Hence in applications for hearing aids, a wavelet order
of 4 might still result in sufficient quality, while reducing the
computational expenses to a minimum.

4.2 Number of scales

According to equations 4 and 5, the number of scales has
almost no influence on the computational complexity, but
the total delay increases with more scales. Figures 6 and
7 show that more than 7 scales result in just marginally
increased quality. With a Daubechies wavelet of order 8,
Wavelet-LOCO was even able to generate better results
than WOLA-LOCO (dashed line) in the case of the Itakura
Distortion Measure. Independent of the number of scales,
the ∆sSNR of the new Wavelet-LOCO algorithm was always
higher than that of WOLA-LOCO (dashed line).
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Figure 6: ∆sSNR [dB] vs. Wavelet Scales

4.3 Wavelet Packet Transform

In a further step, a full wavelet packet decomposition was
evaluated, generally resulting in comparable but not notice-
ably better results. Only in the case of additive white Gaus-
sian noise was a slightly increased quality noticed, especially
in high frequency regions. This leads to the conclusion that
for normal applications, a full wavelet packet transform is not
necessary. (A specially shaped tree could still increase the
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Figure 7: Itakura Distortion vs. Wavelet Scales

quality, but also add some additional computational com-
plexity). The computational complexity for the full decom-
position is shown in Table 4, where

αDWPT (M,N) =
3

4
·M · (N + 1) (6)

µDWPT (M,N) =
1

2
·M · (N + 3) (7)

(Please see [6] for the derivation.)

Additions Multiplications

Beamformer 7 11
DWPT 3 · αDWPT 3 · µDWPT

Wiener-Filter 2 5
IDWPT αDWPT µDWPT

Total 9 + 4 ·αDW P T 16+4 ·µDW P T

Table 4: Wavelet-LOCOWPT

5. EXPERIMENTAL RESULTS

Tables 5 - 11 compare several implementations of our al-
gorithm with a well established reference system (Elko-
beamformer). WOLA-LOCO stands for the FFT version
from section 3. Wavelet-LOCO replaced the WOLA by a
wavelet decomposition using Daubechies wavelets of orders
4, 6 and 8 employing 7 scales. Wavelet-LOCOWPT uses the
same wavelets for a full wavelet packet decomposition but
only 5 scales since this is a good tradeoff between compu-
tational complexity and performance as illustrated in [3].
Wavelet-LOCOBF saves one wavelet decomposition (still us-
ing 7 scales) by implementing the adaptive part of the Elko-
beamformer in the wavelet domain. The different tables
show the results for the four acoustic scenarios shown in
Fig. 2. Note that for the scenarios where the interference
comes from the side, only the results from the left channel
are shown, since the right channel is in the acoustic shadow
of the head and hence the interference is not really a problem
on that side.

The tables clearly show that the proposed scheme out-
performs the reference scheme significantly. Most noteably,
the Wavelet-LOCOBF has a relative, differential ∆sSNR that
is on average 2 dB better than that of the reference system.
The same can be said for the Itakura Distance Measure,
where the Wavelet-LOCOBF is on average more than 0.1
better than that of the reference system.

Figure 8 compares the number of real additions and
multiplications of the WOLA-LOCO algorithm and several

wavelet implementations. Even with a full-tree WPT and
a wavelet order of 8, the computational complexity is lower
than with the weighted overlap-add method. Although the
objective results of our algorithms are quite good, the listen-
ing tests are even more impressive. Therefore, the original
and processed sound files as well as the MATLAB code can
be found in [3].

6. SUMMARY AND CONCLUSION

The LOCO high performance low complexity scheme pro-
posed in this paper results in very good noise suppression
with few acoustic artifacts. The fundamentally new idea is
that not only the beamformed signal is passed to the noise
suppression filter, but also the front and the back cardioid
signals. In traditional approaches, the single beamformed
signal is used to drive the statistical estimators which at-
tempt to estimate the PSD of the noise and the PSD of the
speech. Since they are driven by the same signal, the only
difference in their PSD estimates comes from the statisti-
cal assumptions about the speech and the noise signals. In
many real world scenarios, these assumptions are violated
and hence the traditional approaches do not perform very
well.

This is in strong contrast to the proposed use of the front
and back cardioid signal to estimate the speech and the noise
PSDs directly. With this novel approach, no statistical mod-
els of the noise and/or the speech are needed, which results
in a very robust scheme. But not only is the scheme very ro-
bust, it also performs objectively and subjectively very well
and, with the proper wavelet decomposition, uses very few
computational resources. The proposed scheme has been
extensively tested with real world signals that have been
recorded using a KEMAR. Even though the front and back
cardioid signals are used to estimate the PSDs of the signal
and the interference, the scheme performs quite well even
when the interference is not coming from the back, but from
the side, as has been shown in the experiments. Further-
more, the performance of the scheme has also been tested
in reverberant rooms and very similar results were obtained.
These measurements can be found in [3]. While the scheme
performs well when the target is directly in front of the hear-
ing aid user, informal experiments have shown that it is also
insensitive to the target signal leaking into the noise estima-
tion process. This happens when the target is not directly
in front of the hearing aid user.
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Method Wavelet ∆sSNR ID

Reference System −0.190 0.597
(Elko-beamformer)
WOLA-LOCO −0.229 0.563
Wavelet-LOCO db4 0.885 0.556
Wavelet-LOCO db6 1.041 0.558
Wavelet-LOCO db8 1.113 0.551
Wavelet-LOCOWPT db4 0.140 0.573
Wavelet-LOCOWPT db6 0.169 0.583
Wavelet-LOCOWPT db8 0.192 0.575
Wavelet-LOCOBF db4 2.595 0.475
Wavelet-LOCOBF db6 2.756 0.478
Wavelet-LOCOBF db8 2.740 0.473

Table 5: Speech interference at 90◦, left channel only

Method Wavelet ∆sSNR ID

Reference System 2.393 0.494
(Elko-beamformer)
WOLA-LOCO 2.883 0.409
Wavelet-LOCO db4 3.766 0.427
Wavelet-LOCO db6 3.976 0.425
Wavelet-LOCO db8 4.059 0.414
Wavelet-LOCOWPT db4 3.052 0.448
Wavelet-LOCOWPT db6 3.118 0.449
Wavelet-LOCOWPT db8 3.095 0.442
Wavelet-LOCOBF db4 4.091 0.421
Wavelet-LOCOBF db6 4.214 0.423
Wavelet-LOCOBF db8 4.330 0.416

Table 6: Speech interference at 135◦, left channel only

Method Wavelet ∆sSNR ID

Reference System 1.037 0.438
(Elko-beamformer)
WOLA-LOCO 0.981 0.367
Wavelet-LOCO db4 2.054 0.378
Wavelet-LOCO db6 2.194 0.376
Wavelet-LOCO db8 2.296 0.366
Wavelet-LOCOWPT db4 1.633 0.393
Wavelet-LOCOWPT db6 1.701 0.390
Wavelet-LOCOWPT db8 1.728 0.381
Wavelet-LOCOBF db4 2.214 0.377
Wavelet-LOCOBF db6 2.278 0.374
Wavelet-LOCOBF db8 2.307 0.365

Table 7: Speech interference at 180◦, average of the left and
the right channels
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Figure 8: Computational Complexity

Method Wavelet ∆sSNR ID

Reference System 8.229 0.844
(Elko-beamformer)
WOLA-LOCO 8.153 0.785
Wavelet-LOCO db4 9.170 0.771
Wavelet-LOCO db6 9.300 0.772
Wavelet-LOCO db8 9.437 0.765
Wavelet-LOCOWPT db4 8.251 0.787
Wavelet-LOCOWPT db6 8.294 0.789
Wavelet-LOCOWPT db8 8.288 0.785
Wavelet-LOCOBF db4 11.682 0.751
Wavelet-LOCOBF db6 11.722 0.749
Wavelet-LOCOBF db8 11.838 0.752

Table 8: Noise interference at 90◦, left channel only

Method Wavelet ∆sSNR ID

Reference System 11.493 1.257
(Elko-beamformer)
WOLA-LOCO 12.407 1.070
Wavelet-LOCO db4 12.887 1.018
Wavelet-LOCO db6 13.021 1.044
Wavelet-LOCO db8 12.954 1.051
Wavelet-LOCOWPT db4 12.616 1.091
Wavelet-LOCOWPT db6 12.715 1.123
Wavelet-LOCOWPT db8 12.701 1.121
Wavelet-LOCOBF db4 13.236 1.002
Wavelet-LOCOBF db6 13.582 1.023
Wavelet-LOCOBF db8 13.399 1.047

Table 9: Noise interference at 135◦, left channel only

Method Wavelet ∆sSNR ID

Reference System 7.669 0.857
(Elko-beamformer)
WOLA-LOCO 8.692 0.987
Wavelet-LOCO db4 9.538 0.691
Wavelet-LOCO db6 9.556 0.684
Wavelet-LOCO db8 9.713 0.682
Wavelet-LOCOWPT db4 8.730 0.937
Wavelet-LOCOWPT db6 8.725 0.945
Wavelet-LOCOWPT db8 8.846 0.946
Wavelet-LOCOBF db4 9.828 0.676
Wavelet-LOCOBF db6 9.972 0.674
Wavelet-LOCOBF db8 9.909 0.673

Table 10: Noise interference at 180◦, average of the left and
the right channels

Method Wavelet ∆sSNR ID

Reference System 2.161 0.494
(Elko-beamformer)
WOLA-LOCO 2.153 0.473
Wavelet-LOCO db4 2.695 0.468
Wavelet-LOCO db6 2.621 0.468
Wavelet-LOCO db8 2.687 0.466
Wavelet-LOCOWPT db4 2.487 0.470
Wavelet-LOCOWPT db6 2.459 0.470
Wavelet-LOCOWPT db8 2.516 0.468
Wavelet-LOCOBF db4 2.701 0.473
Wavelet-LOCOBF db6 2.819 0.468
Wavelet-LOCOBF db8 2.722 0.465

Table 11: Cocktail-party noise at 45◦, 90◦, 135◦, 180◦, 225◦,
270◦ and 315◦, average of the left and the right channels
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