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ABSTRACT

This paper addresses the problem of generating a super-resolution
(SR) image from a single multi-valued low-resolution (LR) input
image. The main application in our case lies in the exploitation
of the cinema or TV archives for projections in higher resolutions
(HD, 2K, 4K). We approach this problem from the perspective of
image geometry-oriented interpolation. First, the geometry of the
LR image is obtained by computing the grouplet transform. The
grouplet orthogonal bases, that were introduced by Mallat in [1], are
constructed with a multiscale association field that groups pixels to
take advantage of geometrical image regularities. These bases are
used to define a grouplet-based structure tensor in order to capture
the geometry and directional features of the LR color image. Then,
the SR image is synthesized by an adaptive directional interpolation
using the extracted geometric information to preserve sharpness of
edges and textures. This is accomplished by the minimization of a
functional which is defined on the extracted geometric parameters
of the LR image and oriented by the geometric flow defined by the
grouplet transform. The proposed super-resolution algorithm out-
performs the state-of-the-art methods in terms of the visual quality
of the interpolated image.

1. INTRODUCTION

Image super-resolution is the process of increasing the resolution
of a given image. One such application to image super-resolution
can be found in streaming video websites, which often store video
at low resolutions (e.g. 352× 288 pixels CIF format) for various
reasons. The problem is that users often wish to expand the size
of the video to watch at full screen with resolutions of 1024×768
or higher, and this process requires that the images be interpolated
to the higher resolution. Another application comes from the emer-
gence of HDTV displays. To better utilize the display technical
prowess of the existing viewing devices, input signals coming from
a low-resolution source must first be converted to higher resolutions
through interpolation. Moreover, filmmakers today are increasingly
turning towards an all-digital solution, from image capture to post-
production and projection. Due to its fairly recent appearance, the
digital cinema chain still suffers from limitations which can hamper
the productivity and creativity of cinematographers and production
companies. One of these limitations is that the cameras used for
high resolutions are expensive and the data files they produce are
large. Because of this, studios may chose to capture some sequences
at lower resolution (2K for example). These sequences can later be
interpolated to 4K sequences by using a super resolution technique
and projected in higher resolution display devices.
There are mainly three categories of approaches for this problem:
interpolation based methods, reconstruction based methods, and
learning based methods. The most common methods used in prac-
tice are the interpolation methods, such as bilinear and bicubic inter-
polation [2] [3], require only a small amount of computation. How-
ever, because they are based on an oversimplified slow varying im-
age model, these simple methods often produce images with various
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problems along object boundaries, including aliasing, blurring, and
zigzagging edges. The reconstruction based methods [4] [5] enforce
a reconstruction constraint which requires that the smoothed and
down-sampled version of the high resolution (HR) image should be
close to the LR image. The learning based methods [6] [7] "hallu-
cinate" high frequency details from a training set of HR/LR image
pairs. The learning based approach highly relies on the similarity
between the training set and the test set. It is still unclear how many
training examples are sufficient for the generic images.
Meanwhile, various algorithms have been proposed to improve the
interpolation-based approaches and reduce edge artifacts, aiming at
obtaining images with regularity (i.e. smoothness) along edges. In
one of the earliest papers on the subject, Jensen and Anastassiou
[8] propose to estimate the orientation of each edge in the image by
using projections onto an orthonormal basis and the interpolation
process is modified to avoid interpolating across the edge. Allebach
and Wong [9] propose to use an estimate of the high-resolution edge
map to iteratively correct the interpolated pixels. Instead of explic-
itly estimating edges, Li and Orchard [2] propose a statistical es-
timation method that tunes interpolation coefficients according to
local edge structures. While this method produces superior results,
its computational complexity is prohibitive due to the large win-
dow size used to estimate local covariances. Improved interpola-
tion methods have also been cast as a non-linear partial differential
equation PDE problem, [10] where the algorithm attempts to satisfy
smoothness and orientation constraints. Other methods have been
proposed which perform interpolation in a transform (e.g. wavelet)
domain [11] [12]. These algorithms assume the low-resolution im-
age to be the lowpass output of the wavelet transform and utilize
dependence across wavelet scales to predict the "missing" coeffi-
cients in the more detailed scales.
The above listed SR methods have been designed to increase the res-
olution of a single channel (monochromatic) image. To date, there
is very little work addressing the problem of color SR. The typical
solution involves applying monochromatic SR algorithms to each
of the color channels independently [13] [14], while using the color
information to improve the accuracy. Another approach is trans-
forming the problem to a different color space, where chrominance
layers are separated from luminance, and SR is applied only to the
luminance channel [15]. Both of these methods are sub-optimal
as they do not fully exploit the correlation across the color bands.
Other methods using learning based techniques have been proposed
for color image interpolation [16], yet results still depend on the
training phase and the used dataset.
In this paper, we propose a novel variational color image interpola-
tion algorithm based on the new grouplet transform [1] which pro-
vides an efficient multiscale geometric representation for natural
images. The grouplet transform was proposed by Mallat as a di-
rectional multiresolution transform that can efficiently capture and
represent boundaries and textures in natural images. Furthermore,
it allows to define a geometrical flow that can be used to orient our
interpolation technique. Having well represented the geometry of
each color channel by using geometrical grouplets, we propose a
grouplet-based structure tensor whose role is to couple the geomet-
rical information of the different image color components. Then, a
functional is defined on the multispectral geometry defined by this
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Figure 1: (a) Original image, (b) a zoom on the association field of
the barbara image

structure tensor. The minimization of this functional insures the
synthesize of the SR image.
The rest of the paper is organized as follows. Section 2 presents
the grouplet transform and provides motivation for its use in our al-
gorithm. In Section 3, we present our variational super-resolution
algorithm. We report the results of our experiments in Section 4 and
conclude the paper in Section 5.

2. GEOMETRICAL GROUPLETS

Geometrical grouplets have been recently introduced by Mallat in
[1]. They are constructed with association fields that group points to
take advantage of geometrical image regularities. We only present
here a brief review of the Grouplet transform. The reader can refer
to [1] for a full detailed description of the Grouplet transform.
Grouplet transform uses a multiscale association field in order to
group together wavelet coefficients in the direction specified by the
flow [1]. These recursive groupings allow to take into account junc-
tions and long range regularities of images.
The geometrical grouplet transform is first computed by performing
group matching on the 2D wavelet transform of the image in order
to obtain the association field. The role of this field is to group to-
gether points that have similar neighborhoods in order to exploit the
geometry of the image. The computation of the association field is
performed as follows: First the image grid Ω is divided into two
subgrids Ωeven (even columns) and Ωodd (odd columns) then, each
point in the odd subgrid is associated to a point in the even subgrid
according to a block matching criteria (refer to [1]for more details).
Then, a weighted Haar lifting is applied successively to points that
are grouped by the association field. This iterative process decom-
poses the original image in an orthogonal basis called grouping ba-
sis. Consequently, at each step, the image is decomposed into a
detail and an approximation image. An example of an association
field computed on the Barbara image is shown in figure 1.
Compared to other geometrical representation, such as bandelet or
curvelet transforms, the grouplet transform is more flexible since
the association fields can deviate from the integral lines in order to
converge to singularity points such as junction or crossings. Fine
image structures are consequently well represented. Therefore, the
interpolation of the represented information in the "missing" (or to
be synthesized) pixels of the SR image following the directions of
the association field yields to a precise synthesis of the SR image.
We present in the following section this interpolation technique.

3. GROUPLET-BASED SUPER-RESOLUTION
TECHNIQUE

Given that the image geometry is efficiently represented and charac-
terized by the multiscale association field, we present in this section
an interpolation method oriented by the captured geometry. First,
we present our grouplet-based structure tensor and then, we de-
scribe our interpolation technique.

3.1 Grouplet-based structure tensor

Extending differential-based operations to color or multi-valued im-
ages is hindered by the multi-channel nature of color images. The
derivatives in different channels can point in opposite directions,
hence cancelation might occur by simple addition. The solution to
this problem is given by the structure tensor for which opposing
vectors reinforce each other.
In [17] Di Zenzo pointed out that the correct method to combine
the first order derivative structure is by using a local tensor. Analy-
sis of the shape of the tensor leads to an orientation and a gradient

norm estimate. For a multichannel image I =
(
I1, I2, ....., In

)T
the

structure tensor is given by
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where Ix and Iy are the horizontal and vertical derivatives respec-
tively.

The multichannel structure tensor describes the 2D first order
differential structure at a certain point in the image.
The motivation of this work is to make the interpolation oriented by
the optimal geometry direction captured by the grouplet transform
in order to synthesize fine structures for the SR image. For that
purpose, a multiscale multistructure grouplet-oriented tensor for an
m-valued (m = 3 for color images and m = 1 for gray images) image
is defined by:
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The norm of Gj is defined in terms of its eigenvalues λ+ and
λ−,

∣∣∣∣Gj
∣∣∣∣ =√λ+ +λ−. The angle θi represents the angle of the

direction of the grouplet association field. j is the scale of the grou-
plet transform. g j

i is the corresponding grouplet coefficient. i desig-
nates the image channel (i = 1,2, . . . ,m). Figure 2 shows the norm
of the grouplet-based structure tensor defined in (2) of the ’Lenna’
image.

(a) Lenna Image (b) Norm of the structure
tensor defined in (2)

Figure 2: Norm of the grouplet-based structure tensor

Until now, we have characterized edges and the geometrical
flow (the association field) of the image. We present in the fol-
lowing subsection our super-resolution variational approach that is
oriented by these two geometric features.
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3.2 Super-Resolution

We formulate our interpolation approach as the following varia-
tional problem,

Ĩi = min
Ii

(∫
x

∫
y

(∥∥∇̃Ii (x,y)
∥∥+

∥∥∥∇̃Gj (x,y)
∥∥∥+λ

∥∥∥Gj (x,y)
∥∥∥)dxdy

)
(3)

subjected to the following constraints,

Ii (msΔ,nsΔ) = I′i (m,n)
0 ≤ m ≤ ⌊ w

sΔ
⌋

0 ≤ n ≤
⌊

h
sΔ

⌋ (4)

where I′i (m,n) is the original image before interpolation, Δ is the
grid size of the upsampled image, w and h are the width and the
hight of the image respectively and s is the scaling factor.
∇̃ is the directional gradient with respect to the grouplet geometric
direction θ and λ is a constant.
The Euler equation of (3) is

∇̃ ·
(

∇̃Ii (x,y)∥∥∇̃Ii (x,y)
∥∥ +

∇̃
∥∥Gj (x,y)

∥∥∥∥∇̃Ii (x,y)
∥∥
)

+λ
∥∥∥Gj (x,y)

∥∥∥ (5)

By expanding (5) we obtain after simplification,
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∥∥ com-
puted at a scale j to extract the horizontal and vertical details of the
color image.
Equation (6), which yields to a factor-of-two interpolation scheme,
is applied to each color band i and it can be easily discretized by
using finite differences. By using equation (6) and solving for
I (mΔ,nΔ) (λ is set equal to 4), we obtain the final interpolating
scheme on the upsampled grid (for simplicity I(m,n) is used to de-
note I(mΔ,nΔ)):

Ii (x,y) = 1
4 [Ii (x−1,y)+ Ii (x+1,y)]cos2 θ+
1
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4
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4

[∥∥Gj (x,y−1)
∥∥+

∥∥Gj (x,y+1)
∥∥] sin2 θ

(7)
The process can be iterated with the resolution increased by a factor
of two on each iteration. We represent in the following section some
experimental results.

4. EXPERIMENTAL RESULTS

We perform experiments to validate our interpolation algorithm and
compare it with existing ones. To achieve this, we compare our ap-
proach with the ones proposed by Li et al. in [2], Mueller et al. in
[18] and Zhang et al. in [19]. These approaches are marginally ap-
plied to the color images.
We used several standard test images of size 512× 512, including
Lena, Peppers, Barbara and the opera house of Lyon (Fig.3). Due
to the copyrights, we are unable to use digital cinema materials as
an example in this paper. To show the true power of the interpo-
lation algorithms, we first downsampled each image by a factor of
four and then interpolated the result back to its original size. This
provides a better comparison than a factor of two interpolation, and
is well justified if one compares the ratio of NTSC scan lines (240
per frame) to state-of-the-art HDTV (1080 per frame), which is a
factor of 4.5.

Figure 3: Image of the opera house of Lyon

We show in Figures 4, 5 and 6 the zoom-in comparisons of
different algorithms on the test images. We can see that our al-
gorithm outperforms the other interpolation schemes in every test
image. Particularly, our algorithm is clearly superior to other super-
resolution techniques, as it is able to better reconstruct the details of
the image without distorting the smooth regions.

The quality of the SR images is also evaluated using
CIEDE2000 color difference equations [20] [21]. The CIEDE2000
evolved from traditional colorimetry and color difference calcula-
tions is tested using several psychophysical datasets. The color dif-
ferences between the original images and each of the SR images
obtained using different interpolation schemes are shown in figures
7, 8 and 9 for Opera, Barbara and Lenna images respectively. Our
grouplet-based approach showed the lowest color difference and
therefore it approaches the original image more than the other in-
terpolation techniques. Therefore, it respects the colorimetric char-
acteristics of the original image.

(a) (b) (c)

Non Perceptible
differences

Just Perceptible
differences

Perceptible
differences

(d) (e)

Figure 7: Color differences between the original image and the re-
sult obtained by using the method of (a) Mueller et al. [18], (b)
Zhang et al. [19], (c) Li et al. [2] and (d) our approach

5. CONCLUSION

In this work, a grouplet-oriented color image interpolation tech-
nique is presented. First, the geometrical flow of the image is
computed by using the grouplet transform. Then, a grouplet-based
structure tensor is defined to couple geometric information of the
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(a) (b) (c) (d) (e)

Figure 4: (a) original image, results obtained by using the methods proposed by: (b) Mueller et al. [18], (c) Zhang et al. [19], (d) Li et al.
[2] and (e) our approach

(a) (b) (c) (d) (e)

Figure 5: (a) original image, results obtained by using the methods proposed by: (b) Mueller et al. [18], (c) Zhang et al. [19], (d) Li et al.
[2] and (e) our approach

(a) (b) (c) (d) (e)

Figure 6: (a) original image, results obtained by using the methods proposed by: (b) Mueller et al. [18], (c) Zhang et al. [19], (d) Li et al.
[2] and (e) our approach

(a) (b) (c) (d)

Figure 8: Color differences between the original image and the result obtained by using the method of (a) Mueller et al. [18], (b) Zhang et
al. [19], (c) Li et al. [2] and (d) our approach

(a) (b) (c) (d)

Figure 9: Color differences between the original image and the result obtained by using the method of (a) Mueller et al. [18], (b) Zhang et
al. [19], (c) Li et al. [2] and (d) our approach
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different color channels of the image. A variational approach is fi-
nally defined on the captured geometry. The minimization of the
proposed functional ensures the synthesize of the SR image. We
have shown improvement over existing geometrically driven inter-
polation techniques on a subjective scale, and in many cases with
an improvement in color difference. In a future work, we intend to
subjectively assess the quality of our SR technique.
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