17th European Signal Processing Conference (EUSIPCO 2009)

Glasgow, Scotland, August 24-28, 2009

THE WIENER FILTER FOR LOCALLY STATIONARY STOCHASTIC PROCESSES IS
RARELY LOCALLY STATIONARY

Patrik Wahlberg and Peter J. Schreier

School of Electrical Engineering and Computer Science
The University of Newcastle
Callaghan, NSW 2308, Australia
firstname.lastname @newcastle.edu.au
web: www.peter-schreier.com

ABSTRACT

The Wiener filter (i.e., linear minimum mean squared er-
ror filter) for wide-sense stationary stochastic processes is
translation-invariant, i.e., its impulse response, like the co-
variance function, is only a function of the time-shift. We
investigate whether there is a generalization of this result to
continuous-time stochastic processes that are locally station-
ary in Silverman’s sense: Is the optimal filter for locally sta-
tionary processes locally stationary itself? The answer is sur-
prisingly negative: Even though the optimal filter can be lo-
cally stationary in special cases, it rarely is, even when the
covariance functions have Gaussian shape.

1. INTRODUCTION

We consider complex-valued zero-mean second-order
continuous-time stochastic processes z(f) that are lo-
cally stationary (LS) in Silverman’s sense [9, 10]. This
means that the covariance function has the structure
rolt,s) = E(()2'(s)) = f((t +5)/2)p(t —s). Thus f
describes the global time behavior and p describes the local
time behavior of the process. Locally stationary processes
are a generalization of wide-sense stationary (WSS) pro-
cesses where f = 1. That is, the covariance function of WSS
processes only depends on the time-shift 7 — s.

We investigate linear minimum mean squared error
(LMMSE) filtering of a corrupted stochastic process, where
we linearly estimate a signal x(¢) from a measurement pro-
cess z(t). The LMMSE criterion leads to the well-known
family of integral equations [11]

relt.9) = [ bt s)dn M)
R

indexed by t,s € IR, where ry(t,s) = E(x(¢)z"(s)) is the
cross-covariance function between signal and measurement,
and h(z,u) is the impulse response (filter kernel) of the possi-
bly nonstationary optimum filter. An important special case
is z(t) = x(¢t) + n(t), where n(r) is a noise process that is un-
correlated with x(z). Then r,(t,s) = ry(t,s) + ru(2,s) and
ez (t,8) = (2, 5). If z(¢) is WSS, and z() and x(¢) are jointly
WSS, then h(t,s) = ho(t — s) and (1) amounts to the convo-
lution equation

rae(t) = (ho xrz2)(1),

which can be solved by means of Fourier transformation.
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WSS stochastic processes are very popular models of
physical phenomena, mainly because of the huge arsenal of
useful mathematical results available for them. However,
in practice the WSS assumption is only approximately and
never exactly satisfied, so more flexible tools are needed.
The class of LS stochastic processes is one such class where
the type of nonstationarity has a manageable form. Many
other extensions of WSS processes exist in the literature,
for example the class of harmonizable processes [5]. There
are also several concepts that are distinct from Silverman’s
LS processes but still bear the name “locally stationary pro-
cess,” e.g. by Dahlhaus [2], and Mallat, Papanicolaou and
Zhang [6].

This piece of work is based on the following question:
In the WSS case the optimal filter inherits its translation-
invariant form A(t,s) = ho(t — s) from ry;(t —s) and r,;( — ).
Is there a generalization of this result to LS processes? That
is, if rz(t,5) = fi((t +5)/2)p1(t —s) and ry(1,5) = fo((t +
5)/2)p2(t —s), does the optimal filter kernel have the same
LS structure h(t,s) = f((t+5)/2)p(t —)?

In general, equation (1) is difficult to solve, so we intro-
duce the restricting assumption that f; and f, are Gaussians
and p; and p, modulated Gaussians. This assumption ad-
mits explicit computations in (1) and still comprises inter-
esting cases where z(¢) has bandpass character, for a range
of possible combinations of bandwidth and duration. These
combinations are restricted due to the Cauchy-Schwarz in-
equality [12]

1A0)1p1(27)* < fi(7) fi(—7), )

where T =t — s is the time-shift parameter. In fact, if f;
is a function of short duration then z(¢) has short duration.
The inequality (2) implies that p; has short duration as well,
which means that a WSS process with covariance p; is wide-
band. Since z(¢) can be approximated locally by a multiple
of this WSS process, z(¢) will be wideband as well.

However, the basic question whether there is an easy gen-
eralization of the WSS results to the LS case turns out to have
a surprisingly negative answer: The optimal filter A(z,s) has
the LS structure only for very special parameter combina-
tions for the Gaussians f] and f, and modulated Gaussians
p1 and p,. In particular, there is a solution with the LS struc-
ture only if the modulated Gaussians p; and p; have identi-
cal modulation parameter (center frequency)—which implies
that p has the same modulation parameter—in striking con-
trast to the WSS case where the optimal filter adapts its mod-
ulation parameter to an arbitrary difference of the modulation
parameters of p; and p;.
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For simplicity, we assume that z(r) and x(z) are jointly
proper [7,8] (which is also called circular or circularly sym-
metric), i.e.,

E(z(t)z(s)) =0 and E(x(¢)z(s)) = 0.

If they are improper, then a natural problem is to extend our
results to take into acccount the complementary covariance
functions E(z()z(s)) and E(x(7)z(s)). Then the optimum fil-
ter must include a conjugate-linear term in addition to the
linear estimator.

The organization of the paper follows. First we intro-
duce some notation and background in Section 2. Then we
introduce LS processes in Section 3, and discuss the general
LMMSE filtering problem in Section 4. We present our main
result, the fact that LMMSE filtering of LS processes is rarely
LS, in Section 5.

2. PRELIMINARIES

The translation operator is denoted by

(LAH@E)=f(t—x), x€IR,
the modulation operator by
(Mef)(1) =5 f(1), & E€R,

and the dilation (or scaling) operator by

(Daf)(t) = | 2 f(at), aeR\O.
Gaussian functions are denoted
ga(x) =exp(—2max®), x€IR, a>0.

A function f : IR? — C is nonnegative definite [1], f €
NND(IR?), if f is continuous and

n

Y f,00z;7 >0, {5} CR, {z;}}_;CC, n>0.

Jik=1

3
A function f : IR — C of one real variable is nonnegative
definite, denoted f € NND(IR), if fo € NND(IR?) where
Jo(t,s) = f(t —s). We have

|f () < £(0),

A function f is NND(IR?) if and only if it is the covariance
function of a mean-square continuous stochastic process [5].
The following lemma is well known [5] and will be needed
in Section 5.

x€IR, f&NND(R). )

Lemma 1 If f,g € NND(IR?) then f-g € NND(IR?).

3. LOCALLY STATIONARY PROCESSES

Definition 2 A locally stationary (LS) process [9, 10] is a
complex-valued stochastic process z(t) whose covariance
function r; has the form

t+s

rettd) =1 (57 ple-9) ®)

We normalize p(0) = 1 without loss of generality. With
the tensor product notation (f ® g)(t,s) = f(¢)g(s) and the
isometric (but not orthogonal) coordinate transformation on
RZ

K'()C,y) = (x+y/2,x—y/2)
_ x+y
K l(xvy)_( 2 7x—)’>7
we may write (5) shorter as

re=(fep)ok . (6)

Note that f(t) = E|z(¢)|* > 0 for all z. Continuity of f and
p is equivalent to mean-square continuity of the process z
[S]. When f is constant, we recover WSS processes as a
special case of LS processes. Another extreme is p = Jy,
where &y denotes the Dirac delta distribution, which allows
any nonnegative function as f and then r,, is the covariance
of time-variable white noise. The fact that f(¢) describes the
signal power E|z(t)|? justifies the name global time variable
for ¢ in the reformulation of (5)

ro(t+1/2,0—1/2) = f(t)p(7). 7

If the global time variable is frozen at t = #o then f(7p)p(7) is
the covariance function of a WSS process that approximates
z(t) around 7 = 1y [12], which justifies the term local time
variable for the time shift 7 [4].

Suppose that the LS process z(¢) is harmonizable [5],
which means that the covariance function has the Fourier rep-
resentation

raltss) = [[ N (0 an).
IR

where m,, is the spectral covariance function of two fre-
quency variables. Then it can be shown that
mZZ:(ﬂ\p@ﬁf)OKﬁI,

where .% denotes Fourier transformation [9, 12]. Thus m_,
has the same structure as r,;, and a comparison with (6) re-
veals that m;, is built from the Fourier transforms of the com-
ponents f, p of r,,, with an interchange of roles. This means
that the global time variable corresponds to the local fre-
quency variable, and the local time variable corresponds to
the global frequency variable. Moreover, we obtain a time-
frequency description of LS processes. In fact, the Wigner—
Ville spectrum [3], defined by

W(tvé) = ‘/]erz(t*k'r/z,tf T/z)e_zn-jfgdfc’

is then separable (rank-one), or more precisely, W(#,&) =

FO(Fp)(S).
4. OPTIMAL NONCAUSAL FILTERING

Suppose that z(¢) is a stochastic process that is a measure-
ment of a corrupted signal x(z). An estimator of x(¢) from
z(t) using a linear filter defined by a kernel £ is given by

(1) = /]R h(t,5)z(s)ds. @®)
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The optimum filter problem [11, 14, 15] consists of finding
a filter kernel /& that minimizes the MSE E|x(t) — x(¢)|? for
each t € IR. We do not impose that the filter kernel (time-
varying impulse response) h(t,s) be causal, where causality
means that h(z,s) = 0 for < s. We make the following as-
sumptions:

(i) hel’(R);
(ii) /IR reo(s,8)ds < oo; 9)
(iii)  z(r)

Then E|x(¢) — x(t)|* is minimized for all € IR if and only if
the family of integral equations

is mean square continuous.

e (t,5) :/IRh(t,u)rzz(u,s)du, ae. t,s€IR, (10)

is satisfied [11,14]. Here ry;(¢,s) = E(x(¢)z*(s)) is the cross-
covariance function between x and z.

If zis WSS and x and z are jointly WSS then the estimator
(8) is replaced by

(1) = /IR h(t — s)2(s)ds = (h#2) (1) (11)
where now the filter kernel % is defined on IR. Under the
assumptions (9), where (i) is modified as 7 € LZ(IR), (10)
simplifies to the convolution equation

ra(t) = (hxrg) (1),

If we assume that r,, € L?(IR) and that there exist a,b > 0
such that 0 < a < Fr; () < b < o when & € supp(Fry;),
then the equation may be solved by Fourier transformation
%, which yields

telR.

O =

This filter is commonly called the Wiener filter, even though
Wiener’s original work [15] concerns the problem when £ is
causal, i.e., h(t) =0 forz < 0.

€ L*(R).

5. THE WIENER FILTER FOR LS PROCESSES IS
RARELY LS

In the WSS case the optimal filter kernel / has the same struc-
ture as the covariance functions: It depends on the difference
of the arguments only. It is natural to pose the question if the
Wiener filter for LS processes also has the LS kernel struc-
ture. That is, we solve the family of integral equations (10)
when r, and r,, have the LS structure, and we ask whether
there exist f,p,g,7,h,A such that

(h@A)ox~ ! € NND(IR?)
(to guarantee that r,, is a covariance function) and
f((t+5)/2)p(t—s)

- /m (1 +1)/2)7(t — wh((u+5)/2) A (u—5)du, 1,5 € R.
(12)

The equation (12) is invariant under the operations

(i) Translation
(f.8:h) — (Tof, T8, Tyh) for
(i) Modulation
(P, 7,A) — (Map , Mgy, M, 2)  for
(iii) Dilation
(f,8h,p,Y,A) = (Daf,Dag,Daht; Dap , Da; Dal)
for a>0.

aclR;

a€clR;

(13)
It seems difficult to find solutions to (12) without fur-
ther assumptions. Therefore we simplify the problem to
the tractable case when all functions f,p,g,7,h,A are Gaus-
sians, and p, ¥, A are possibly modulated. Equation (12)
holds when the parameters of the Gaussians fit together as
described in the following result. Due to the invariances (13)
(i)—(iii) we may restrict our attention to the case when A is
not modulated and has a convenient dilation factor, and 4 is
centered at the origin.

Proposition 3 Suppose

rxz(tas) = /leb ®M06gc/4o K_l(tau)gu ®81/4° K_l(uas)dua

(14)

where t,s € IR, g,(x) = 672”‘”2, 0<a<l,bc>0,xecR

and C > 0 is a constant. Then there exist d,e > 0 and € IR
such that

Tz (2, 9) :Cg4d®MBgeoK*](t,s), C>0, (15)

if and only if either of the following two conditions is satis-

fied.
(i) WSS case:

a=b=d=0, 0<e<1/4,
c=4e/(1—4e), BeR, and (16)
o =P/(1—4e).
(ii) LS case:
o=p=0, b>0, c=a/b, and
g latb+a/b
4(1+a+b+a/b)
o 2a+ab+a/b (17

4(1+a+b+a/b)’
Proof: We have

u-+s

rZZ(uvs):ga< > >g1/4(u—s)
= exp <—27r B( 2+52)+T(M_S)2]>

=exp (77ra(u2 +s2)) exp (—m(1—a)(u— 5)2/2)
€ NND(IR?)

if and only if a < 1. This statement follows from the obser-
vation
exp (—ﬂa(u2 +s2)) € NND(IR?),
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Lemma 1, and the fact that g, € NND(IR) if and only if p >
0, since otherwise (4) is violated. The assumption 0 < a < 1
is thus justified. The expression (15) is

Cexp(—2x[(d+e) (1> +5*)+2(d —e)ts+ jB(s—1)]). (18)

Some calculations transform the right hand side of (12) into

M2 AV
C’exp{—Zﬂ t(b—kc—(b Dc) )

4

é (Ha_(l_l)a)z)” (19)

rts
_E(bfc)(l —a)

_i_j%(s(l—a)—t(b—c—&-D))}}

X exp {7271

where C' > 0and D = 1+a+ b+ c. If we compare with (18)
and force equality, then eitherc = =0orl —a=b—c+D,

which is equivalent to b = —a.
In the case b = —a we have a = b = 0, and comparison
of (19) and (18) yields
c
d =
R T
c
d—e=—
‘T it

ie.d=0ande=c/(4(1+c)),and B = a/(1+c). Thus we
have case (i).

If b # —a then ¢ = B = 0. Again by comparison of (19)
and (18), we obtain

4d+e)=b+c—(b—c)*/D
=l+a—(1-a)?/D (20)
which implies a = bc, and
4(d—e)=(b—c)(1—a)/D. (21)

The result (ii) follows as the solution to (20) and (21). [

We draw the following conclusions from this result. If
a=>b =d =0 then (14) is a convolution equation for the
optimal filter for WSS processes. If e in the range 0 < e <
1/4 and B € IR are given, then ¢ = 4e/(1 —4e) and o =
B /(1 —4e) solves the equation. The solution is a modulated
Gaussian.

If a > 0 then B = a = 0 must hold, and for given d,e > 0
there exists a solution

h=gy® gay(ap) 0K

if and only if there exists b > 0 such that (17) holds. Alterna-
tively stated, /& of LS type exists if and only if there exists a
common positive solution b = x to the system of polynomial
equations

{ (1—4d)x> +2x(a—2d(1+a))+a(a—4d) = 0
(a—4e)x* +2x(a—2e(l +a))+a(l —4e) = 0.

Ifa=b=1/nthenc=1,d=1/(2(n+1)) — 0asn — oo
and
_ 2n4 140 1

‘Timromd) 8

n— oo

)
de

m =c
n—so | —4e

and we get case (i) asymptotically.

It is rather surprising that there are so few solutions in the
case a,d,e > 0, even in the tractable case when all functions
are Gaussians. For a solution to exist, the given parameters
a,d,e > 0 must be related in a special way, in the sense that
there exists b > 0 such that (17) holds. In particular, there
are only “modulation-free” (o« = 8 = 0) solutions. It seems
to be an unusual coincidence that an optimal filter kernel &
has the LS structure when r,, and r,, have the LS structure.

Remark 4 If a = 1 in Proposition 3 then ¢ = 1/b and d =
e = 1/4. This means that if rp; = ry; = g1 ®81/40 k! then
the filter kernel h = Cpgy @ 8p-1/4© k! solves (14) for any
b > 0, where Cyp, is a constant that depends on b.

6. CONCLUSIONS

Locally stationary processes are a generalization of WSS
processes where the covariance function allows a factoriza-
tion into two factors, where one controls the global time be-
havior and the other the local time behavior. In this paper,
we have studied Wiener (LMMSE) filters for LS processes.
Because LS processes are more difficult to handle than WSS
processes, we had to restrict our analysis to covariance and
cross-covariance functions parameterized by Gaussians to
reach closed-form solutions. Our main finding is that the fil-
ter kernel rarely inherits the LS structure from the covariance
functions. This is a surprisingly negative result. However, if
we relax the requirement that the filter kernel have the LS
structure, then it is possible to find exact solutions for the fil-
ter kernel as series expansions involving Hermite functions
in certain cases. This is explored in the journal version [13]
of this paper.
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