
COMPUTATIONALLY EFFICIENT ONLINE PHASE-BASED FREQUENCY
ESTIMATION OF A SINGLE TONE

Naveed R. Butt†, Andreas Jakobsson,† and Magnus Mossberg‡

†Centre for Mathematical Sciences, Lund University, SE-22100 Lund, Sweden.
‡Dept. of Physics and Electrical Engineering, Karlstad University, SE-65188 Karlstad, Sweden.

naveed@maths.lth.se, andreas.jakobsson@ieee.org, magnus.mossberg@kau.se

ABSTRACT
Computationally efficient estimation of the fre-
quency of a single complex sinusoid in white Gaus-
sian noise is an important problem in a wide va-
riety of applications. A variety of low-cost batch-
processing methods, the so-called phase-based fre-
quency estimators, have been proposed during the
recent decades. Although quite efficient in offline
data processing, these algorithms are ill-suited for
online estimation, as they require the reprocessing
of the entire data with each new measurement. In
this work, we develop a time-recursive phase-based
estimator that is statistically efficient and compu-
tationally well-suited for online processing of data.

1. INTRODUCTION

Mathematically, the problem of single frequency es-
timation can be formulated as follows; given a data
sequence

y(t) = αei(ωt+θ) + v(t), t = 0, . . . , N − 1 (1)

where αei(ωt+θ) represents a complex sinusoid, with
α and θ ∈ [0, 2π) denoting an unknown determin-
istic (and real-valued) amplitude and an unknown
initial phase, respectively, corrupted by a circularly
symmetric zero-mean white Gaussian noise, v(t),
with variance σ2

v . Then, the objective is to find
an estimate of the frequency, ω, that is computa-
tionally cheap and statistically efficient. This sim-
ple problem of rapidly estimating a single (domi-
nant) frequency from noisy data appears in a wide
variety of application areas including array signal
processing, spectral estimation, digital communica-
tions and biomedicine. Consequently, one finds a
rich collection of single tone frequency estimators
in the recent literature (see, e.g., [1–17]). Among
these, the statistically efficient methods such as the
approximate maximum likelihood (AML) approach
in [2] and the iterative linear prediction (ILP) ap-
proach in [13], are (relatively) computationally ex-
pensive, requiring at least O(N log2 N) operations.
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To reduce the computational complexity, several
phase-based methods requiring only O(N) opera-
tions have been developed. Among these, the so-
called hybrid method [15] is of particular interest
as it has been shown to have a performance close
to AML, but with a computational complexity of
only O(N).

All the methods mentioned above, operate on
block data, i.e., the total number of samples, N ,
is fixed. However, in many real-time applications,
N may grow over time with the online arrival of
new data. In such cases, it is desirable to have a
recursive approach for low-cost updating of the fre-
quency estimates. For instance, if the data size in-
creases from N to N +1, the hybrid method would
require O(N + 1) operations to recompute the up-
dated frequency estimate obtained from the N ini-
tial samples. In this work, we develop a recursive
version of the hybrid algorithm that allows for com-
putationally cheap updates of the frequency esti-
mates as N grows, while maintaining the hybrid es-
timator’s AML-like performance. The performance
of the proposed recursive method is demonstrated
with the help of numerical examples.

A word on notation: (·)T and (·)∗ are used to
represent the transpose and the complex conjugate,
respectively. Vectors are denoted with bold letters,
y, while scalars are in light-face, y.

2. THE HYBRID PHASE-BASED
FREQUENCY ESTIMATOR

In this section, we present a brief review of the
hybrid phase-based frequency estimator proposed
in [15]. This will be helpful in deriving the recur-
sive formulation in Section 3. We note, however,
that for the sake of brevity only the main steps of
the hybrid estimator are presented here. Interested
readers are referred to [15] for more details. The
hybrid method first forms an initial coarse estimate
of the unknown frequency, ω, using the uniformly
weighted linear predictor method [1, 4]

ω̂c = arg [yc] , (2)
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where

yc =
1

N − 1

N−2∑

t=0

y∗(t)y(t + 1). (3)

This estimate can be shown to be unbiased, with a
variance [4, 7]

var(ω̂c) =
1

(N − 1)2 SNR
, (4)

where SNR is the signal-to-noise ratio, defined as
SNR = α2/σ2

v . We note that for high SNR sce-
narios, one may use the multiple correlations ap-
proach of [18] to obtain a slightly improved coarse
estimate. The coarse estimate, ω̂c, is used to form a
downshifted signal, yd(t), to remove the frequency
dependency of the SNR threshold [14]

yd(t) = y(t)e−iω̂ct. (5)

Next, the downshifted signal is passed through a
K-tap averaging filter to further reduce the SNR
threshold [9]

yf (t) =
1
K

K−1∑

k=0

yd(t + k). (6)

The adjacent phase difference of the filtered signal,
yf (t), is then formed as

∆φf (t) = arg
[
y∗f (t)yf (t + 1)

]
= ωf + uc(t), (7)

where uc(t) is a noise process which will be coloured
due to the average filtering [12]. The frequency
correction term, ωf , is then estimated from (7),
using the filter bank approach of [10,12] that takes
into account the coloration of uc(t), giving

ω̂f =
b(N−K)/Kc∑

t=1

q(t,N)
K−1∑

m=1

∆φf (tK −m), (8)

where b·c represents the floor operation, and

q(t,N) =
6tK(N − tK)
N3 −NK2

. (9)

Finally, the correction term, (8), is added to the
coarse estimate, (2), to form the hybrid frequency
estimate

ω̂h = ω̂c + ω̂f . (10)
Since this approach uses the complete data block
for the frequency estimation, we refer to it here as
the block-hybrid estimator. It is worth stressing
that the block-hybrid estimator has been shown
to closely follow the Cramér-Rao lower bound
(CRLB) at a low SNR threshold and to be essen-
tially independent of the true frequency, ω. These
are some features that we would like to retain in an
online-hybrid estimator.

3. ONLINE HYBRID PHASE-BASED
FREQUENCY ESTIMATOR

To motivate the development of an online phase-
based estimator, we consider a real-time measure-
ment scenario where a new data point is available
after each sampling interval. At an arbitrary time,
say t = N − 1, the block-hybrid algorithm provides
a frequency estimate, ω̂

(N)
h , based on the data vec-

tor

y(N) , [y(0), y(1), . . . , y(N − 1)]T , (11)

where the superscript indicates the length of the
data vector used for the estimation1. Assuming
that a new data point, y(N), is made available at
the next instant, t = N , similar to other exist-
ing efficient algorithms, the block-hybrid algorithm
would require the reprocessing of the whole data to
obtain the improved frequency estimate, ω̂

(N+1)
h ,

making such an update computationally expensive
in an online applications. To alleviate this prob-
lem, we develop a recursive hybrid phase-based fre-
quency estimator that incorporates new data into
the frequency estimation in a computationally effi-
cient manner. To begin the recursive formulation,
we note that the extended data vector containing
the sample y(N) may be written in terms of (11)
as

y(N+1) =
[

y(N)

y(N)

]
. (12)

Using (2), the extended correlator may be obtained
as

y(N+1)
c =

1
N

N−1∑

t=0

y∗(t)y(t + 1)

=
N − 1

N

(
1

N − 1

N−2∑

t=0

y∗(t)y(t + 1)

)

+
1
N

y∗(N − 1)y(N). (13)

Noting that the term in the large parenthesis above
is the correlation at t = N − 1, i.e.,

y(N)
c =

1
N − 1

N−2∑

t=0

y∗(t)y(t + 1), (14)

we obtain the recursive formulation

y(N+1)
c =

N − 1
N

y(N)
c +

1
N

y∗(N − 1)y(N), (15)

1Similar notation is used for other estimates in the rest
of this paper.
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suggesting the updated frequency estimate

ω̂(N+1)
c = arg

[
y(N+1)

c

]
. (16)

The updated downshifted signal is then obtained
as

y(N+1)
d = y(N+1)e−iω̂

(N+1)
c t. (17)

Since (17) would require the updating of all the
previous samples, we propose to replace ω̂

(N+1)
c by

a stable estimate ω̄c. We remark that such an es-
timate would either be available from previously
processed data, or be evaluated from (16) for a rel-
atively small N . Therefore, we assume that a stable
coarse estimate is available at N = N̄ . Using ω̄c,
an update equation for the downshifted signal is
formed as

y(N+1)
d ≈

[
y(N)

y(N)

]
e−iω̄ct, (18)

which, using y(N)
d = y(N)e−iω̄ct, may be written as

y(N+1)
d ≈


 y(N)

d

y(N)e−iω̄ct


 . (19)

The updated downshifted signal is then filtered us-
ing a K-lag averaging filter. This leads to the up-
dated filtered data vector

y(N+1)
f =




y(N)
f

y
(N+1)
f (N −K + 1)


 , (20)

where y(N)
f is the filtered signal of length N−K+1,

obtained previously from (6) as

y(N)
f =




1
K

∑K−1
k=0 y

(N)
d (k)

...
1
K

∑K−1
k=0 y

(N)
d (N −K + k)


 ,(21)

and

y
(N+1)
f (N −K + 1)

=
1
K

K−1∑

k=0

y
(N+1)
d (N −K + 1 + k). (22)

The update of the phase difference equation may
now be formed as

∆φf
(N+1) =




∆φf
(N)

∆φ
(N+1)
f (N −K)


 , (23)

where ∆φf
(N) is the vector of the adjacent phase

differences available from previous iteration, i.e.,

∆φf
(N) =




arg
[
y
∗(N)
f (0)y(N)

f (1)
]

...
arg

[
y
∗(N)
f (N −K − 1)y(N)

f (N −K)
]


 ,

and

∆φ
(N+1)
f (N −K)

= arg
[
y
∗(N)
f (N −K)y(N+1)

f (N −K + 1)
]
. (24)

From (9)

q(t,N + 1) =
6tK(N + 1− tK)

(N + 1)3 − (N + 1)K2
, (25)

and by defining

Φ(N+1)(t) =
K−1∑

m=1

∆φ
(N+1)
f (tK −m), (26)

we form the updated frequency correction term

ω̂
(N+1)
f =

b(N+1−K)/Kc∑

t=1

q(t,N + 1)Φ(N+1)(t). (27)

Finally, we form the updated hybrid estimate by
adding the correction term, (27), to ω̄c

ω̂
(N+1)
h = ω̄c + ω̂

(N+1)
f . (28)

We term this approach of frequency estimation as
the online-hybrid estimator.

4. NUMERICAL EXAMPLES

We now demonstrate the effectiveness of the pro-
posed recursive approach using simulated data. We
compare the mean square error (MSE) of the fre-
quency estimates obtained using the online-hybrid
and block-hybrid methods against the CRLB, at
different SNR levels and for different selections of
the actual frequency, ω. Starting with N = 1, an
online data collection scenario is simulated, where
a new sample arrives at every iteration. At every
iteration, the block-hybrid estimator process the
complete updated data vector. On the other hand,
the online-hybrid estimator uses the low-cost up-
date relations developed in Section 3. Figures 1, 2,
and 3 show the MSE of the frequency estimates ob-
tained using the online-hybrid and the block-hybrid
estimators at SNR = 2dB, 4dB, and 6dB, respec-
tively, using 500 Monte-Carlo simulations. The
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Figure 1: MSE of the frequency estimates at SNR
= 2dB and ω = 0.75π, against number of steps, N .
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Figure 2: MSE of the frequency estimates at SNR
= 4dB and ω = 0.75π, against number of steps, N .

CRLB is also plotted for reference. The dashed
vertical line shows the point N = N̄ at which the
variance of the coarse frequency estimate, ω̂c, drops
below a predetermined threshold, leading to a sta-
ble estimate, ω̄c. Initially, for N < N̄ , the online-
hybrid method works in the computationally ex-
pensive block mode, switching to the more efficient
recursive estimation at N = N̄ . As is clear from
the figures, the proposed recursive approach pro-
vides performance very close to the block-hybrid
estimator, both following the CRLB closely. We
remark that the ‘steps’ appearing in the figures
are due to the floor operation in (8) and (27), due
to which only samples up to a multiple of K are
processed. Figure 4 shows the MSE of the fre-
quency estimates at SNR = 2dB against the true
frequency. As is clear from the figure, much like the
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Figure 3: MSE of the frequency estimates at SNR
= 6dB and ω = 0.75π, against number of steps, N .
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Figure 4: MSE of the frequency estimates at SNR
= 2dB, and N = 24, 60, 120, against true sinusoidal
frequency.

block-hybrid estimator, the online-hybrid estima-
tor is essentially independent of the true sinusoidal
frequency. Finally, Figure 5 compares the time
taken by the block-hybrid and online-hybrid esti-
mators to estimate the frequency as the data size
increases from 1 to N . The CPU times, measured
using MATLAB, for N = 100 to 1000 (in 10 steps)
are shown. Since the recursive approach uses fewer
update operations at each step, it outperforms the
block-hybrid approach.

5. CONCLUSION

In this work, a time-recursive phase-based estima-
tor that is statistically efficient and computation-
ally well-suited for real-time processing of data was
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Figure 5: Processing times for the compared esti-
mators as data increases from 1 to N .

developed. It was shown with the help of numer-
ical examples that the proposed online-hybrid es-
timator provides frequency estimates quite similar
to the block-hybrid algorithm, while significantly
reducing the computational cost of time-updating
the estimate

REFERENCES

[1] G. W. Lank, I. S. Reed, and G. E. Pollon,
“A Semicoherent Detection and Doppler Esti-
mation Statistic,” IEEE Trans. Aerospace and
Electronic Systems, vol. 9, no. 2, pp. 151–165,
March 1973.

[2] D. C. Rife and R. R. Boorstyn, “Single-
Tone Parameter Estimation from Discrete-
Time Observations,” IEEE Trans. Informa-
tion Theory, vol. 20, no. 5, pp. 591–598, Sept.
1974.

[3] S. A. Tretter, “Estimating the Frequency of a
Noisy Sinusoid by Linear Regression,” IEEE
Trans. Information Theory, vol. 31, no. 6, pp.
832–835, Nov. 1985.

[4] S. Kay, “A Fast and Accurate Single Fre-
quency Estimator,” IEEE Trans. Acoustics
Speech Signal Processing, vol. 37, no. 12, pp.
1987–1990, Dec. 1989.

[5] S. W. Lang and B. R. Musicus, “Frequency
Estimation from Phase Differences,” in Proc.
ICASSP 89, Glasgow, Scotland, 1989, pp.
2140–2143.

[6] B. C. Lovell and R. C. Williamson, “The Sta-
tistical Performance of Some Instantaneous
Frequency Estimators ,” IEEE Trans. Signal

Processing, vol. 40, no. 7, pp. 1708–1723, July
1992.

[7] V. Clarkson, P. J. Kootsookos, and B. G.
Quinn, “Analysis of the Variance Threshold
of Kay’s Weighted Linear Predictor Frequency
Estimator,” IEEE Trans. Signal Processing,
vol. 42, no. 9, pp. 2370–2379, Sept. 1994.
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