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ABSTRACT

Modern speech recognition applications are heading
wards embedded systems and hand-held devéssibuted

the back end5]. Second, encoding the voice signal makes it

exposed to the channel errors during transmissigpecially
in case of un-reliable wireless chanfig!

SpeechRecognition (DSR) system architecture emerged to

address this kind of applications. Most of the taxgsim-
plementations of this system are presented in aodtfash-
ion, with little consideration to the end produdagform in
which the system will be deployed. In this paperogti-
mized hardware implementation of the front end pdithe
DSR specified in the basic ETSI Aurora standard IEHS
201 108 is presented in FPGA platform prototypéhwon-
sideration of migration to structured ASIC in caxfemass-
production. Main design issues and tips are hidftkgl.
Results are presented in terms of hardware reseuitiéza-
tion, comparison of some basic system componeritsrtb
party reference designs and compliance to the Austan-
dard.

1 INTRODUCTION

Human-machine interaction is likely to take placenatural
language in future embedded systems and mobileevi
Speech enabled car navigation; natural languageaening
applications and home automation are among thgsicap
tions. This inherits all the embedded systems desin-
straints to the speech recognition domain, likatéich hard-
ware, memory, power consumption and cost, whichtese
the need to re-architecture the already existirgap recog-
nition systems.

Early attempts generated the client-seMetwork Speech
Recognition (NSR) architectuf], where the voice signal is
encoded with normal speech coding techniques atlitet
Front endand sent via voice channel to the sd®ack end
where all the recognition process takes place ditepding
the voice signal. Communication between the twasparto
take place via wired/ wireless channel. This aedhitre pro-
vides light front end mobile terminal, which redsidts cost,

Distributed speech recognition (DSR) architecturgerged
to tackle the above problems of NSR. Multi-modablaa-

tions are those applications where interaction betwuser
and the computer may take place in keyboard strolsse

commands or even hand writing. This requires vaita data
channels. DSR reduces the two channels to onlyesitaa
channel over which voice and data can be trangmitig

sending parameterized representation of the spsiectal

(the features vector) instead of coding the voigaa di-

rectly as in NSR. This has two advantages: Fingt,speech
signal is not directly encoded and transmitted chvigirotects
it against channel errors, and improves the WERifgigntly

over unreliable channels. Second, special encatidgram-
ing algorithms are used, that focus on lowering lihierate

(4.8 kbps) rather than preserving the perceptualitgu
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Figure 1 DSR System Architecture

2. ETSI AURORA STANDARD OVERVIEW

hardware and power consumption. However, this sehemlhe STQ-Aurora DSR group at tE@iropeant elecommuni-

suffered two main problems: First, ordinary speeabod-
ing/decoding techniques do not preserve many cteaistics
needed for the speech recognition, where speedtsamte
about perceptual quality rather than improving itbeogni-
tion results, which degrades the Word Error Rat&R)at
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cations Standardsl nstitute (ETSI) has published four stan-
dard specifications featuring the front end sidehef DSR.
The main algorithms specified are: features extradiMel-
Frequency Cepstral Coefficients- MFCC), the congoes
split-vector quantization and the framing and emartection



algorithms. The front end algorithm block diagrapedified
in [3] is shown in Figure 2. Three sampling rates pmé-
tions are supported (8, 11 and 16 kHz), where thend
length, frame rate and frame overlapping variesm g to
the configured sampling rate. For the three conditjons,
the input speech frame shift interval is 10 ms. Tdwures
vector (14 features) is compressed into 7 indicdsgusplit
vector quantization algorithm. The compressed dp&ame
is then formatted in a multi-frame packet formaheve the
target data rate out of the front end is 4.8 kbps.
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Figure 2 Block diagram of the Front end algoritmAurora Stan-
dard ETSI ES 201 108

In the following, we will present a proposal folhardware
implementation of the front end part of the batandard.
3. HARDWARE IMPLEMENTATION

In our design,Field ProgrammableGate Array (FPGA)
design style is chosen for prototyping and migratio
structuredApplication Specific | ntegratedCircuit (ASIC) is

results in a LUT, which comes on the expense ahgxtoc-
essing time. On the contrary, the time optimizetitam
chooses to store the look-up table (LUT) of suafcfions,
which reduces the required processing time.

The idea of having two solutions comes from theved
time constraint on the system, where the framegpgeified
in [3] is 10 ms. The net processing time available tfar
front end part is only 9.16 ms after removing tkader and
CRC overheads, which is relatively relaxed time pared to
nowadays chip frequencies, hence, giving room fiinoz-
ing hardware by using hardware optimized, but thmesum-
ing algorithms like CORDIC. On the other hand,itihe is
critical for the user of the chip, the other timgtimized op-
tion is also available.

In the next sub-sections, some main componentseoys-
tem will be discussed.

21 CORDIC Core

The CORDIC algorithm is used extensively in thisige,
due to two main reasons; first, its hardware imgetation
is highly optimized, where it utilizes only addergstractors,
shift registers and one look-up table. This simpdedware
can perform a lot of complex functions, rangingwssn
trigonometric, hyperbolic and linear functions, alhiare the
three types of the algorithm. Second, the accucddiie re-
sult is high in small number of iterations, and @ienconver-
gence constraints.

The main target of the algorithm is to rotate guircomplex
vector by certain angle; this is called tiotation mode The
other mode is therectoring modewhere it is required to
align the input vector to the x-axis. The combimatof the
three types with the two modes of the algorithm gmve a
very wide range of complex functions.

A simple, configurable hardware is presente@7in Table 1
and Table 2 show the usage of the CORDIC in ouesys
and the corresponding configuration. Table 1 shthesus-
age of CORDIC in both time and memory optimizedusol
tions, while Table 2 shows the extra usages inntkenory
optimized solution only. For more information abbotv the
functions are calculated, please refef7fo

chosen for mass production. The customization dhfbeb

offered by this style gives flexibility in optimizag the hard-

ware utilization and area in the target chip, whieduces

the final product cost. In addition, this styleclsaracterized

by its low power consumption, which makes it suiator
hand-held battery powered devices.
The design proposed here is either optimized fomang

resources or for processing time. As appears iar€ig, the

algorithm has many complex components, like Hammi
window, LogE, FFT, LOG, DCT and many others. Thog

components contain complex non-linear trigonomeloiga-

rithmic and other complex functions that can bbegitalcu-

Usage Type Mode

FFT magnitude Trigonometric Vectoring

LogE Hyperbolic Vectoring

Hardware divider Linear Vectoring

Non-linear tranform | Hyperbolic Vectoring

Table 1 CORDIC usage in both time and memory ogéohisolu-
tions

Usage Type Mode
NHamming window| Trigonometric Rotation
dactors

FFT twiddle factors | Trigonometric Rotation

DCT cosine Trigonometric Rotation

lated on the fly, or stored in a Look-up table (DUlke the
Hamming window factors or the trigonometric funoso

Table 2 CORDIC usage in memory optimized solutioly o

which requires extra memory. Some hardware optinizeln time optimized solution, only two CORDIC coregea

numerical algorithms exist to calculate such fuomdi like
the COrdinate Rotation Digital Computer (CORDIC)[7],
which was used extensively in the memory optimigelli-
tion to calculate complex functions instead of isgrtheir

needed, the first to calculate LogE feature, aedother one
to be re-used between the FFT magnitude, the habga
rithm of the Mel-filter output and hardware divider mem-
ory optimized solution, a CORDIC core is needed tfar
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Hamming window, and another one for the LogE fegtur
and the last one to be re-used between FFT, Mekbut
natural logarithm, hardware divider and DCT.

2.2  Hamming window

The Hamming window equation [i3]:
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Where N is the speech frame length in samplestheisam-
ple order, & is the pre-emphasis filter result angli$ the L Start/ Result | Read/ write control
window filtered sample. i

_p_ _ _ Twiddle Mst?;:‘e Magnitude Magnitude
In the memory optimized solution, CORDIC mod(if¢ is Factor M;‘:a'g:‘; Cordic core
used to calculate the cosine in the above equatitnevery ~sadwrts cortrol
. . ea rite contro

new sample, and hence the window factor is caledlat S‘a“l (Resu“ jw : Read! wite
In the time optimized solution, only half of thendbw is Cordi RAM signals to | and
stored in a LUT ROM, and the rest is deduced from i ordic core Manager QRAM

23 Fast Fourier Transform (FFT)
The basic FFT equation[i3]:

FFIL-1 e 25
bin, = s,(me” T k=0.. FFTL-1.

n=0
Where binis the magnitude of the resulting FFT coefficients
and FFTL is the length of the FFT result vector.
Split radix-2 algorithm was used for FFT calculatfd] [2]
and[6]. In the memory optimized solution of FFT, shoimn
Figure 3, the twiddle factor complex multiplicatiorvolved
in the butterfly operations is interpreted as vectdation,
since multiplication by a complex exponential isiieglent
to rotating the multiplied complex vector by thgwment of
the exponential. Here the hardware optimized COR&if@
[7] is utilized as shown in the architecture beldis opti-
mized core reduces the hardware utilization and ongm
requirements.
On the other hand, the time optimized solution $etadstore
the twiddle factors in a LUT ROM of length equatsthe
length of the FFT vector, and performing complextiplit
cation of the FFT vectors and the complex expoaknti
which requires extra memory and hardware multiplier
However, instead of storing all the twiddle factaraly the
first quadrant values of the cosine function igexip where
the rest of the wave can be deduced from it. Saleeg of
the complex exponential can be deduced from théne€os
values. This reduces the memory requirements by. T5f&%
time optimized architecture is similar to the ond-igure 3,
with substitution of the CORDIC core with LUT ROM the
twiddle factors.
24 Discrete Cosine Transform (DCT)
The DCT basic equation 3]:
= [T %
C, _;f xnos‘ %
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Figure 3 Memory optimized FFT architecture
M emory manager

This component is implementation specific, and m&n-
tioned in[3]. It controls the access to the system RAM and
'ROM. The RAM memories used in the system are:

Input samples RAMthis memory is managed in a
circular buffer fashion to manage the frame overlap
ping requirements. It has size of N (speech frame
length).
I RAM: this memory is used to store the real part of
the intermediate FFT radix-2 stages. It holds & r
input and output of the FFT. It has size of FFTHe(t
FFT length).
Q RAM:same as | RAM, but for the imaginary part
of the intermediate FFT radix-2 stages.

last two memories are re-used in the Mel-féted DCT

components after the FFT is finished. The systesnsaane
ROM memories to hold some constant values:

Mel-filter banks centre frequencies (25 entries)
Quantization tables (14 tables, each of length = 64
entries, except for tables 12 and 13, which haw 25
entries)

In addition, the time optimized solution needs @ROM:

Hamming Window factors (N/2 length, where N is the
speech frame length)

Twiddle factors (FFTL/4 length, where FFTL is the
length of the FFT result vector)

DCT factors (24 DCT factors)

4, SYSTEM EVALUATION

evaluation of the presented design will be loeldhree

axes: First, the system hardware utilization ancetiper-

Where Gis the 13 dimension result vector of the DCT, gnd fformance will be presented. Second, some of the iss-

is the result of the non-linear transformation mftee Mel-  tem

filter banks output.
Same discussion about the Hamming window goes her&nd
where the memory optimized solution calculatesabsine

components that are usually used in benchnaikia

compared to third party reference designs and atbsigns.

at last, the compliance of the system outpwalglated

against the official standard test vectors providsdthe

values using CORDIC corfy], while the time optimized ETSI.

solution stores the cosine values in a LUT ROM.
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3.1 Hardware utilization and Processing time per-
formance

Table 3 shows the result of synthesising the desigrithe

10K gates Altera FPGA device Cyclone Il EP3C10U286

for both memory and time optimized solutions, viith three

configurations specified in the Aurora stand@id

Solution Configuration Logic gates Total Mem-
ory

Memory op-| 8 kHz 9,980 (97%) 4.47 Kbytes

timized 11 kHz 9,980 (97%) 4.75 Kbytes
16 kHz 9,722 (94%) 6.45 Kbytes

Time 8 kHz 8,160 (79%) 4.87 Kbytes

optimized 11 kHz 8,160 (79%) 5.18 Kbytes
16 kHz 8,160 (79%) 7.19 Kbytes

Table 3 Hardware utilization of the memory and tiopéimized
solutions over the three configurations

Table 4 shows the frame processing time performasca
percentage of the net allowed frame time after réngpthe

header and CRC overheads (9.16 ms). A chip frequehc
100 MHz (after synthesis) is assumed.

8 kHz 11 kHz 16 kHz
Memory optimized 1.3856% 1.4459% 2.7021%
Time optimized 0.8563%| 0.9166% 2.005%

Table 4 processing time performance of the memodtiane opti-
mized solutions

Table 4 shows that the time optimized solution gitetter
results in terms of hardware utilization of logiatgs and
time performance. On the other hand, the memoriynogetd
solution is better in terms of memory usage, butswfar
from the time optimized solution.

3.2 Comparison toother designs

In this section the FFT and CORDIC modules areuatat

The results in Table 5 show that the FFT desigisemed
here outperforms Altera reference design in terfnhand-
ware utilization of logic elements and memory bitdyile
they both utilize 4 18x18 multipliers. In terms tohe per-
formance, the local FFT design takes only 256 sytdefin-

ish, while the reference design takes 1628 cycMsch
means that the reference design takes 6.36 tim#saa®f
the local FFT design.

The design in9] is very efficient in terms of clock cycles
count, however, this comes on the expense of haejwa
memory and multipliers resources usage.

The enhanced performance of the FFT design propueed

is due to the following reasons:

The optimized usage of memory, especially in the
LUT of the sine and cosine factors as discussed in
2.3.

Fixing the internal signals lengths to 16 bits gles
than 18) optimizes the usage of the embedded mul-
tipliers (18 x 18) on the FPGA.

Using the dual-port RAM feature of the used FPGA
enables simultaneous memory access during FFT
stages, which improved the time performance by
50%.

Using split-radix FFT algorithm with onlgne but-
terfly core and iterating on it highly reduced the
hardware utilization.

Pipelining between the FFT components (bit-
reversal, butterfly, twiddle factors and address-ge
erator) improved the time performance.

3.2.2 CORDIC vs. Altera’s reference design

Table 6 shows the comparison between Altera’s CQRDI
reference designll] and our implementation of the
CORDIC hardware on Cyclone FPGA devices.

against the Altera reference designs and otheguieshltera

reference designs are available from Altera to $exluas IP
core (called MegaCore function or Mega functionjthw

documentation available on Altera web siteyw.altera.com

3.2.1 FFT vs. other design
The FFT component is usually used to benchmark mwios

Clocks Logic elements
Altera’s Referencg 16 963
CORDIC
Frontend CORDIC | 16 399
Ratio  (Reference| 1 241
Local design)

Digital Signal Processing (DSP) systems. Table 5 shows th
comparison between Altera’s reference design of RR&
(Burst data flow architecture, 256 points, singlgpot, 16

€Table 6 CORDIC benchmarking against Altera’s refeeedesign
The results in Table 6 show that the local CORD#Sigh

bits signal width)12], other designs and the FFT of our sys-fakes the same clock cycles to finish as the negerelesign.

tem, in the time optimized solution. All designs/@d.6 bits
fixed point signal length, and 256 point FFT length

FPGA Logic | Mem- | Multi- Clock

Ele- ory pliers Cycle
ments | (Bits) | (18X18) | Count

Altera Cyclone Il 1,463 | 9,472| 4 1628

[12] EP3C10F256C6

Design | Stratix Il 6702 | 20480/ 48 43

in[9] EP2S15F672C3

Design | Stratix Il 1334 | -- - -

in [10] EP2S60F1020C4

Front Cyclone lil 998 9,232 4 256

end EP3C10F256C6 (18X18)

FFT

Table 5 FFT comparison to other designs
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However, in terms of logic elements utilizatiore tieference
CORDIC design uses logic elements about 2.4 tirsethe
local CORDIC design.

3.3 Compliancetothe ETSI AuroraBasic Sandard

The ETSI provides reference high level C-Code togyet
with reference test vectors of 8 ms of continuopsesh,
which represents about 813 speech frame, to teptiptary
implementations against them to prove complianceéhéo
Aurora standard. The design presented here wasdtest
against those results. Table 7 shows average fiigagd error
between the reference and tBgstem Under Test (SUT),
with 8 and 16 kHz configurations. The word lengthi 6 bits.
8 kHz 16 kHz

0.002621 0.004883

Average fixed

point error

Table 7 Average fixed point error in 8 and 16 kidnftgurations



Table 7 shows that the system under test outpgriect to
the third decimal place. Note that, the above ayerror is
the error between the features after the quardizdtiock in
both reference and under test systems.

5. RELATED WORK

A similar implementation of the front end moduleAnrora
ETSI system is presented [B]. Note that; the design i3]
is only the features extraction part, so the comparheld
here does not include the rest of quantization fasthing
components of the front end client.

FPGA Logic  Ele-| DSP units
ments
Proposed | Cyclone I | 7,221 46
design EP3C10U256C§
Design in| Stratix 18,340 52
[8] EP1S20F484C5

Table 8 Comparison between proposed front end Wlesid the one
in [8]

The usage of algorithms with low hardware resouutitiza-

tion like CORDIC reduced the hardware resources8g
units in the proposed design in this paper. Algoitihg the
fixed point length of the internal signals to 1@sbénabled
using the embedded multipliers and DSP MAC unitghen
used FPGA (18 bits width). Other platform dependmmt
timizations like using the dual-port RAM capabijitpSP
MAC units improved the utilization. Finally, re-usé some
components and using single processing cores aratiiitg
on them in many complicated operations like FFT] filter-

ing and DCT optimized the resources utilizatione Tesign
in [8] is more concerned with re-usability, so somettod
platform capabilities might not be exploited as time pro-
posed here, which is more customized.

6. CONCLUSION

In this paper, we presented a hardware solutioimpde-
ment the front end part of a distributed speeclogeition
system, taking the front end of the ETSI Auroraibatan-
dard as a reference. The hardware platform chaseimf
plementation is FPGA for prototyping and structufesiC
for mass production.

Two solutions were presented: memory optimized timd
optimized. Hardware optimized algorithms like CORDI
were used in the design, especially in the memptiyrized
solution to reduce the ROM needed to store constnes
and calculate it instead. Results show that thegdesan fit
in a low cost Cyclone 11l 10 K gates FPGA. Two maom-

ponents were used to obtain system benchmarks shgain cation

corresponding reference designs provided by Altand
other designs, which are FFT and CORDIC component
The result of the comparison is highly in the favot our
system in terms of hardware resources or time paece.
Finally, compliance to the reference standard béimgle-
mented (the basic ETSI Aurora Standard) is proweddm-
paring the system final output to the referencadsed out-
put over 8 ms of continuous speech. The resulbwiparison
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shows compliance between fixed point and refereuntputs
to the third decimal place.
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