
HARDWARE IMPLEMENTATION OF DISTRIBUTED SPEECH RECOGNITION
SYSTEM FRONT END

Ahmad A. Al Sallab, Dr. Hossam Fahmy, Prof. Dr. Mohsen Rashwan

Electronics and Communications Department, Faculty of Engineering, Cairo University
Cairo, Egypt

ahmad.elsallab@gmail.com

ABSTRACT

Modern speech recognition applications are heading to-
wards embedded systems and hand-held devices. Distributed
Speech Recognition (DSR) system architecture emerged to
address this kind of applications. Most of the existing im-
plementations of this system are presented in software fash-
ion, with little consideration to the end product platform in
which the system will be deployed. In this paper, an opti-
mized hardware implementation of the front end part of the
DSR specified in the basic ETSI Aurora standard ETSI ES
201 108 is presented in FPGA platform prototype, with con-
sideration of migration to structured ASIC in case of mass-
production. Main design issues and tips are highlighted.
Results are presented in terms of hardware resources utiliza-
tion, comparison of some basic system components to third
party reference designs and compliance to the Aurora stan-
dard.

1. INTRODUCTION

Human-machine interaction is likely to take place in natural
language in future embedded systems and mobile devices.
Speech enabled car navigation; natural language e-Learning
applications and home automation are among those applica-
tions. This inherits all the embedded systems design con-
straints to the speech recognition domain, like limited hard-
ware, memory, power consumption and cost, which creates
the need to re-architecture the already existing speech recog-
nition systems.

Early attempts generated the client-server Network Speech
Recognition (NSR) architecture [5], where the voice signal is
encoded with normal speech coding techniques at the client
Front end and sent via voice channel to the sever Back end,
where all the recognition process takes place after decoding
the voice signal. Communication between the two parts is to
take place via wired/ wireless channel. This architecture pro-
vides light front end mobile terminal, which reduces its cost,
hardware and power consumption. However, this scheme
suffered two main problems: First, ordinary speech encod-
ing/decoding techniques do not preserve many characteristics
needed for the speech recognition, where speech codes care
about perceptual quality rather than improving the recogni-
tion results, which degrades the Word Error Rate (WER) at

the back end [5]. Second, encoding the voice signal makes it
exposed to the channel errors during transmission, especially
in case of un-reliable wireless channel [5].

Distributed speech recognition (DSR) architecture emerged
to tackle the above problems of NSR. Multi-modal applica-
tions are those applications where interaction between user
and the computer may take place in keyboard strokes, voice
commands or even hand writing. This requires voice and data
channels. DSR reduces the two channels to only single data
channel over which voice and data can be transmitted, by
sending parameterized representation of the speech signal
(the features vector) instead of coding the voice signal di-
rectly as in NSR. This has two advantages: First, the speech
signal is not directly encoded and transmitted, which protects
it against channel errors, and improves the WER significantly
over unreliable channels. Second, special encoding and fram-
ing algorithms are used, that focus on lowering the bit rate
(4.8 kbps) rather than preserving the perceptual quality.

Figure 1 DSR System Architecture

2. ETSI AURORA STANDARD OVERVIEW

The STQ-Aurora DSR group at the European Telecommuni-
cations Standards Institute (ETSI) has published four stan-
dard specifications featuring the front end side of the DSR.
The main algorithms specified are: features extraction (Mel-
Frequency Cepstral Coefficients- MFCC), the compression
split-vector quantization and the framing and error protection

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 953

algorithms. The front end algorithm block diagram specified
in [3] is shown in Figure 2. Three sampling rates configura-
tions are supported (8, 11 and 16 kHz), where the frame
length, frame rate and frame overlapping varies according to
the configured sampling rate. For the three configurations,
the input speech frame shift interval is 10 ms. The features
vector (14 features) is compressed into 7 indices using split
vector quantization algorithm. The compressed speech frame
is then formatted in a multi-frame packet format, where the
target data rate out of the front end is 4.8 kbps.

Figure 2 Block diagram of the Front end algorithm in Aurora Stan-
dard ETSI ES 201 108

In the following, we will present a proposal for a hardware
implementation of the front end part of the basic standard.

3. HARDWARE IMPLEMENTATION

In our design, Field Programmable Gate Array (FPGA)
design style is chosen for prototyping and migration to
structured Application Specific Integrated Circuit (ASIC) is
chosen for mass production. The customization capabilities
offered by this style gives flexibility in optimizing the hard-
ware utilization and area in the target chip, which reduces
the final product cost. In addition, this style is characterized
by its low power consumption, which makes it suitable for
hand-held battery powered devices.
The design proposed here is either optimized for memory
resources or for processing time. As appears in Figure 2, the
algorithm has many complex components, like Hamming
window, LogE, FFT, LOG, DCT and many others. Those
components contain complex non-linear trigonometric, loga-
rithmic and other complex functions that can be either calcu-
lated on the fly, or stored in a Look-up table (LUT), like the
Hamming window factors or the trigonometric functions,
which requires extra memory. Some hardware optimized
numerical algorithms exist to calculate such functions, like
the COrdinate Rotation Digital Computer (CORDIC) [7],
which was used extensively in the memory optimized solu-
tion to calculate complex functions instead of storing their

results in a LUT, which comes on the expense of extra proc-
essing time. On the contrary, the time optimized solution
chooses to store the look-up table (LUT) of such functions,
which reduces the required processing time.
The idea of having two solutions comes from the relaxed
time constraint on the system, where the frame rate specified
in [3] is 10 ms. The net processing time available for the
front end part is only 9.16 ms after removing the header and
CRC overheads, which is relatively relaxed time compared to
nowadays chip frequencies, hence, giving room for optimiz-
ing hardware by using hardware optimized, but time consum-
ing algorithms like CORDIC. On the other hand, if time is
critical for the user of the chip, the other time optimized op-
tion is also available.
In the next sub-sections, some main components of the sys-
tem will be discussed.
2.1 CORDIC Core
The CORDIC algorithm is used extensively in this design,
due to two main reasons; first, its hardware implementation
is highly optimized, where it utilizes only adders/subtractors,
shift registers and one look-up table. This simple hardware
can perform a lot of complex functions, ranging between
trigonometric, hyperbolic and linear functions, which are the
three types of the algorithm. Second, the accuracy of the re-
sult is high in small number of iterations, and simple conver-
gence constraints.
The main target of the algorithm is to rotate an input complex
vector by certain angle; this is called the rotation mode. The
other mode is the vectoring mode, where it is required to
align the input vector to the x-axis. The combination of the
three types with the two modes of the algorithm can give a
very wide range of complex functions.
A simple, configurable hardware is presented in [7]. Table 1
and Table 2 show the usage of the CORDIC in our system,
and the corresponding configuration. Table 1 shows the us-
age of CORDIC in both time and memory optimized solu-
tions, while Table 2 shows the extra usages in the memory
optimized solution only. For more information about how the
functions are calculated, please refer to [7].
Usage Type Mode
FFT magnitude Trigonometric Vectoring
LogE Hyperbolic Vectoring
Hardware divider Linear Vectoring
Non-linear tranform Hyperbolic Vectoring

Table 1 CORDIC usage in both time and memory optimized solu-
tions

Usage Type Mode
Hamming window
factors

Trigonometric Rotation

FFT twiddle factors Trigonometric Rotation
DCT cosine Trigonometric Rotation

Table 2 CORDIC usage in memory optimized solution only

In time optimized solution, only two CORDIC cores are
needed, the first to calculate LogE feature, and the other one
to be re-used between the FFT magnitude, the natural loga-
rithm of the Mel-filter output and hardware divider. In mem-
ory optimized solution, a CORDIC core is needed for the

954

Hamming window, and another one for the LogE feature,
and the last one to be re-used between FFT, Mel-output
natural logarithm, hardware divider and DCT.
2.2 Hamming window
The Hamming window equation is [3]:

Where N is the speech frame length in samples, n is the sam-
ple order, Spe is the pre-emphasis filter result and Sw is the

window filtered sample.

In the memory optimized solution, CORDIC module [7] is
used to calculate the cosine in the above equation with every
new sample, and hence the window factor is calculated.
In the time optimized solution, only half of the window is
stored in a LUT ROM, and the rest is deduced from it.
2.3 Fast Fourier Transform (FFT)
The basic FFT equation is [3]:

Where bink is the magnitude of the resulting FFT coefficients,
and FFTL is the length of the FFT result vector.
Split radix-2 algorithm was used for FFT calculation [1] [2]
and [6]. In the memory optimized solution of FFT, shown in
Figure 3, the twiddle factor complex multiplication involved
in the butterfly operations is interpreted as vector rotation,
since multiplication by a complex exponential is equivalent
to rotating the multiplied complex vector by the argument of
the exponential. Here the hardware optimized CORDIC core
 [7] is utilized as shown in the architecture below. This opti-
mized core reduces the hardware utilization and memory
requirements.
On the other hand, the time optimized solution tends to store
the twiddle factors in a LUT ROM of length equals to the
length of the FFT vector, and performing complex multipli-
cation of the FFT vectors and the complex exponential,
which requires extra memory and hardware multipliers.
However, instead of storing all the twiddle factors, only the
first quadrant values of the cosine function is stored, where
the rest of the wave can be deduced from it. Sine values of
the complex exponential can be deduced from the cosine
values. This reduces the memory requirements by 75%. The
time optimized architecture is similar to the one in Figure 3,
with substitution of the CORDIC core with LUT ROM of the
twiddle factors.
2.4 Discrete Cosine Transform (DCT)
The DCT basic equation is [3]:

Where Ci is the 13 dimension result vector of the DCT, and fj

is the result of the non-linear transformation after the Mel-
filter banks output.
Same discussion about the Hamming window goes here,
where the memory optimized solution calculates the cosine
values using CORDIC core [7], while the time optimized
solution stores the cosine values in a LUT ROM.

Figure 3 Memory optimized FFT architecture

2.5 Memory manager
This component is implementation specific, and not men-
tioned in [3]. It controls the access to the system RAM and
ROM. The RAM memories used in the system are:

• Input samples RAM: this memory is managed in a
circular buffer fashion to manage the frame overlap-
ping requirements. It has size of N (speech frame
length).

• I RAM: this memory is used to store the real part of
the intermediate FFT radix-2 stages. It holds the real
input and output of the FFT. It has size of FFTL (the
FFT length).

• Q RAM: same as I RAM, but for the imaginary part
of the intermediate FFT radix-2 stages.

The last two memories are re-used in the Mel-filter and DCT
components after the FFT is finished. The system has some
ROM memories to hold some constant values:

• Mel-filter banks centre frequencies (25 entries)
• Quantization tables (14 tables, each of length = 64

entries, except for tables 12 and 13, which have 256
entries)

In addition, the time optimized solution needs extra ROM:
• Hamming Window factors (N/2 length, where N is the

speech frame length)
• Twiddle factors (FFTL/4 length, where FFTL is the

length of the FFT result vector)
• DCT factors (24 DCT factors)

4. SYSTEM EVALUATION

The evaluation of the presented design will be held on three
axes: First, the system hardware utilization and time per-
formance will be presented. Second, some of the main sys-
tem components that are usually used in benchmarking are
compared to third party reference designs and other designs.
And at last, the compliance of the system output is validated
against the official standard test vectors provided by the
ETSI.

955

3.1 Hardware utilization and Processing time per-
formance

Table 3 shows the result of synthesising the design on the
10K gates Altera FPGA device Cyclone III EP3C10U256C8,
for both memory and time optimized solutions, with the three
configurations specified in the Aurora standard [3].
Solution Configuration Logic gates Total Mem-

ory
8 kHz 9,980 (97%) 4.47 Kbytes
11 kHz 9,980 (97%) 4.75 Kbytes

Memory op-
timized

16 kHz 9,722 (94%) 6.45 Kbytes
8 kHz 8,160 (79%) 4.87 Kbytes
11 kHz 8,160 (79%) 5.18 Kbytes

Time
optimized

16 kHz 8,160 (79%) 7.19 Kbytes

Table 3 Hardware utilization of the memory and time optimized
solutions over the three configurations

Table 4 shows the frame processing time performance as a
percentage of the net allowed frame time after removing the
header and CRC overheads (9.16 ms). A chip frequency of
100 MHz (after synthesis) is assumed.
 8 kHz 11 kHz 16 kHz
Memory optimized 1.3856% 1.4459% 2.7021%
Time optimized 0.8563% 0.9166% 2.005%

Table 4 processing time performance of the memory and time opti-
mized solutions

Table 4 shows that the time optimized solution gives better
results in terms of hardware utilization of logic gates and
time performance. On the other hand, the memory optimized
solution is better in terms of memory usage, but not so far
from the time optimized solution.
3.2 Comparison to other designs
In this section the FFT and CORDIC modules are evaluated
against the Altera reference designs and other designs. Altera
reference designs are available from Altera to be used as IP
core (called MegaCore function or Mega function), with
documentation available on Altera web site, www.altera.com.
3.2.1 FFT vs. other design
The FFT component is usually used to benchmark most of
Digital Signal Processing (DSP) systems. Table 5 shows the
comparison between Altera’s reference design of the FFT
(Burst data flow architecture, 256 points, single output, 16
bits signal width) [12], other designs and the FFT of our sys-
tem, in the time optimized solution. All designs have 16 bits
fixed point signal length, and 256 point FFT length.

 FPGA Logic
Ele-
ments

Mem-
ory
(Bits)

Multi-
pliers
(18X18)

Clock
Cycle
Count

Altera
 [12]

Cyclone III
EP3C10F256C6

1,463 9,472 4

1628

Design
in [9]

Stratix II
EP2S15F672C3

6702 20480 48 43

Design
in [10]

Stratix II
EP2S60F1020C4

1334 -- -- --

Front
end
FFT

Cyclone III
EP3C10F256C6

998 9,232 4
(18X18)

256

Table 5 FFT comparison to other designs

The results in Table 5 show that the FFT design presented
here outperforms Altera reference design in terms of hard-
ware utilization of logic elements and memory bits, while
they both utilize 4 18x18 multipliers. In terms of time per-
formance, the local FFT design takes only 256 cycles to fin-
ish, while the reference design takes 1628 cycles, which
means that the reference design takes 6.36 times as that of
the local FFT design.
The design in [9] is very efficient in terms of clock cycles
count, however, this comes on the expense of hardware,
memory and multipliers resources usage.
The enhanced performance of the FFT design proposed here
is due to the following reasons:

• The optimized usage of memory, especially in the
LUT of the sine and cosine factors as discussed in
 2.3.

• Fixing the internal signals lengths to 16 bits (less
than 18) optimizes the usage of the embedded mul-
tipliers (18 x 18) on the FPGA.

• Using the dual-port RAM feature of the used FPGA
enables simultaneous memory access during FFT
stages, which improved the time performance by
50%.

• Using split-radix FFT algorithm with only one but-
terfly core and iterating on it highly reduced the
hardware utilization.

• Pipelining between the FFT components (bit-
reversal, butterfly, twiddle factors and address gen-
erator) improved the time performance.

3.2.2 CORDIC vs. Altera’s reference design
Table 6 shows the comparison between Altera’s CORDIC
reference design [11] and our implementation of the
CORDIC hardware on Cyclone FPGA devices.
 Clocks Logic elements
Altera’s Reference
CORDIC

16 963

Front end CORDIC 16 399
Ratio (Reference/
Local design)

1 2.41

Table 6 CORDIC benchmarking against Altera’s reference design

The results in Table 6 show that the local CORDIC design
takes the same clock cycles to finish as the reference design.
However, in terms of logic elements utilization, the reference
CORDIC design uses logic elements about 2.4 times as the
local CORDIC design.
3.3 Compliance to the ETSI Aurora Basic Standard
The ETSI provides reference high level C-Code together
with reference test vectors of 8 ms of continuous speech,
which represents about 813 speech frame, to test proprietary
implementations against them to prove compliance to the
Aurora standard. The design presented here was tested
against those results. Table 7 shows average fixed point error
between the reference and the System Under Test (SUT),
with 8 and 16 kHz configurations. The word length is 16 bits.

 8 kHz 16 kHz
Average fixed
point error

0.002621 0.004883

Table 7 Average fixed point error in 8 and 16 kHz configurations

956

Table 7 shows that the system under test output is correct to
the third decimal place. Note that, the above average error is
the error between the features after the quantization block in
both reference and under test systems.

5. RELATED WORK

A similar implementation of the front end module in Aurora
ETSI system is presented in [8]. Note that; the design in [8]
is only the features extraction part, so the comparison held
here does not include the rest of quantization and framing
components of the front end client.
 FPGA Logic Ele-

ments
DSP units

Proposed
design

Cyclone III
EP3C10U256C8

7,221 46

Design in
 [8]

Stratix
EP1S20F484C5

18,340 52

Table 8 Comparison between proposed front end design and the one
in [8]

The usage of algorithms with low hardware resources utiliza-
tion like CORDIC reduced the hardware resources and DSP
units in the proposed design in this paper. Also, limiting the
fixed point length of the internal signals to 16 bits enabled
using the embedded multipliers and DSP MAC units on the
used FPGA (18 bits width). Other platform dependent op-
timizations like using the dual-port RAM capability; DSP
MAC units improved the utilization. Finally, re-use of some
components and using single processing cores and iterating
on them in many complicated operations like FFT, Mel filter-
ing and DCT optimized the resources utilization. The design
in [8] is more concerned with re-usability, so some of the
platform capabilities might not be exploited as the one pro-
posed here, which is more customized.

6. CONCLUSION

In this paper, we presented a hardware solution to imple-
ment the front end part of a distributed speech recognition
system, taking the front end of the ETSI Aurora basic stan-
dard as a reference. The hardware platform chosen for im-
plementation is FPGA for prototyping and structured ASIC
for mass production.
Two solutions were presented: memory optimized and time
optimized. Hardware optimized algorithms like CORDIC
were used in the design, especially in the memory optimized
solution to reduce the ROM needed to store constant values
and calculate it instead. Results show that the design can fit
in a low cost Cyclone III 10 K gates FPGA. Two main com-
ponents were used to obtain system benchmarks against
corresponding reference designs provided by Altera and
other designs, which are FFT and CORDIC components.
The result of the comparison is highly in the favour of our
system in terms of hardware resources or time performance.
Finally, compliance to the reference standard being imple-
mented (the basic ETSI Aurora Standard) is proved by com-
paring the system final output to the reference standard out-
put over 8 ms of continuous speech. The result of comparison

shows compliance between fixed point and reference outputs
to the third decimal place.

REFERENCES

[1] Xudding Huang, Alex Acero, Hsiao-Wuen Hon, " Spo-
ken Language Processing, A guide to Theory, Algorithm,
and System Development ", Prentice Hall, 2001.

[2] Sen M Kuo, Bob H Lee and Wenshun Tian, " Real-Time
Digital Signal Processing, Implementations and Applica-
tions ", Second Edition, John Wiley and Sons, 2001.

[3] European Telecommunications Standard Institute, ETSI,
" Speech Processing, Transmission and Quality Aspects
(STQ); Distributed speech recognition; Front-end feature
extraction algorithm; Compression algorithms ", Aurora
Standard, ETSI ES 201 108 V1.1.3 (2003-09).

[4] David Pearce, " Enabling New Speech Driven Services
for Mobile Devices: An overview of the ETSI standards
activities for Distributed Speech Recognition Front-ends
", in Proc. AVIOS 2000, The Speech Applications Con-
ference, San Jose, CA, USA, May 22-24, 2000.

[5] Dmitry Zaykovskiy, " Survey of the Speech Recognition
Techniques for Mobile Devices '', in Proc. SPECOM
2006, 11-th International Conference on Speech and
Computer, St. Petersburg, Russia, 25-29 June 2006.

[6] Steven G. Johnson and Matteo Frigo, " A modified split-
radix FFT with fewer arithmetic operations ", IEEE
Transactios, Signal Processing, vol. 55, pp. 111-119, Jan.
2007.

[7] Ray Andraka, " A survey of CORDIC algorithms for
FPGA based computers ", in Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field
programmable gate arrays, California, USA, 1998.

[8] V. Rodellar-Biarge, C. Gonzalez-Concejero, E. Martinez
De Icaya, A. Alvarez-Marquina and P. Gómez-Vilda, "
Hardware reusable design of feature extraction for dis-
tributed speech recognition ", Proceedings of the 6th
conference on Applications of electrical engineering, Is-
tanbul, Turkey, 2007.

[9] Jesús García; Juan A. Michell; Gustavo Ruiz; Angel M.
Burón, " FPGA realization of a Split Radix FFT proces-
sor ", Proceedings of SPIE--The International Society
for Optical Engineering, Vol 6590, May 2007.

[10] C. González-Concejero, V. Rodellar, A. Álvarez-
Marquina, E. Martínez de Icaya and P. Gomez-Vilda, " A
portable hardware design of a FFT algorithm ",
Latin American Applied Research, vol. 37 no.1, March
2007.

[11] Altera, " CORDIC reference design ", Altera Appli-
cation Note, AN: 263,
www.altera.com/products/ip/dsp/ipm-index.jsp, June
2005.

[12] Altera, " FFT MegaCore function User Guide ", Al-
tera MegaCore documentation and user guides, UG-FFT-
7.0, www.altera.com/products/ip/dsp/ipm-index.jsp, No-
vember 2008.

957

