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ABSTRACT 

Modern speech recognition applications are heading to-
wards embedded systems and hand-held devices. Distributed 
Speech Recognition (DSR) system architecture emerged to 
address this kind of applications. Most of the existing im-
plementations of this system are presented in software fash-
ion, with little consideration to the end product platform in 
which the system will be deployed. In this paper, an opti-
mized hardware implementation of the front end part of the 
DSR specified in the basic ETSI Aurora standard ETSI ES 
201 108 is presented in FPGA platform prototype, with con-
sideration of migration to structured ASIC in case of mass-
production. Main design issues and tips are highlighted. 
Results are presented in terms of hardware resources utiliza-
tion, comparison of some basic system components to third 
party reference designs and compliance to the Aurora stan-
dard. 

1. INTRODUCTION 

Human-machine interaction is likely to take place in natural 
language in future embedded systems and mobile devices. 
Speech enabled car navigation; natural language e-Learning 
applications and home automation are among those applica-
tions. This inherits all the embedded systems design con-
straints to the speech recognition domain, like limited hard-
ware, memory, power consumption and cost, which creates 
the need to re-architecture the already existing speech recog-
nition systems. 

Early attempts generated the client-server Network Speech 
Recognition (NSR) architecture  [5], where the voice signal is 
encoded with normal speech coding techniques at the client 
Front end and sent via voice channel to the sever Back end, 
where all the recognition process takes place after decoding 
the voice signal. Communication between the two parts is to 
take place via wired/ wireless channel. This architecture pro-
vides light front end mobile terminal, which reduces its cost, 
hardware and power consumption. However, this scheme 
suffered two main problems: First, ordinary speech encod-
ing/decoding techniques do not preserve many characteristics 
needed for the speech recognition, where speech codes care 
about perceptual quality rather than improving the recogni-
tion results, which degrades the Word Error Rate (WER) at 

the back end  [5]. Second, encoding the voice signal makes it 
exposed to the channel errors during transmission, especially 
in case of un-reliable wireless channel  [5].  

Distributed speech recognition (DSR) architecture emerged 
to tackle the above problems of NSR. Multi-modal applica-
tions are those applications where interaction between user 
and the computer may take place in keyboard strokes, voice 
commands or even hand writing. This requires voice and data 
channels. DSR reduces the two channels to only single data 
channel over which voice and data can be transmitted, by 
sending parameterized representation of the speech signal 
(the features vector) instead of coding the voice signal di-
rectly as in NSR. This has two advantages: First, the speech 
signal is not directly encoded and transmitted, which protects 
it against channel errors, and improves the WER significantly 
over unreliable channels. Second, special encoding and fram-
ing algorithms are used, that focus on lowering the bit rate 
(4.8 kbps) rather than preserving the perceptual quality. 

Figure 1 DSR System Architecture 

2. ETSI AURORA STANDARD OVERVIEW 

The STQ-Aurora DSR group at the European Telecommuni-
cations Standards Institute (ETSI) has published four stan-
dard specifications featuring the front end side of the DSR. 
The main algorithms specified are: features extraction (Mel- 
Frequency Cepstral Coefficients- MFCC), the compression 
split-vector quantization and the framing and error protection 
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algorithms. The front end algorithm block diagram specified 
in  [3] is shown in Figure 2. Three sampling rates configura-
tions are supported (8, 11 and 16 kHz), where the frame 
length, frame rate and frame overlapping varies according to 
the configured sampling rate. For the three configurations, 
the input speech frame shift interval is 10 ms. The features 
vector (14 features) is compressed into 7 indices using split 
vector quantization algorithm. The compressed speech frame 
is then formatted in a multi-frame packet format, where the 
target data rate out of the front end is 4.8 kbps. 

 

Figure 2 Block diagram of the Front end algorithm in Aurora Stan-
dard ETSI ES 201 108 

In the following, we will present a proposal for a hardware 
implementation of the front end part of the basic standard. 

3. HARDWARE IMPLEMENTATION 

In our design, Field Programmable Gate Array (FPGA) 
design style is chosen for prototyping and migration to 
structured Application Specific Integrated Circuit (ASIC) is 
chosen for mass production. The customization capabilities 
offered by this style gives flexibility in optimizing the hard-
ware utilization and area in the target chip, which reduces 
the final product cost. In addition, this style is characterized 
by its low power consumption, which makes it suitable for 
hand-held battery powered devices. 
The design proposed here is either optimized for memory 
resources or for processing time. As appears in Figure 2, the 
algorithm has many complex components, like Hamming 
window, LogE, FFT, LOG, DCT and many others. Those 
components contain complex non-linear trigonometric, loga-
rithmic and other complex functions that can be either calcu-
lated on the fly, or stored in a Look-up table (LUT), like the 
Hamming window factors or the trigonometric functions, 
which requires extra memory. Some hardware optimized 
numerical algorithms exist to calculate such functions, like 
the COrdinate Rotation Digital Computer (CORDIC)  [7], 
which was used extensively in the memory optimized solu-
tion to calculate complex functions instead of storing their 

results in a LUT, which comes on the expense of extra proc-
essing time. On the contrary, the time optimized solution 
chooses to store the look-up table (LUT) of such functions, 
which reduces the required processing time. 
The idea of having two solutions comes from the relaxed 
time constraint on the system, where the frame rate specified 
in  [3] is 10 ms. The net processing time available for the 
front end part is only 9.16 ms after removing the header and 
CRC overheads, which is relatively relaxed time compared to 
nowadays chip frequencies, hence, giving room for optimiz-
ing hardware by using hardware optimized, but time consum-
ing algorithms like CORDIC. On the other hand, if time is 
critical for the user of the chip, the other time optimized op-
tion is also available. 
In the next sub-sections, some main components of the sys-
tem will be discussed. 
2.1 CORDIC Core 
The CORDIC algorithm is used extensively in this design, 
due to two main reasons; first, its hardware implementation 
is highly optimized, where it utilizes only adders/subtractors, 
shift registers and one look-up table. This simple hardware 
can perform a lot of complex functions, ranging between 
trigonometric, hyperbolic and linear functions, which are the 
three types of the algorithm. Second, the accuracy of the re-
sult is high in small number of iterations, and simple conver-
gence constraints.  
The main target of the algorithm is to rotate an input complex 
vector by certain angle; this is called the rotation mode. The 
other mode is the vectoring mode, where it is required to 
align the input vector to the x-axis. The combination of the 
three types with the two modes of the algorithm can give a 
very wide range of complex functions. 
A simple, configurable hardware is presented in  [7]. Table 1 
and Table 2 show the usage of the CORDIC in our system, 
and the corresponding configuration. Table 1 shows the us-
age of CORDIC in both time and memory optimized solu-
tions, while Table 2 shows the extra usages in the memory 
optimized solution only. For more information about how the 
functions are calculated, please refer to  [7]. 
Usage Type Mode 
FFT magnitude  Trigonometric Vectoring 
LogE Hyperbolic Vectoring 
Hardware divider Linear  Vectoring 
Non-linear tranform Hyperbolic Vectoring 

Table 1 CORDIC usage in both time and memory optimized solu-
tions 

Usage Type Mode 
Hamming window 
factors 

Trigonometric Rotation 

FFT twiddle factors Trigonometric Rotation 
DCT cosine Trigonometric Rotation 

Table 2 CORDIC usage in memory optimized solution only 

In time optimized solution, only two CORDIC cores are 
needed, the first to calculate LogE feature, and the other one 
to be re-used between the FFT magnitude, the natural loga-
rithm of the Mel-filter output and hardware divider. In mem-
ory optimized solution, a CORDIC core is needed for the 
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Hamming window, and another one for the LogE feature, 
and the last one to be re-used between FFT, Mel-output 
natural logarithm, hardware divider and DCT. 
2.2 Hamming window 
The Hamming window equation is  [3]: 

 
Where N is the speech frame length in samples, n is the sam-
ple order, Spe is the pre-emphasis filter result and Sw is the 

window filtered sample.  

In the memory optimized solution, CORDIC module  [7] is 
used to calculate the cosine in the above equation with every 
new sample, and hence the window factor is calculated. 
In the time optimized solution, only half of the window is 
stored in a LUT ROM, and the rest is deduced from it. 
2.3 Fast Fourier Transform (FFT) 
The basic FFT equation is  [3]: 

 
Where bink is the magnitude of the resulting FFT coefficients, 
and FFTL is the length of the FFT result vector. 
Split radix-2 algorithm was used for FFT calculation  [1]  [2]  
and  [6]. In the memory optimized solution of FFT, shown in 
Figure 3, the twiddle factor complex multiplication involved 
in the butterfly operations is interpreted as vector rotation, 
since multiplication by a complex exponential is equivalent 
to rotating the multiplied complex vector by the argument of 
the exponential. Here the hardware optimized CORDIC core 
 [7] is utilized as shown in the architecture below. This opti-
mized core reduces the hardware utilization and memory 
requirements.  
On the other hand, the time optimized solution tends to store 
the twiddle factors in a LUT ROM of length equals to the 
length of the FFT vector, and performing complex multipli-
cation of the FFT vectors and the complex exponential, 
which requires extra memory and hardware multipliers. 
However, instead of storing all the twiddle factors, only the 
first quadrant values of the cosine function is stored, where 
the rest of the wave can be deduced from it. Sine values of 
the complex exponential can be deduced from the cosine 
values. This reduces the memory requirements by 75%. The 
time optimized architecture is similar to the one in Figure 3, 
with substitution of the CORDIC core with LUT ROM of the 
twiddle factors.  
2.4 Discrete Cosine Transform (DCT) 
The DCT basic equation is  [3]: 

 
Where Ci is the 13 dimension result vector of the DCT, and fj 

is the result of the non-linear transformation after the Mel-
filter banks output. 
Same discussion about the Hamming window goes here, 
where the memory optimized solution calculates the cosine 
values using CORDIC core  [7], while the time optimized 
solution stores the cosine values in a LUT ROM.  

 
Figure 3 Memory optimized FFT architecture 

2.5 Memory manager 
This component is implementation specific, and not men-
tioned in  [3]. It controls the access to the system RAM and 
ROM. The RAM memories used in the system are: 

• Input samples RAM: this memory is managed in a 
circular buffer fashion to manage the frame overlap-
ping requirements. It has size of N (speech frame 
length). 

• I RAM: this memory is used to store the real part of 
the intermediate FFT radix-2 stages. It holds the real 
input and output of the FFT. It has size of FFTL (the 
FFT length). 

• Q RAM: same as I RAM, but for the imaginary part 
of the intermediate FFT radix-2 stages. 

The last two memories are re-used in the Mel-filter and DCT 
components after the FFT is finished. The system has some 
ROM memories to hold some constant values: 

• Mel-filter banks centre frequencies (25 entries)  
• Quantization tables (14 tables, each of length = 64 

entries, except for tables 12 and 13, which have 256 
entries) 

In addition, the time optimized solution needs extra ROM: 
• Hamming Window factors (N/2 length, where N is the 

speech frame length) 
• Twiddle factors (FFTL/4 length, where FFTL is the 

length of the FFT result vector) 
• DCT factors (24 DCT factors) 

4. SYSTEM EVALUATION 

The evaluation of the presented design will be held on three 
axes: First, the system hardware utilization and time per-
formance will be presented. Second, some of the main sys-
tem components that are usually used in benchmarking are 
compared to third party reference designs and other designs. 
And at last, the compliance of the system output is validated 
against the official standard test vectors provided by the 
ETSI. 
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3.1 Hardware utilization and Processing time per-
formance 

Table 3 shows the result of synthesising the design on the 
10K gates Altera FPGA device Cyclone III EP3C10U256C8, 
for both memory and time optimized solutions, with the three 
configurations specified in the Aurora standard  [3]. 
Solution Configuration Logic gates Total Mem-

ory 
8 kHz 9,980 (97%) 4.47 Kbytes 
11 kHz 9,980 (97%) 4.75 Kbytes 

Memory op-
timized 

16 kHz 9,722 (94%) 6.45 Kbytes 
8 kHz 8,160 (79%) 4.87 Kbytes 
11 kHz 8,160 (79%) 5.18 Kbytes 

Time 
optimized 

16 kHz 8,160 (79%) 7.19 Kbytes 

Table 3 Hardware utilization of the memory and time optimized 
solutions over the three configurations 

Table 4 shows the frame processing time performance as a 
percentage of the net allowed frame time after removing the 
header and CRC overheads (9.16 ms). A chip frequency of 
100 MHz (after synthesis) is assumed. 
 8 kHz 11 kHz 16 kHz 
Memory optimized 1.3856% 1.4459% 2.7021% 
Time optimized 0.8563% 0.9166% 2.005% 

Table 4 processing time performance of the memory and time opti-
mized solutions 

Table 4 shows that the time optimized solution gives better 
results in terms of hardware utilization of logic gates and 
time performance. On the other hand, the memory optimized 
solution is better in terms of memory usage, but not so far 
from the time optimized solution. 
3.2 Comparison to other designs 
In this section the FFT and CORDIC modules are evaluated 
against the Altera reference designs and other designs. Altera 
reference designs are available from Altera to be used as IP 
core (called MegaCore function or Mega function), with 
documentation available on Altera web site, www.altera.com. 
3.2.1  FFT vs. other design 
The FFT component is usually used to benchmark most of 
Digital Signal Processing (DSP) systems. Table 5 shows the 
comparison between Altera’s reference design of the FFT 
(Burst data flow architecture, 256 points, single output, 16 
bits signal width)  [12], other designs and the FFT of our sys-
tem, in the time optimized solution. All designs have 16 bits 
fixed point signal length, and 256 point FFT length.  
 

 FPGA Logic 
Ele-
ments 

Mem-
ory 
(Bits) 

Multi-
pliers 
(18X18) 

Clock 
Cycle 
Count 

Altera 
 [12] 

Cyclone III 
EP3C10F256C6 

1,463 9,472 4 
 

1628 

Design 
in  [9] 

Stratix II 
EP2S15F672C3 

6702 20480 48 43 

Design 
in  [10] 

Stratix II 
EP2S60F1020C4 

1334 -- -- -- 

Front 
end 
FFT 

Cyclone III 
EP3C10F256C6 

998 9,232 4 
(18X18) 

256 

Table 5 FFT comparison to other designs 

The results in Table 5 show that the FFT design presented 
here outperforms Altera reference design in terms of hard-
ware utilization of logic elements and memory bits, while 
they both utilize 4 18x18 multipliers. In terms of time per-
formance, the local FFT design takes only 256 cycles to fin-
ish, while the reference design takes 1628 cycles, which 
means that the reference design takes 6.36 times as that of 
the local FFT design.  
The design in  [9] is very efficient in terms of clock cycles 
count, however, this comes on the expense of hardware, 
memory and multipliers resources usage. 
The enhanced performance of the FFT design proposed here 
is due to the following reasons: 

• The optimized usage of memory, especially in the 
LUT of the sine and cosine factors as discussed in 
 2.3. 

• Fixing the internal signals lengths to 16 bits (less 
than 18) optimizes the usage of the embedded mul-
tipliers (18 x 18) on the FPGA. 

• Using the dual-port RAM feature of the used FPGA 
enables simultaneous memory access during FFT 
stages, which improved the time performance by 
50%. 

• Using split-radix FFT algorithm with only one but-
terfly core and iterating on it highly reduced the 
hardware utilization. 

• Pipelining between the FFT components (bit-
reversal, butterfly, twiddle factors and address gen-
erator) improved the time performance. 

3.2.2 CORDIC vs. Altera’s  reference design 
Table 6 shows the comparison between Altera’s CORDIC 
reference design  [11] and our implementation of  the 
CORDIC  hardware on Cyclone FPGA devices. 
 Clocks Logic elements 
Altera’s Reference 
CORDIC 

16 963 

Front end CORDIC 16 399 
Ratio (Reference/ 
Local design) 

1 2.41 

Table 6 CORDIC benchmarking against Altera’s reference design 

The results in Table 6 show that the local CORDIC design 
takes the same clock cycles to finish as the reference design. 
However, in terms of logic elements utilization, the reference 
CORDIC design uses logic elements about 2.4 times as the 
local CORDIC design. 
3.3 Compliance to the ETSI Aurora Basic Standard  
The ETSI provides reference high level C-Code together 
with reference test vectors of 8 ms of continuous speech, 
which represents about 813 speech frame, to test proprietary 
implementations against them to prove compliance to the 
Aurora standard. The design presented here was tested 
against those results. Table 7 shows average fixed point error 
between the reference and the System Under Test (SUT), 
with 8 and 16 kHz configurations. The word length is 16 bits. 

 8 kHz 16 kHz 
Average fixed 
point error 

0.002621 0.004883 

Table 7 Average fixed point error in 8 and 16 kHz configurations 

956



Table 7 shows that the system under test output is correct to 
the third decimal place. Note that, the above average error is 
the error between the features after the quantization block in 
both reference and under test systems.  

5. RELATED WORK 

A similar implementation of the front end module in Aurora 
ETSI system is presented in  [8]. Note that; the design in  [8] 
is only the features extraction part, so the comparison held 
here does not include the rest of quantization and framing 
components of the front end client. 
 FPGA Logic Ele-

ments 
DSP units  

Proposed 
design 

Cyclone III 
EP3C10U256C8 

7,221 46 

Design in 
 [8] 

Stratix 
EP1S20F484C5 

18,340 52 

Table 8 Comparison between proposed front end design and the one 
in  [8] 

The usage of algorithms with low hardware resources utiliza-
tion like CORDIC reduced the hardware resources and DSP 
units in the proposed design in this paper. Also, limiting the 
fixed point length of the internal signals to 16 bits enabled 
using the embedded multipliers and DSP MAC units on the 
used FPGA (18 bits width). Other platform dependent op-
timizations like using the dual-port RAM capability; DSP 
MAC units improved the utilization. Finally, re-use of some 
components and using single processing cores and iterating 
on them in many complicated operations like FFT, Mel filter-
ing and DCT optimized the resources utilization. The design 
in  [8] is more concerned with re-usability, so some of the 
platform capabilities might not be exploited as the one pro-
posed here, which is more customized. 

6. CONCLUSION 

In this paper, we presented a hardware solution to imple-
ment the front end part of a distributed speech recognition 
system, taking the front end of the ETSI Aurora basic stan-
dard as a reference. The hardware platform chosen for im-
plementation is FPGA for prototyping and structured ASIC 
for mass production.  
Two solutions were presented: memory optimized and time 
optimized. Hardware optimized algorithms like CORDIC 
were used in the design, especially in the memory optimized 
solution to reduce the ROM needed to store constant values 
and calculate it instead. Results show that the design can fit 
in a low cost Cyclone III 10 K gates FPGA. Two main com-
ponents were used to obtain system benchmarks against 
corresponding reference designs provided by Altera and 
other designs, which are FFT and CORDIC components. 
The result of the comparison is highly in the favour of our 
system in terms of hardware resources or time performance. 
Finally, compliance to the reference standard being imple-
mented (the basic ETSI Aurora Standard) is proved by com-
paring the system final output to the reference standard out-
put over 8 ms of continuous speech. The result of comparison 

shows compliance between fixed point and reference outputs 
to the third decimal place. 
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