
CONSTRAINTS ON THE SIMD VECTORIZATION
OF RADIX-2 AND MIXED-RADIX FFTS

Peter Westermann, Hartmut Schröder

CAS Lab, Technische Universität Dortmund
Otto-Hahn-Str. 4, 44221 Dortmund, Germany

{peter.westermann,hartmut.schroeder}@tu-dortmund.de

ABSTRACT
Single instruction, multiple data (SIMD) signal processors for wire-
less communications require efficient vectorized algorithms for
radix-2 and mixed-radix Fast Fourier Transforms (FFTs). Espe-
cially, mixed-radix FFTs are challenging for a processor that oper-
ates on power-of-two length vectors. We analyze the vectorization
of pure radix-2 and mixed-radix FFTs and demonstrate that both
FFTs have different constraints for an efficient vectorization. The
radix-2 FFT can be efficiently vectorized if the FFT length is at least
twice the vector length while the mixed-radix FFT requires the FFT
length to be a multiple of the squared vector length.

1. INTRODUCTION

In recent years, the development of signal processing architec-
tures for wireless communications shifted from ASICs towards
programmable processors. This approach offers better flexibil-
ity, especially for multi-standard radio systems, improves hardware
reuse, and enables to share information between different process-
ing stages. However, especially baseband signal processing is a
computationally demanding, hard real-time problem. Next to that,
the algorithmic complexity is still increasing as novel techniques
are introduced and data rates increase.

As many regular baseband algorithms feature an innate degree
of data level parallelism, Single Instruction Multiple Data (SIMD)
vector processing appears to be a viable approach to satisfy the
demands of real-time processing. Hence, several parallel base-
band processor architectures like Linköping University’s Single In-
struction Multiple Tasks (SIMT) architecture [10, 11], Sandbridge’s
Sandblaster [6], NXPs Embedded Vector Processor (EVP) [15],
and University of Michigan’s Software On-Demand Architecture
(SODA) [8, 9] have been proposed.

One important task in baseband signal processing is the Fast
Fourier Transform (FFT), which is the main part of Orthogonal Fre-
quency Division Multiple Access (OFDMA) and Single Carrier Fre-
quency Division Multiple Access (SC-FDMA) systems. While FFT
sizes for OFDMA are mostly powers of two, SC-FDMA in UMTS
LTE [13] requires FFTs based on powers of two, three, and five;
this is especially challenging on a SIMD architecture operating on
power-of-two length vectors. Hence, we analyzed the SIMD vec-
torization of radix-2 and mixed-radix FFTs. Our goal was to deter-
mine constraints on the ratio between FFT length and SIMD vector
length for an efficient implementation on a SIMD signal processor
for baseband processing.

Based on a mathematical notation using the Kronecker matrix
product (Section 2), different FFT algorithms are discussed. The
contributions of this paper are as follows:
• Using definitions of vectorizable formulas, we demonstrate that

the pure radix-2 FFT can be efficiently vectorized if the FFT size
is at least twice the vector length V (section 3). Furthermore,
we show that mixed-radix FFTs that contain a factor of 2 ·V and
other non-power-of-two factors cannot be efficiently vectorized.

• We present a general FFT algorithm decomposition for
NDFT = V 2 ·M that allows an efficient vectorization (section 4).
We decompose the FFT into three stages. Two stages perform

V -point FFTs and one stage performs an M-point FFT. The M-
point FFT contains all non-power-of-two factors and is com-
pletely independent of the vector length.

• We analyze the permutation operations in our algorithms and
discuss requirements for the permutation unit of a SIMD pro-
cessor (section 5). Our focus is on the width of the required
permutation network (e.g. one data vector or two data vectors).

• We illustrate our findings with performance results for the Em-
bedded Vector Processor (EVP)[15] in section 6 as an extension
of the results published in [16].

2. MATRIX REPRESENTATION OF THE FFT

The Discrete Fourier Transform (DFT) and its fast variants may
be expressed by matrix-vector multiplications. For example, the
Fourier transform of an N-point data vector x ∈ CN may be written
as

y = WN ·x.

In the following, we denote all elements (k, l) of a matrix A as
[A] (k, l); a single matrix element is symbolized by akl . The ele-
ments of the N-point DFT-matrix are defined as

[WN] (k, l) = ωkl
N

with ωN = exp(−2πi/N). Any non-prime DFT-matrix may be de-
composed into smaller-sized DFTs using a formalism based on Kro-
necker products and permutation matrices (see e.g. [1, 5, 14]). The
Kronecker or tensor product of two matrices A and B is defined as
follows:

A⊗B =
(
ak,l ·B

)
For example, a Kronecker product of a 2×2 matrix A with an ar-
bitrary matrix B results in the following matrix:

A⊗B =
[

a11 ·B a12 ·B
a21 ·B a22 ·B

]
Of special interest are Kronecker products with a q×q identity ma-
trix Iq. As an example, the Kronecker product A⊗ Iq implies that
the transformation defined by matrix A is applied to blocks of q
consecutive elements in parallel.

Further, the matrix conjugation of A by X can be described by:

XT ·A ·X = AX (1)

Additionally, we define a pq× pq stride permutation matrix by the
following equation:

[
Pp

q
]
(j,k) =

{
1 for j = r · p+ s, k = s ·q+ r,
0 otherwise (0 ≤ r < q,0 ≤ s < p)

A multiplication with permutation matrix P
p
q results in a

stride by q reordering of elements [7], i.e. the ele-
ments of input vector x =

(
x0,x1, . . . ,xpq−1

)T are reordered as

y =
(
x0,xq,x2q, . . . ,xpq−q,x1,xq+1, . . . ,xpq−1

)T .

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1274

Equation (2) defines the basic structure of an FFT algorithm
using Kronecker products and permutation matrices. The equation
decomposes a pq-point DFT into a p-point DFT block, a multiplica-
tion by a diagonal twiddle factor matrix D

p
q (see (3)), a permutation

operation, and a q-point DFT block.

Wpq =
(
Wq ⊗ Ip

)
·Pp

q ·Dp
q ·
(
Wp ⊗ Iq

)
(2)

[
Dp

q
]
(j,k) =

{
ωs·m

pq for j = k = s ·q+m,
0 otherwise (0 ≤ m < q,0 ≤ s < p)

(3)

Different FFT algorithms may be derived from (2) by repeatedly de-
composing into smaller DFTs and by formula manipulations using
mathematical identities. Some useful identities are defined by the
following rules; others may be found in [5, 14]. Here, we assume
that A is a p× p matrix and B and C are q×q matrices.

Pp
q · (A⊗B) = (B⊗A) ·Pp

q (4)

(B⊗ Ir) · (C⊗ Ir) = (B ·C)⊗ Ir (5)

Ppr
q =

(
Pp

q ⊗ Ir
)
·
(
Ip ⊗Pr

q
)

(6)

Pp
qr =

(
Iq ⊗Pp

r
)
·
(
Pp

q ⊗ Ir
)

(7)

A⊗ (B ·C) = (A⊗B) · (A⊗C) (8)

3. VECTORIZATION OF THE RADIX-2 FFT

Below, we first introduce basic vectorizable formulas that represent
operations on a SIMD signal processor [5]. Using this notation, we
describe the SIMD vectorization of short radix-2 FFTs. Next, we
extend the short radix-2 FFT to the mixed-radix case.

3.1 Vectorizable Formulas for Operations on a SIMD DSP
A SIMD signal processor operates on long data vectors. SIMD pro-
cessing units operate on all elements of data vectors in a uniform
manner; arbitrary element access is usually not supported. Using
the Kronecker product, we can describe SIMD operations on vec-
tors of length V by the following formula:

A⊗ IV (9)

Here, A is an arbitrary matrix. The vectorization can be done by
generating scalar code for the linear transform defined by A and
replacing all operations with vector operations on V elements. Any
multiplication with a diagonal matrix is also a vectorizable formula;
e.g. products with twiddle factor matrices D

p
q may be vectorized by

replacing scalar multiplications with multiplications with complex
twiddle factor vectors.

As most signal processing for wireless communications is done
on complex I/Q signals, many processors support complex multi-
plication and complex data types (e.g. [12, 15]). Hence, in the
following, we assume that all matrices are complex. Support of
complex operations effectively halves the vector length as consec-
utive elements are treated as real and imaginary parts of a single
value. If a processor does not support complex operations, the
FFT requires a further transformation of interleaved complex data
to block-interleaved complex data [5] with block-size V (i.e. real
and imaginary parts are stored in adjacent data vectors).

Next to SIMD processing units, a SIMD signal processor usu-
ally also contains a permutation unit that enables permutations of
vector elements. Most permutation units allow computing permuta-
tions of elements of a single vector or a pair of vectors. Examples
for such permutations are given in (10). A more detailed analysis of
the required permutations for FFTs and the effect on the layout of a
permutation unit is carried out in section 5.

P2
2 ⊗ I V

2
, P2

4 ⊗ I V
4
, Pa

b ⊗ I V
ab

, I V
ab
⊗Pa

b (10)

Another example, the permutation PV
V on V data vectors, can be

carried out in log2 (V) permutation stages with each stage permut-
ing elements of pairs of vectors. A special case of (9) is described

by the following basic vectorizable formula:

Pa
b ⊗ IV (11)

Formula (11) defines a permutation of complete vectors. In this
case, no permutation operations are needed - only the addressing of
data vectors needs to be adjusted.

3.2 Short Radix-2 FFT

If we want to perform the FFT decomposition described by (2) on
vectors of data, we have to be able to write all smaller sized FFT
stages as Kronecker products with V ×V identity matrices (e.g.
Wk ⊗ IV). Furthermore, permutations should be either permuta-
tions of complete vectors or vectorizable permutations on pairs of
vectors. For the pure radix-2 FFT, the first claim only allows FFT
sizes that are at least twice the vector length. A DFT defined by
W2·V may be decomposed by applying (2) repeatedly:

W2·V = (WV ⊗ I2) ·P2
V ·D2

V · (W2 ⊗ IV) (12)

=
(
W V

2
⊗ I4

)
·
(
P2

V
2
⊗ I2

)
·
(
D2

V
2
⊗ I2

)
·(W2 ⊗ IV) ·P2

V ·D2
V · (W2 ⊗ IV)

=
(
W V

4
⊗ I8

)
·
(
P2

V
4
⊗ I4

)
·
(
D2

V
4
⊗ I4

)
·(W2 ⊗ IV) ·

(
P2

V
2
⊗ I2

)
·
(
D2

V
2
⊗ I2

)
·(W2 ⊗ IV) ·P2

V ·D2
V · (W2 ⊗ IV)

The decomposition in (12) leads to the self-sorting decimation-in-
frequency FFT [14]; the full decomposition may be written as:

W2·V =
log2(V)

∏
i=0

((
P2

2i ⊗ IV/2i

)(
D2

2i ⊗ IV/2i

)
(W2 ⊗ IV)

)
(13)

Here, all FFT butterfly stages operate on full vectors (W2 ⊗ IV).
Furthermore, the FFT requires log2(V) permutation stages on pairs
of vectors.This is the minimum number of permutation stages to
perform the necessary reordering of vector elements. Bigger radix-
2 FFTs do not require further vector element permutations, but in-
troduce permutations of full vectors. This can be seen by replacing
all occurrences of V in equation (13) with N ·V (N ∈ 2n).

3.3 Short Mixed-radix FFT

An extension of the short radix-2 FFT for 2 ·V elements can be
done by adding a further factor X that contains all non-power-of-
two factors (i.e. X is not divisible by two). A decomposition of
W2·V ·X using (2) and (13) leads to the following equation:

W2·V ·X =

(
log2(V)

∏
i=0

Ti

)
·PX

2·V ·DX
2·V · (WX ⊗ I2·V)

Ti =
(
P2

2i ⊗ I V X
2i

)
·
(
D2

2i ⊗ I V X
2i

)
· (W2 ⊗ IV ·X) (14)

A closer look at the radix-2 stages defined by (14) shows that all
butterfly stages operate on full vectors. However, the Kronecker
product with I V X

2i
in the permutation stage means that permutations

are not done on elements of full vectors, but on blocks of X ele-
ments. For example, if we set V = 8 and X = 3, the required per-
mutations will be

(
P2

2 ⊗ I12
)
,
(
P2

4 ⊗ I6
)
, and

(
P2

8 ⊗ I3
)
. None of

these permutations can be efficiently vectorized. Furthermore, the
permutation PX

2·V also cannot be vectorized. Hence, mixed-radix
FFTs that only contain a factor 2 ·V cannot be efficiently mapped
on SIMD vector operations.

1275

4. GENERAL MIXED-RADIX FFT

As shown in the previous section, mixed-radix FFT sizes that can be
written as NDFT = 2 ·V ·X cannot be efficiently vectorized as per-
mutations do not adhere to vector boundaries. In the following, we
will develop an FFT algorithm that solves this issue.

4.1 Algorithm Derivation
Our FFT algorithm is designed for NDFT = V ·M ·V . Here, the fac-
tor M may take on arbitrary values and contains all non-power-of-
two factors. We start by applying (2) twice to get a decomposition
of WV MV into three factors:

WV MV = (WV M ⊗ IV) ·PV
MV ·DV

MV · (WV ⊗ IV M)

= (WV ⊗ IM ⊗ IV) ·
(
PM

V ⊗ IV

)
·
(
DM

V ⊗ IV

)
·(WM ⊗ IV ⊗ IV) ·PV

MV ·DV
MV · (WV ⊗ IV M)

Using (4) and (5), we next move the permutation defined by
PM

V ⊗ IV to the left. Then, we again apply (4) to move PV
MV .

WV MV =
(
PM

V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·

(
DM

V ⊗ IV

)
·(WM ⊗ IV ⊗ IV) ·PV

MV ·DV
MV · (WV ⊗ IV M)

=
(
PM

V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·PV

MV︸ ︷︷ ︸
TV1

·
(
IV ⊗DM

V

)
· (IV ⊗WM ⊗ IV)︸ ︷︷ ︸
TM

·DV
MV · (WV ⊗ IV M)︸ ︷︷ ︸

TV2

= TV1 ·TM ·TV2

The formulas labeled as TM and TV2 can already be directly
mapped on vector operations. However, TV1 contains a not directly
vectorizable permutation PV

MV that needs to be further decomposed.
Using (7), we can split PV

MV into two permutations. Next, we
reorder operations using (8) and simplify using (1).

TV1 =
(
PM

V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·PV

MV

=
(
PM

V ⊗ IV

)
· (IM ⊗WV ⊗ IV)

·
(
IM ⊗PV

V

)
·
(
PV

M ⊗ IV

)
=

(
IM ⊗

(
(WV ⊗ IV) ·PV

V

))(PV
M⊗IV)

To emphasize similarities, we transform TV2 to the same principle
structure, leading to:

WV MV =
(
IM ⊗

(
(WV ⊗ IV) ·PV

V

))(PV
M⊗IV)

·
(
IV ⊗DM

V

)
· (IV ⊗WM ⊗ IV)

·DV
MV · (IM ⊗WV ⊗ IV)(P

V
M⊗IV)

4.2 Algorithm Discussion
The algorithm defined by matrices TM , TV1 , and TV2 performs all
FFT stages on complete data vectors. The algorithm also only re-
quires one single permutation of vector elements, defined by PV

V .
This permutation can be carried out by log2 (V) stages with permu-
tation operations on pairs of vectors as in the radix-2 case described
in section 3.2. If the V -point DFT in TV1 is further decomposed
into a series of radix-2 FFT stages, the log2 (V) permutation stages
can be merged with the log2 (V) radix-2 butterfly stages to enable a

7
6
5
4
3
2
1
0

7
6
5
4

3
2
1
0

15
14
13
12
11
10
9
8

15
14
13
12

11
10
9
8

(a)

7
6
5
4
3
2
1
0

7
6

5
4

3
2

1
0

15
14
13
12
11
10
9
8

15
14

13
12

11
10

9
8

(b)

7
6
5
4
3
2
1
0

7

6

5

4

3

2

1

0

15
14
13
12
11
10
9
8

15

14

13

12

11

10

9

8

(c)

Figure 1: Basis permutations on pairs of vectors for vector length
V = 8. Elements of the first and second input vectors are printed in
black respectively gray.

better schedule of the operations on the processor. We omitted the
decomposition to enhance readability.

Next to maximizing opportunities for vectorization and mini-
mizing the overhead for permutations, the FFT algorithm has some
major advantages regarding an efficient implementation on a SIMD
vector processor. The V -point FFT blocks defined by TV1 and TV2
are mostly independent of M. M only influences the number of
FFTs, the twiddle factors, and permutations of complete vectors.
The vector permutations are defined by

(
PV

M ⊗ IV
)
:

(IM ⊗WV ⊗ IV)(P
V
M⊗IV) =(

PM
V ⊗ IV

)
· (IM ⊗WV ⊗ IV) ·

(
PV

M ⊗ IV
)

The first permutation effects that every M-th data vector is selected
as input for one FFT-stage, the second permutation stores the results
at the correct positions. For the concrete algorithm implementation,
this means that only pointer updates are dependent on M. Hence,
it is possible to implement optimized programs for V -point FFTs
once and later adjust for different values of M simply by changing
parameters.

The M-point FFT stage defined by matrix TM always oper-
ates on complete vectors. Therefore, a further decomposition into
smaller DFTs has no impact on the vectorization, no matter how
the decomposition is done. This simplifies the development of al-
gorithms for different FFT sizes.

5. PERMUTATIONS FOR SIMD FFTS

The mixed-radix FFT algorithm requires one permutation of vector
elements defined by PV

V . This permutation can be carried out in
log2(V) stages; each stage contains a permutation on a pair of vec-
tors. Figure 1 shows the permutations that are required for vector
length V = 8. For greater vector lengths, the principle structure of
the permutation operations stays the same.

All required permutations share some common characteristics:
First, half of the elements of each output vector are copied directly
from the corresponding input vector. Second, the other half of the
elements of each output vector is generated by permuting elements
of the other input vector using butterfly permutations. The butterfly
permutations in each stage exchange elements that differ in one bit
position, starting with the most significant bit in Figure 1(a) and
ending with the least significant bit in Figure 1(c).

1276

7
6
5
4
3
2
1
0

7

6

5

4

3

2

1

0

15
14
13
12
11
10
9
8

15

14

13

12

11

10

9

8

(a)

7
6
5
4
3
2
1
0

7

6

5

4

3

2

1

0

15
14
13
12
11
10
9
8

15

14

13

12

11

10

9

8

(b)

Figure 2: Additional permutation for last stage of 16-point FFT with
V = 8. (a) shows the complete permutation on pairs of vectors, (b)
can be used after the permutation in Figure 1(c) to perform the same
operation on processors that only support permutations of one vec-
tor.

These characteristics of the required permutations mean that,
while the stages actually define permutations on pairs of vectors, all
permutations may as well be carried out on a permutation unit that
supports only permutations on one input vector. In this case one
permutation stage on a pair of vectors is split into two operations.
Each operation performs a masked butterfly permutation, i.e. a vec-
tor mask defines elements that are not permuted, but instead copied
from a second input vector.

The permutations in our radix-2 algorithm defined by equation
(13) can be transformed into a similar structure as the permutations
for the general mixed-radix case. If this is done, the last permutation
stage (Figure 1(c) in the mixed-radix case) has to be replaced by a
more complex permutation on pairs of vectors. All other permuta-
tions stay unchanged. As an example, Figure 2(a) depicts the last
permutation stage required for a 16-point FFT with vector length
V = 8. The new permutation operation cannot be split into two
masked permutations on one vector. On a processor without sup-
port of permutations of pairs of vectors, the last stage can be real-
ized by first applying the permutation in Figure 1(c) and then the
permutation in Figure 2(b). Hence, an additional permutation stage
is required compared to a processor with permutations on pairs of
vectors.

Our findings may be summarized as follows: All permutations
required for our FFT algorithms can be realized using a butterfly
network for permutations. Furthermore, most permutations on pairs
of vectors can be split into permutations on one vector. Only the
short radix-2 FFT contains one permutation stage that cannot be
directly split into two permutations on one input vector.

6. RESULTS ON THE EMBEDDED VECTOR
PROCESSOR

We implemented our FFT algorithms on the EVP [15]. The DFT
sizes have been selected from the range of DFTs required for SC-
FDMA in UMTS LTE [13]; a more detailed analysis of the perfor-
mance of this application on the EVP can be found in [16].

6.1 The Embedded Vector Processor
The EVP operates on 256-bit vectors and supports complex opera-
tions on 16+16 bit elements (16 bit real part, 16 bit imaginary part).

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

	
�
�

�
�

�

�
�

�
�
�
�

�

�
�

���
����

�

�

��

�

��

�

�
�
�
��
�
��
�
�

Figure 3: Clock cycles per FFT for different FFT sizes on the EVP
(8-way complex vectors)

Hence, the vector length is eight. The processor contains a vec-
tor arithmetic logic unit (ALU) and a vector multiply-accumulate
(MAC) unit. For permutations, the EVP contains a crossbar permu-
tation network that operates on one input vector. All operations on
the EVP can execute conditionally on an element-by-element basis
using a vector mask.

The processor operates at 300MHz and supports a very long
instruction word (VLIW) instruction set. For the FFT, this means
that one multiplication, one addition or subtraction, and one permu-
tation can be done in the same cycle — if all operations work on
independent data. The EVP’s theoretical peak performance is 30
GOP/s.

The EVP is programmed in the EVP-C language, which com-
bines the C language for scalar operations with data types for data
vectors and explicit vector operations.

6.2 FFT Results
Figure 3 displays the performance of various FFT sizes on the EVP
measured in clock cycles per FFT. The FFT sizes may be organized
in four groups:
• Pure power-of-two FFTs with NDFT ≥V 2.
• Smaller power-of-two FFTs, i.e. the 16-point and 32-point

FFTs.1

• Mixed-radix FFTs containing multiples of 3 and/or 5 with
NDFT = M ·V 2.

• Mixed-radix FFTs with NDFT 6= M ·V 2, i.e. the 96-point and
288-point FFTs.

To illustrate the impact of the vectorization on the performance,
Figure 4 displays the FFT performance in a normalized format in
pseudo giga operations per second (pseudo GOP/s). We approxi-
mate the number of real-valued operations for an NDFT-point FFT
as 5 ·NDFT log2(NDFT) based on [5]. Pseudo GOP/s then can be cal-
culated as 5NDFT log2(NDFT)/t with t measuring the runtime of one
FFT in nano seconds.

Especially Figure 4 shows that FFT sizes, which do not permit
the usage of our algorithms (i.e. the 96-point and 288-point FFTs),
are quite inefficient compared to the other FFTs. To vectorize these
FFTs it was necessary to introduce several additional permutation
stages manually.

The differences between mixed-radix and pure power-of-two
FFTs for NDFT = M ·V 2 in both figures can be explained by the
different complexity of basic FFT butterfly stages. One radix-2 but-
terfly stage occupies the vector ALU and vector MAC unit for one

1The 16-point and 32-point FFTs have been omitted in Figure 3 as the
cycle counts are too small to be distinguishable.

1277

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�

	
�
�

�
�

�

�
�

�
�
�
�

�

�
�

���
����

�

�

	

�

�

�

��

��

�
�
�
�
�
�

�
�
�
��

Figure 4: Pseudo GOP/s for different FFT sizes on the EVP (8-way
complex vectors)

clock cycle per vector (including twiddle factor multiplications). In
contrast, a radix-3 stage requires 2.33 cycles per vector on the vec-
tor MAC unit and a radix-5 stage 3.6 cycles per vector.

The increased performance of the 64-point FFT compared to
the smaller power-of-two FFTs has two causes: First, the EVP only
supports permutations on one data vector. For radix-2 FFT sizes
smaller than the squared vector length V 2, processors that only sup-
port single vector permutations require one additional permutation
stage (see section 5). Second, bigger FFTs allow capitalizing on
VLIW, i.e. additions/subtractions, multiplications, and permuta-
tions of independent data vectors can be done in parallel. For small
FFTs, there are not enough independent data vectors in each FFT
stage to fully benefit from VLIW.

Differences in the performance of FFT sizes from the same
class can be attributed to an unequal segmentation of the FFT: Due
to a limited register file size, big FFTs must be split into segments of
two or three FFT stages on a limited input data size (e.g. 8 vectors).

7. RELATED WORK

Franchetti and Püschel [2, 3, 5, 4] implemented an FFT compiler
for short vector SIMD extensions of modern general purpose micro-
processors as part of the SPIRAL library generator. They derive an
efficient FFT algorithm for a given FFT size and target processor by
automatically generating multiple algorithms, represented by math-
ematical formulas. These algorithms are translated into programs,
executed, and timed. Searching the design space of mathematical
formulas for the FFT, a suitable algorithm can be found. The key
components of the framework are a set of rewriting rules and a set
of vectorizable formulas [5]; our algorithm is based on the same
rewriting rules.

In [3], a mixed-radix FFT algorithm for FFT sizes that are a
multiple of the squared vector length is proposed. Besides that
Franchetti and Püschel decompose complex operations into real-
valued operations, the main difference to our algorithm is the parti-
tioning of vector element permutations in the FFT stages. The com-
plexity of the permutation stages is the same as in our algorithm.

8. CONCLUSION

We analyzed the problem of mapping radix-2 and mixed-radix FFTs
on SIMD signal processors that support SIMD operations on vec-
tors with V elements and permutation operations on single vectors
or pairs of vectors. Our analysis shows that a radix-2 FFT can be
efficiently vectorized on a SIMD signal processor if the FFT length
is at least twice the vector length V . Mixed-radix FFTs can be ef-
ficiently vectorized if the FFT length is a multiple of the squared
vector length V 2.

Both types of FFTs require log2 (V) permutation stages on pairs
of vectors. In the mixed-radix case, all permutations on pairs of vec-
tors can be converted into pairs of permutations on single vectors.
In the radix-2 case, the last permutation stage cannot be split into
permutations on single vectors. Hence, in this case, a permutation

unit that directly supports permutations on pairs of vectors is bene-
ficial.

The performance analysis of different FFT sizes on the EVP
validates our results for the requirements on the FFT length for the
radix-2 and mixed-radix FFT.

REFERENCES

[1] R. Bellman. Introduction to Matrix Analysis. McGraw-Hill,
1960.

[2] F. Franchetti and M. Püschel. A SIMD vectorizing compiler
for digital signal processing algorithms. In IPDPS ’02: Pro-
ceedings of the 16th International Parallel and Distributed
Processing Symposium, 2002.

[3] F. Franchetti and M. Püschel. Short Vector Code Generation
for the Discrete Fourier Transform. In International Parallel
and Distributed Processing Symposium (IPDPS’03), 2003.

[4] F. Franchetti and M. Püschel. SIMD vectorization of non-two-
power sized FFTs. In Proceedings of International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) 2007,
2007.

[5] F. Franchetti, Y. Voronenko, and M. Püschel. A rewriting
system for the vectorization of signal transforms. High Per-
formance Computing for Computational Science - VECPAR
2006, 4395/2007:363–377, 2007.

[6] J. Glossner and D. Iancu. The Sandbridge SB3011 SDR plat-
form. In Proceedings of the Symposium on Trends in Commu-
nications (SympoTIC06), Bratislava, Slovakia, 2006.

[7] J. Granata, M. Conner, and R. Tolimieri. Recursive Fast Algo-
rithms and the Role of the Tensor Product. IEEE Trans. Signal
Processing, 40(12):2921–2930, Dez. 1992.

[8] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner. SODA: A Low-power Ar-
chitecture For Software Radio. In Proc. 33rd Intl. Symposium
on Computer Architecture (ISCA), 2006.

[9] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner. SODA: A High-performance
DSP Architecture for Software-Defined Radio. IEEE Micro,
27(1):114–123, Jan/Feb 2007.

[10] A. Nilsson and D. Liu. Multi-standard support in SIMT pro-
grammable baseband processors. In Proc. of the Swedish
System-on-Chip Conference (SSoCC), 2006.

[11] A. Nilsson and D. Liu. Area Efficient Fully Programmable
Baseband Processors. In Embedded Computer Systems:
Architectures, Modeling, and Simulation, 7th International
Workshop, SAMOS 2007, Samos, Greece, July 16–19, 2007.
Proceedings, 2007.

[12] A. Nilsson, E. Tell, and D. Liu. A programmable SIMD-based
multi-standard rake receiver architecture. In European Signal
Processing Conference, EUSIPCO, 2005.

[13] Technical Specification Group Radio Access Network. TS
36.212 Evolved Universal Terrestrial Radio Access (E-
UTRA); Multiplexing and channel coding (Release 8). Tech-
nical Report V8.1.0, 3rd Generation Partnership Project, Nov.
2007.

[14] C. Temperton. Self-sorting mixed-radix fast Fourier trans-
forms. Journal of Computational Physics, 52(1):1–23, Oct
1983.

[15] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman,
and M. Weiss. Vector processing as an enabler for software-
defined radio in handheld devices. EURASIP Journal on Ap-
plied Signal Processing, 16:2613–2625, 2005.

[16] P. Westermann, G. Beier, H. Ait-Harma, and L. Schwoerer.
Developing FFTs for SC-FDMA on the Embedded Vector
Processor. In Proceedings of the 13th International OFDM-
Workshop (InOWo’08), 2008.

1278

