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ABSTRACT

Blind equalization of convolutive mixtures is often done
by resorting to methods based on higher order statis-
tics. Under the assumption that the data have been
pre-whitened the problem reduces to the estimation of
paraunitary channels. The method PAJOD was devel-
oped to equalize paraunitary channels in [8]. Our con-
tribution is an efficient implementation of the PAJOD
algorithm which is called PAJOD2. Comparisons be-
tween PAJOD and PAJOD2 based on computer simula-
tions will also be reported.

1. INTRODUCTION

Blind equalization of linear time-invariant Multiple In-
put Multiple Output (MIMO) channels refers to channel
equalization techniques where only the observed signal
is known. The observed signal is assumed to consist of
an unknown convolutive mixture of input signals.

A common strategy in blind separation of an overde-
termined instantaneous mixture of statistically inde-
pendent signals is to decorrelate the data by pre-
whitening the observed data in an initial stage via for in-
stance an Eigenvalue Value Decomposition (EVD). Af-
ter the pre-whitening stage the data are uncorrelated
and the remaining unitary matrix is resolved by resort-
ing to Higher-Order Statistics (HOS) [3], [6], [12].

This approach have also been adapted to the case of
blind equalization of a convolutive mixture of statisti-
cally independent signals in [1], [8], [9], [13]. The differ-
ence is that after the pre-whitening stage the remaining
ambiguity is now a paraunitary matrix and not just a
unitary matrix. Hence due to the pre-whitening stage,
performed for instance by the algorithm proposed in
[14], the problem reduces to a search for a paraunitary
equalizer. Again the estimation of the unknown parau-
nitary matrix can be done by resorting to HOS.

In [8] the cumulant-based algorithm Partial Approx-
imate JOint Diagonalization (PAJOD) was proposed for
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blind equalization of a paraunitary channel. The PA-
JOD algorithm applies a Jacobi-type procedure where
one of the Jacobi subproblems is solved by a compu-
tationally demanding resultant based procedure. It re-
quires the rooting of either a 3rd or 24th degree poly-
nomial in each of its Jacobi subproblems as will be ex-
plained later.

Our contribution is a more efficient implementation
of the PAJOD algorithm and we will call the computa-
tionally improved version PAJOD2.

The rest of the paper is organized as follows. First
the notation and system model used throughout the pa-
per will be introduced. Thereafter a review of the PA-
JOD followed by the more efficient PAJOD2 algorithm
will be presented. Finally a comparison of the PAJOD
and PAJOD2 methods based on computer simulations
will be reported.

1.1 Notations

Let N+, R and C denote the set of positive integer,

real and complex numbers respectively and i =
√
−1.

Furthermore let (·)∗, (·)T , (·)H, (·)†, Re {·} and ‖ · ‖ de-
note the conjugate, matrix transpose, matrix conjugate-
transpose, pseudo-inverse, real part and the Frobenius
norm of a matrix respectively. Let A ∈Cm×n, then let Ai j

denote the ith row- jth column entry of A. Moreover, let
A(:,1 : N) designate the submatrix of a A consisting of
the columns from 1 to N of A.

1.2 System Model

Let s(n),x(n) ∈CN be the symbol and observation vector
at time instant n ∈N+ respectively. Assume that s(n)
and x(n) are related via

x(n) =

K−1
∑

k=0

F(k)s(n− k),

where F(k) ∈ CN×N. Then the problem is to esti-
mate the symbol sequence {s(n)}n∈N+ based on the
observation sequence {x(n)}n∈N+ via the FIR equalizer
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{H(l)}l∈{0,...,L−1} ⊂ CN×N

y(n) =

L−1
∑

l=0

H(l)x(n− l)

=

L−1
∑

l=0

K−1
∑

k=0

H(l)F(k)x(n− l− k),

where y(n) is the recovered symbol vector at time instant
n, and under the assumptions:

• si(n) are mutually independent i.i.d., zero-mean pro-
cesses with unit-variance for all i ∈ {0, . . . ,N− 1}.
• s(n) is stationary up to order r = 4 and hence the

marginal cumulants of order r = 4 do not depend on
n.
• At most one source has zero marginal cumulant of

order r = 4.
• The global transfer matrix G(z) = F(z)H(z) is parau-

nitary and hence the equalizer H(z) is paraunitary
since F(z) is paraunitary by assumption.

2. PAJOD

The notion of contrast optimization was introduced in
[10] and applied in the framework of MIMO equaliza-
tion in [7]. Under the assumption that there exists an
equalizer that will fully recover the symbols, an equal-
izer corresponding to the global maximum of the con-
trast function is guaranteed to recover the symbol se-
quence, see [7] for details.

In [8] it was shown that if the cumulants of the ob-
served data are stored in a set of NL×NL matrices,
denoted M(b,γ), in such a way that for a fixed pair
(b,γ) = ([b1,b2], [γ1,γ2]) we have the relation

Mα1N+a1,α2N+a2
(b,γ) =

Cum[ya1(n−α1), y∗a2
(n−α2), yb1

(n−γ1), y∗
b2

(n−γ2)].

Then the function

J2
2 =

∑

b,γ

‖Diag
(

HM(b,γ)HH
)

‖2, (1)

where ‖Diag(A)‖2 =
∑

i |Aii|2 and H =

[H(0),H(1), . . . ,H(L− 1)] ∈ CN×NL is a contrast function.
Furthermore it was shown that H is a semi-unitary
matrix, i.e. HHH = I. A matrix for a fixed pair (b,γ)
will in the following be referred to as a matrix slice of

M and will be denoted by M(p) where the upper index
indicates pth slice ofM.

2.1 Jacobi Procedure for Semi-Unitary matrices

To numerically find the semi-unitary matrixH that will
maximize the contrast (1) a Jacobi procedure was pro-
posed in [8]. This procedure can be seen as a double
extension of the JADE algorithm [3],[4]. First, the un-
known matrix is semi-unitary instead of unitary. Sec-
ond, only the N first diagonal entries are of interest.

A Jacobi procedure is based on the fact that any
NL×NL unitary matrix with determinant equal to one

can be parametrized as a product of Givens rotations
[11]:

V =

NL−1
∏

i=1

NL
∏

j=i+1

Θ[i, j]H,

where Θ[i, j] is equal to the identity matrix, except for

Θii[i, j] = Θ j j[i, j] = cos(θ[i, j]),

Θi j[i, j] = −Θ ji[i, j]
∗ = sin(θ[i, j])eiφ[i, j], θ[i, j],φ[i, j] ∈R.

Let V denote the product of Givens matrices with the
initial value V = INL. The updating rules are given by
V← Θ[i, j]HV and M(b,γ)← Θ[i, j]HM(b,γ)Θ[i, j]. In
the proposed PAJOD algorithm the semi-unitary matrix
H is determined as the first N rows of the unitary matrix
V that maximizes

J2
2 (i, j) =

∑

b,γ

N
∑

k=1

∣

∣

∣

∣

(

Θ[i, j]HM(b,γ)Θ[i, j]
)

kk

∣

∣

∣

∣

2

=
∑

b,γ

N
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

NL
∑

η,µ=1

Θηk[i, j]∗Θµk[i, j]Mηµ(b,γ)

∣

∣

∣

∣

∣

∣

∣

∣

2

=
∑

p

N
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

NL
∑

η,µ=1

Θ∗ηk[i, j]Θµk[i, j]M
(p)
ηµ

∣

∣

∣

∣

∣

∣

∣

∣

2

. (2)

The problem is illustrated in figure 1 for the case when
j ≤ N. Since plane rotations where i > N do not have
any effect on the first N rows of the matrix slices of
M only Givens rotations where i ≤ N are considered.
Furthermore one has to distinguish between the cases
where j ≤N and j >N.

Let M
(p)
= Θ[i, j]HM(p)Θ[i, j] and for notational con-

venience let c= cos(θ[i, j]) and s = sin(θ[i, j])eiφ[i, j]. Then
for the case where j ≤N equation (2) is equal to

J2
2 (i, j)

∣

∣

∣

∣

j≤N
=

∑

p

|M(p)

ii |2+ |M
(p)

j j |2+ cst, (3)

where cst ∈R is independent of Θ[i, j] and

M
(p)

ii =
[

c −s
]















M
(p)

ii
M

(p)

i j

M
(p)

ji
M

(p)

j j















[

c
−s∗

]

and

M
(p)

j j =
[

s∗ c
]















M
(p)

ii
M

(p)

i j

M
(p)

ji
M

(p)

j j















[

s
c

]

.

The maximization problem (3) is equivalent to the
JADE diagonalization problem and therefore the JADE
algorithm [3] can be applied to solve this problem.
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1

i

j

N

M(1)

M(N2L2)

1

i j

N

Figure 1: The figure illustrates the PAJOD optimiza-
tion problem for the case when j ≤ N and b varies in
{1, . . . ,N}2 and γ in {0, , . . . ,L−1}2. The aim of the Givens
rotation matrix Θ[i, j] is to jointly diagonalize the set of

matrices {M(p)} by maximizing the entries M
(p)

ii
and M

(p)

j j

for all p.

When j > N only the first diagonal term should be
maximized, and the equation (2) reduces to

J2
2 (i, j)

∣

∣

∣

∣

j>N
=

∑

p

|M(p)

ii |2. (4)

In [8] a resultant based [5] approach was taken to
solve the maximization problem (4). It amounted to the
rooting of a 24th order degree polynomial containing at
most 8 real roots.

An outline of the PAJOD algorithm can be seen in
algorithm 1.

3. PAJOD2

This section will introduce the PAJOD2 algorithm
which is a computational improved version of the PA-
JOD algorithm. When j ≤ N, then the PAJOD2 algo-
rithm will apply the JADE algorithm to solve the Jacobi
subproblem, just as in the PAJOD case.

When j > N a more efficient eigenvector based ap-
proach will be proposed. In the derivation we will make
use of the trigonometric identities

2cos2(θ) = (1+ cos(2θ))

2sin2(θ) = (1− cos(2θ))

2cos(θ)sin(θ) = sin(2θ)

cos(2φ) = cos2(φ)− sin2(φ)

sin(2φ) = 2cos(φ)sin(φ)

Let θ = θ[i, j],φ = φ[i, j], ĉ = cos(2θ), ŝ = sin(2θ), α(p) =

M
(p)

ii
−M

(p)

j j
and β(p) =M

(p)

ii
+M

(p)

j j
, then equation (4) can

Algorithm 1 Outline of the PAJOD procedure.

Estimate the cumulant tensorM(b,γ)
Initialize V = INL
Step 1: Repeat until convergence
for i = 1 to N do

for j = i+ 1 to NL do
if j ≤N then

calculate optimal Θ[i, j] fromJ2
2

(i, j)
∣

∣

∣

∣

j≤N

else

calculate optimal Θ[i, j] fromJ2
2

(i, j)
∣

∣

∣

∣

j>N

end if
M(p)←Θ[i, j]HM(p)Θ[i, j]
V←Θ[i, j]HV

end for
end for
Step 2: Check if algorithm has converged. If not, then
go to Step 1.
SetH =V(:,1 : N)

be written as

J2
2 (i, j)

∣

∣

∣

∣

j>N
=

1

4

∑

p

∣

∣

∣β(p)
∣

∣

∣

2
+

∣

∣

∣α(p)
∣

∣

∣

2
ĉ2+ 2Re

{

β(p)∗α(p)
}

ĉ

+

(

∣

∣

∣

∣

M
(p)

i j

∣

∣

∣

∣

2
+

∣

∣

∣

∣

M
(p)

ji

∣

∣

∣

∣

2
+ 2Re

{

M
(p)∗
i j

M
(p)

ji
ei2φ

}

)

ŝ2

+ 2Re
{

α(p)
(

M
(p)∗
i j

eiφ+M
(p)∗
ji

e−iφ
)}

ĉŝ

− 2Re
{

β(p)∗
(

M
(p)

i j
e−iφ+M

(p)

ji
eiφ

)}

ŝ. (5)

By inspection of (5) we can identify the constant term
as

k =
1

4

∑

p

∣

∣

∣β(p)
∣

∣

∣

2
=

1

4

∑

p

|M(p)

ii
+M

(p)

j j
|2. (6)

The linear terms in the variables ĉ and ŝ of (5) can be
written as

L =
1

2

∑

p

Re
{

β(p)∗α(p)
}

ĉ−Re
{

β(p)∗
(

M
(p)

i j
e−iφ+M

(p)

ji
eiφ

)}

ŝ

=
1

2

∑

p

Re
{

β(p)∗α(p)
}

ĉ−Re
{

β(p)∗
(

M
(p)

i j
+M

(p)

ji

)}

ŝcos(φ)

+Re
{

iβ(p)∗
(

M
(p)

i j
−M

(p)

ji

)}

ŝsin(φ)

=
∑

p

g(p)Tv, (7)

where
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v =















cos(2θ[i, j])
sin(2θ[i, j])cos(φ[i, j])
sin(2θ[i, j])sin(φ[i, j])















z(p) =
1

2



























M
(p)

ii
−M

(p)

j j

−(M
(p)

i j
+M

(p)

ji
)

i(M
(p)

i j
−M

(p)

ji
)



























g(p) = Re
{(

M
(p)

ii
+M

(p)

j j

)∗
z(p)

}

The quadratic term of (5) will now be written as

Q =
1

4

∑

p

∣

∣

∣α(p)
∣

∣

∣

2
ĉ2+ 2Re

{

α(p)
(

M
(p)∗
i j

eiφ +M
(p)∗
ji

e−iφ
)}

ĉŝ

+

(∣

∣

∣

∣

M
(p)

i j

∣

∣

∣

∣

2
+

∣

∣

∣

∣

M
(p)

ji

∣

∣

∣

∣

2
+ 2Re

{

M
(p)∗
i j

M
(p)

ji
ei2φ

})

ŝ2

=
1

4

∑

p

∣

∣

∣α(p)
∣

∣

∣

2
ĉ2+

(∣

∣

∣

∣

M
(p)

i j

∣

∣

∣

∣

2
+

∣

∣

∣

∣

M
(p)

ji

∣

∣

∣

∣

2)

ŝ2
(

cos2(φ)+ sin2(φ)
)

+ 2Re
{

M
(p)∗
i j

M
(p)

ji

}

ŝ2 cos(2φ)+ 2Re
{

iM
(p)∗
i j

M
(p)

ji

}

ŝ2 sin(2φ)

+ 2Re
{

α(p)
(

M
(p)

i j
+M

(p)

ji

)∗}
ĉŝcos(φ)

+ 2Re
{

iα(p)
(

M
(p)

i j
−M

(p)

ji

)∗}
ĉŝsin(φ)

=
1

4

∑

p

∣

∣

∣α(p)
∣

∣

∣

2
ĉ2+

(∣

∣

∣

∣

M
(p)

i j

∣

∣

∣

∣

2
+

∣

∣

∣

∣

M
(p)

ji

∣

∣

∣

∣

2)

ŝ2
(

cos2(φ)+ sin2(φ)
)

+ 2Re
{

M
(p)∗
i j

M
(p)

ji

}

ŝ2
(

cos2(φ)− sin2(φ)
)

+ 4Re
{

iM
(p)∗
i j

M
(p)

ji

}

ŝ2 cos(φ)sin(φ)

+ 2Re
{

α(p)
(

M
(p)

i j
+M

(p)

ji

)∗}
ĉŝcos(φ)

+ 2Re
{

α(p)
(

M
(p)

i j
−M

(p)

ji

)∗}
ĉŝsin(φ)

= vT
∑

p

G(p)v, (8)

where G(p) = Re
{

z(p)z(p)H
}

.

From the equations (6), (7) and (8), equation (4) can
be reformulated as

J2
2 (i, j)

∣

∣

∣

∣

j>N
= vTGv+gTv+ k, (9)

where G=
∑

p G(p) and g=
∑

p g(p). We should maximize
(9) under the constraint ‖v‖ = 1. A problem of the same
form appeared in [2].

Maximizing (9) subject to the constraint that ‖v‖2 = 1
using the Lagrange multiplier method leads to

2(G+λI)v+g = 0 , λ ∈R. (10)

Assume that (G+λI)−1 exists, we have that

v = −1

2
(G+λI)−1 g.

Given the EVD G = EΛET we have

‖v‖2 = 1⇔ 1

4

3
∑

i=1

(

ET
i g

)2

(Λii+λ)2
= 1, (11)

where Ei and Λii denote the ith eigenvector and eigen-
value of G respectively. From (11) one can deduce that
the problem amounts to rooting a polynomial of degree
6 and thereafter selecting the root of the corresponding
v which maximizesJ2

2
(i, j).

If (G+λI)−1 does not exist1, which could occur if
λ = 0 and G is singular or when λ = −Λii for some i,
then we have to resort to (10) for the computation of v:

v = −1

2
(G−ΛiiI)†g+ ciEi,

where ci is a real constant chosen such that ‖v‖ = 1 and
J2

2
(i, j) is maximum. If it exists, then it is given by

ci = sign(ET
i g)

√

1−‖ (G−ΛiiI)†g‖2/4.

4. COMPUTER RESULTS

Our simulations will based on on 2-Input-2-Output
channels (N = 2), the channels and equalizers were of
the same length (K= L) and the data blocks consists each
of a QPSK sequence of 512 symbols. The paraunitary
channel is generated, just as in [8], as follows:

F(z) = R(φ0)

L−1
∏

m=1

Z(z)R(φm)

where

Z(z) =

[

1 0
0 z−1

]

,R(φ) =

[

cos(φ) −sin(φ)e−iθ

sin(φ)eiθ cos(φ)

]

and the parameters φi and θi are drawn according to
a uniform distribution in [0,2π). The filtered QPSK
sequences of unit variance are perturbed by an additive
white circular complex Gaussian noise with identity
covariance matrix.

The algorithms PAJOD and PAJOD2 are first tested
on 100 random channels of varying SNR. To measure
the elapsed time used to execute the algorithms in MAT-
LAB, the built-in functions tic(·) and toc(·) are used and
the mean and median time results can be seen in figure
2 and 3 respectively. By inspection of the figures it can
be seen that the PAJOD2 algorithm is cheaper than the
PAJOD algorithm.

A second simulation was conducted in order to in-
vestigate the computation time of the algorithms as a
function of the filter length. The SNR was fixed to 10
while the filter and channel length varied from 2 to 8
with a hop factor of 1. The mean computation time
over 10 simulations result can be seen in figure 4. Here
it can be seen that the computational complexity of the
PAJOD2 method is consistently lower than the PAJOD
method when L is increasing.

1This case has not been observed in our simulations.
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5. SUMMARY

The problem of blind equalization of paraunitary chan-
nels was addressed by the PAJOD approach. After a
review of PAJOD method we proposed a computation-
ally more efficient method called PAJOD2. The pro-
posed method simplified the Jacobi-subproblem from
the rooting of a 24th degree polynomial to the the root-
ing of a polynomial of degree 6. Furthermore computer
simulations confirmed that the PAJOD2 method is con-
sistently faster than the PAJOD method in the given
simulations.
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Figure 2: Mean values for the computation time for the
simulation as measured by MATLAB.
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Figure 3: Median values for the computation time for
the simulation as measured by MATLAB.
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