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ABSTRACT optimum robust detection of weak signa#s-& 0) maximiz-
In practice, noise distributions usually are not Gaussian andng either the slope of the detection poweréat= 0 [13],
may vary in a wide range from light-tailed to heavy-tailed or the Pitman efficacy of the test statistic [10], or the detec-
forms. To provide robust detection of a weak signal, a maxtion power [1] (see also [11], [12]). Later, some of these
imin in the Huber sense Neyman-Pearson detector based @pproaches have been extended to more complicated models
the minimum distance between the signal and observatiorsf signals and noises [3], [15], [17]-[19].
is designed. Explicit formulas for the power of detection and  In the cases of application of Huber’s minimax approach
the false-alarm probability are derived.The maximin detecto robust detection, optimal detection rules are designed for
tors are written out for the classes of nondegenerate, with gpecially selected detection rules or test statistics, e.g., for
bounded variance and contaminated Gaussian noise distriobust detectors based dftrestimators in [1], for a general-
butions along with some numerical results on their perfor-ized correlator statistic in [10] and [13], for a distance crite-
mance. rion in [15]. Here, we adapt the following robust minimum
distance detection rule
1. INTRODUCTION L

N H
Consider the problem of detection of a known sigfsa}} in _;p(xa) fo
the additive i.i.d. noisén; })' with a symmetric pdff from a =

class.Z. Given{x}V, it is necessary to decide whether the Wherep(x) is a distance measure [3, 15, 17], to the Neyman-

. . . Pearson setting.
S|gnal{s}? is observed. The problem of detection is set up Further wegconsider an asymptotic weak signal approach

as the problem of hypothesis testing when the signals }Y decreases with the sample si¥eas

Ho:xi=n versus Hi:x=0s+n, i=1...,N, s = s~ = Ai/v/N with finite constantgy such that the signal
energy is bounded. Within a weak signal approach, the false

N

p(Xi—s), (1)
2,

where the positive signal amplitudg is assumed known.

: ) - alarm probability converges &— oo to a nonzero limit [1],
Given a pdff, th? cIasgcaI theory. of hy_pc_)theses testlng[g] and Huber's minimax theory can be used to analyze the
yields various optimal (in the Bayesian, minimax, Neyman-- ..

. ) X detector [8]. Since weak signals are on the border of not be
Pearson senses) decision rules: all the optimal rules are bas& tinguishable, it is especially important to know the detec-

on the likelihood ratio KR) statistic Ty(x) = |‘|_iN fi —  tor performance.
6s)/f(x) that should be compared with a certain threshold. — An gytline of the remainder of the paper is as follows.
The differences between the aforementioned approaches figr section 2, the power and false alarm probability of the

sultonly in the val_ues of athreshold._ . . proposed asymptotically maximin decision rule are derived.
_In many practical problems of signal processing, noisgy Section 3, the optimal maximin detection rules are writ-
distributions are only partially known. For instance, it mayten oyt for the nondegenerate, with a bounded variance, and
be assumed that either noise is approximately Gaussian, gfntaminated Gaussian noise pdfs. In Section 4, the detector
there is some information on its pdf behavior in the central,qformance is studied on large samples in the Gaussian and

zone and on the tails, on its moments and subranges, etc. lnaminated Gaussian noise pdf models. In Section 5, some
his seminal works on robust estimation and hypothesis testonclusions are drawn.

ing, namely, in [4] and [5], Huber considers the classeés

of aII.o.wabIe noise_ pdfs as the neighborhoodsj of nominal 2 MAIN RESULTS
densities and applies minimax approach to design rdiiust

estimators of location and robust Neyman-Pearson tests ugonsider the following generalization of minimum distance
ing the maximum likelihood method for the least favorabledetection rule (1)

noise distribution densitiet* in the aforementioned classes N N H

for the null and alternative hypotheses. In these cases, the op- p(x) =S p(x—s) 21 A )
timal robust statistics have the structures of the bounded like- i; i; Ho ’

lihood and of the bounded likelihood ratio, respectively. Fur- ) )

ther, both those results are used in robust detection. In [13]vhere A, is a threshold defined by the boumdupon the
Huber’s results on robust hypothesis testing are adapted féglse alarm probability
robust detection of a known signal in contaminated Gaussian N N
noise. Next, Huber's minimax approach to robust estima- R =Pr [ZP(XO — ZP(Xi —S) > Aq
tion of location is used for asymptoticalljN(— ) locally & i

Ho] <a. (3)
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To formulate further results, we introduce the derivativeshown that the false alarm probability (3) is given by the fol-
of a loss functiony = p’ called a score function, belonging lowing expression
to a certain clas¥.

Assume the following conditions of regularity imposed —1-o((A,+05&E CE. w2)Y? 6
on asignal{s}g‘, densitiesf, and score functiong: i (( * fv/)/( A ) )’ ©

(A1) The signas}! is weak in the sense that its ampli- equating which tax, we get the threshold value (5).

tudes form the decreasing withsequences :Aa_/m with The result of Lemma 1 will be sensible if the pow@y
the finite constantd;, i = 1,...,N such that the signal energy tends to unit with the increasing energy From (4) it fol-
P 1Y lows that this holds whe®—1(1— &) — [€/V (w, )]¥2 <0

is finite: Nlmo;sf = lim 5 i;Ai =& <, or when

(A2) fis symmetric and unimodal.

(A3) f andy are continuously differentiable qi, ). a>a(y f)=1-@ ( &N (v, f)) ~ (7
(A4) 0<I(f) = [Z,[F(x)/f ()P f(x)dx < oo, . .
(A5) Efy = [, w(x)f(x)dx=0. From the Taylor expansion of the left-hand part of (2) it im-

mediately follows that inequality (7) implies the consistency
of detection, i.e.',\l limPy = 1.

The consistency condition (7) means that there should
Now we briefly comment on these conditions. In the lit-be a lower boundx on the false alarm probability (similar
erature, the conditions imposed on pdfs and score functiort®ounds also arise in other settings [1], [10]). Evidently, the
take different forms depending on the pursued goals: in gergreater energy, the lower the required minimum of the false
eral, one may strengthen the conditions on pdfs and weakeatarm probability.
those on score functions, and vice versa (various suggestions The Neyman-Pearson setting requires maximizing the
can be found in [2], [4] - [7]). In this paper, we use a balancedletection power under the bounded false alarm prob-
set of conditions partially following [7]. ability B- < «; apparently, it can be achieved by choos-
The first condition A1), as aforementioned, is a tradi- ing the maximum likelihood loss functign(x) = puL(X) =
tional requirement used in an asymptotic weak signal ap—log f(x) with the corresponding score functiop(x) =
proach [3], [11]. The conditionA2) is restrictive but nec- WL (x) = —f/(x)/f(x) in detection rule (2).

ess_al}[]y for Hg_t;er's rgincijry;fax tk}eory [4]. diti f Theorem 1: Given pdff, the Neyman-Pearson detec-
e condition Q3) differs from common conditions o tion rule is provided by (2) witlpy (X) = —log f (X) and A

this kind (for example, see [2], pp. 125-127; [4], p- 78, where | . ; Y )
the smoothness of pdfs is required®) allowing a noise ﬁ]egﬁgg?e%()(?pvc\;{/tvgyrwil;(gi)vgn bfy (¥)/1(x). The correspond
pdf to have a discontinuity of its derivative at the center of o 12
symmetry, e.g., like the Laplace pdf, and thus widening the FPo(f)=1-® (q’ (1-a)=[&1(f)] )
class of admissible densities. Proof: Since the asymptotic variandé(y, f) attains
The conditions A4) - (A7) requiring the existence of the its lower Crangér-Rao boundary at the maximum likelihood
Fisher informationl () and other integrals are commonly score functionVimin =V (wwL, f) = 1/1(f), the required re-
used for the proofs of consistency and asymptotic normalitgult directly follows from (4).
of M-estimators in robust statistics [2], [4]. Now we are in position to consider the minimax setting
The following result is basic for all further constructions. when pdff is not known: we return to the initial assumption
that it belongs to a certain convex clags of distribution
densities. From (4) it follows that the maximin problem with
respect to the detection powBs(y, f) is equivalent to the
Huber minimax problem with respect to the asymptotic vari-
anceV (y, f) of M-estimators:

_1_ -1 (e 1/2 .
Po(y, 1) = 1= @ (@ (1- o)~ [E NV (w, 1)), (@) maxminFo(y, f) <= minmax(y. f)

(A6) Ef w2 = [ w?(x)f(X)dx < .
(A7) O<Efy = [, v/ (X)f(X)dXx< c.

Lemma 1: Given{s}Y, f andy satisfying conditions
(A1) - (A3), (AB) - (A7), the detector power for the rule (2)
takes the following form aBl — co:

_ -1/2 rz 42 : Theorem 2:  Under the conditionsX1) — (A7), the max-
v(\slhere ?(Z)CDF(ZE)NA\{_OO e;<p(. th/2) dt is the_ stan_dard imin Neyman-Pearson detection rule is given by (2) with the
fatli'ssgaq " an (‘l/vf I) Is the aiymptg;lc va;rlaﬂce maximum likelihood choice of the loss functigri for the
or Hibers A ;estlmators of location [4] withV(y,f) = ozt favorable densitf* minimizing Fisher information for
Er y/(Er y')~. o location
The threshold valug, = A4 (v, f) is given by
p*(x)=—logf*(x), f*= argfmml ().
Aa(y, £) = Y1 a) (6E y2) "’ —056Er y'. (5) <7
The threshold is defined by (5) withh = y* andf = f*.

The sketch of proof: The derivation of formula (4) is Further, the maximin solutiofy*, f*) provides the guaran-
based on the Taylor expansion of the left-hand part of (2jeed lower bound on the power

and it is similar to the techniques used for derivation of the

asymptotic variance favl-estimators in [4]; some examples Po(y*, f) > Po(y*, )
of the application of those techniques to detection problems N 12 (8)
can be found in [12]. Using the same techniques, it can be =1-0 (‘Df (1—a)=[&1(f")] )
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under the bounded false alarm probabifey(y*, f) <« for  Thus, we have the maximin;-norm detector wittp*(x) =
all f e .7 and for a satisfying the consistency condition |x|/a

a>a*:1—¢<\/é@l(f*)). N N Ny

1
Proof: The first assertion directly follows from the Z|xi\ - Z|xi -s| = o l1l-a)VE-&/(4a).
saddle-point property i= i= o

V(y*, f) < V(v ) <V(y, ) (9)  The lower bounds on power and on false alarm probability
given by Theorem 2 are as follows

(see [4], Theorem 2). Sind& depends on the score function
v and pdff only through thé/(y, f), we obtain formula (8) Py, f)>1-o (Cb‘l(lf o)— \/g/a) ,
for the lower bound® (y*, *) on the power.

Next we check whether the inequalif: (y*, f) < «
holds for all pdfsf in class.#. Using formula (6) and sub-
stituting the threshold;, defined by (5) ford,, into the both
parts of this inequality, we rewrite the latter in the following 3.2 Noise Distributions with a Bounded Variance

form In the class of densities with a bounded variance

= w*z (q)l(l_a)_; \/(ujé:f*)> gz{f: /_wxzf(X)dXSGZ},

oc>a*:1—d>(\/g/a) .

the least favorable density is Gaussian [9]:

1 &
> Eqy? <¢l(1— a5 “V(W*,f)) : f3(x) = N(x,0,5) = (vV276) Y2exp(—x2/(26?)).

Now divide the both parts of this inequality K y*')2 The maximinL,-norm detector uses the quadratic distance

and a8/ (y*, f*) = 1/1(f*), it takes the following form pr(x)= xz/(qu) and the detection rule (2) can be rewritten
in the correlation detectoform as

1 -1 1 * N Hq
[(f*) <¢ (1-a) 2 e )> ins- > o l1l-a)5VE-—6.
2 (10) i= Ho
> W (‘D (1-a)— 5 V(‘I’*U) . The lower bounds on power and on false alarm probability
’ are given by
Further, the maximum of the rati; y*?/(E¢- y*')2 is at- * _ 101 _ o) —
tained atf = f* being equal tov(y*, f*); therefore, by Py’ ) =1 q:(cb (1-a) \/E/G>’
the minimax property (9N (y*, f) < V(y*, f*), inequal-
ity (10) and the required inequalitj (y*, f) < a hold for a>a =1-® (\/E/a) .
all a € (0,1).
Remark: The minimax approach does not necessarily
3. MAXIMIN DETECTORS FOR VARIOUS NOISE imply robustness, since the-norm detector being maximin
DISTRIBUTION CLASSES in the Huber sense in the class of distributions with a bounded

o o _ _ ~ variance, is not at all robust, nevertheless, being a detector
Within the minimax approach, the choice of a noise distribuof guaranteed power in clasg,. Thus, if the upper-bound
tion class¥ entirely determines the structure of a maximing2 g variance is small. then the minimax approach yields
detector. Below we consider qualitatively different noise dis- reasonable result and’thgnorm detector can be success-
tribution classes with the corresponding least favorable deny iy ysed with relatively light-tailed noise distributions, e.g.,
sities and maximin detectors. see [17]. On the contrary, if we deal with really heavy-tailed
. S distributions (gross errors, impulse noises) wiris large
3.1 Nondegenerate Noise Distributions or even infinite like for the Cauchy-type distributions, then
In the class of nondegenerate pdfs (with a bounded densitiie maximin solution in class?; is still trivially correct as
value at the center of symmetry) P(y*, f) > o and a > 1/2, but practically senseless.

F1={f: f(0)>1/(2a) > 0}, 3.3 Contaminated Gaussian Noise Distributions

. o . . Consider the class efcontaminated Gaussian pdfs
the scale parametex describes the distribution dispersion
about the center of symmetry. The clags is one of the Ty ={f: f(x) = (1—e)N(x,0,0) +£h(x)},

most wide classes: any unimodal distribution density with a

nonzero value at the center of symmetry belongs to it. Thevhereh(x) is an arbitrary pdf aneg (0 < & < 1) is a con-

least favorable density here is the Laplace [14]: tamination parameter giving the fraction of contamination.
The least favorable density consists of two parts: the Gaus-
f7(x) = (2a) Lexp(—|x|/a). sian in the center and the exponential tails [4]. The maximin
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Table 1: The MinimunSNR Values Providing Consistency
of Detection

e=001|e=005[e=01|e=02
a=0.01 5.77 6.80 8.07 9.47
a =0.05 2.88 3.40 4.03 5.54

a=01 1.75 2.06 2.45 3.36 e
04} R
—L1-Horm
o2t | Huber's i
——=L2-Norm
R 10 15 20 25 30 35 40

] Figure 2: The asymptotic power of thg-norm, Lo-norm,

and Huber's maximin detectors in the Cauchy contaminated
Gaussian noise with densitydN(x;0,c) +0.1/(x(1+x%));

] P:= = 0.01. In this casePh, = 0.01.

— L1-Horm
0.65 - ———L2-Horm | 1
st/ L Huber's | | probability « = 0.01. For the corresponding lower bounds
. . . . . . on false alarm probability, we hawe; = 1— ® (vV2SNR,
10 15 20 SiﬁR 30 35 0 o =1-®(v/SNR, o =1-—®(0.798V/SNR, where

SNR= &/c?(f) is the customary signal-noise ratio. Then

Figure 1: The asymptotic power of thg-norm, Lo>-norm, the lower bounds upon detection power afg, = 1 -
and Huber's maximin detectors in the Gaussian noise witfP (23276_ V2 X SNF% Poo = 1-— q’<2-3276_ v SNF§’
densityN(x;0,0); B- = 0.01. andP5, = 1— ®(2.3276—0.798/SNR.
The minimal valuesSNR providing consistency of de-
tection wherSNR> SNR are as follows:
Huber's detector uses the piece-wise linear-quadratic dis-

_ 2 N
tance functiorp*(x) = x2/(262) for |x| < ko and p*(x) = SNR(a) = [® H1—a)]" /1(f").
K|x| /o —k?/2 for |x| >k, where the dependenke=k(e) is  As in practice the class of contaminated Gaussian noise dis-
tabulated in [4]. The thresholdf; is given by (5) tributions is mostly required, Table 1 exhibits tB&IR val-
12 ues versus the false alarm probabilityand the parameter of
_ 3 contaminatiore.
* 14 _ _ -
Ay =@ (1-0) ((1 £)[20(k) 1] 62) Next we compare the asymptotic performance of the
maximin detectors on the Gaussian distribution with density
(1-¢)[2d(k)—1] & N(x;0,1) and the heavy-tailed Cauchy-contaminated Gaus-
B 2 o2 sian with density ®N(x;0,1) +0.1/(x(1+x?)). The results

are exhibited in Figs. 1 — 2, where the power is computed for
|t_he SNRvalues sufficiently large to provide consistency of
detection (see Table 1).
ThelLi-norm and Huber’s detectors confirm their robust
* -~ —11 properties in heavy-tailed noise, Huber’s being better than
Py’ f)=1-0 (CD (1-a) 0'819\/2/6) ’ the L;-norm detector in the Gaussian noise. Naturally, the
Lo-norm is optimal in the Gaussian noise and catastrophi-
o>a*=1-9 (0.819\/?/0) . cally bad in the contaminated Gaussian nog & a). Fi-
nally, Huber’s detector can be regarded as a reasonable com-
promise between thie;- andL,-norm detectors.
4. PERFORMANCE EVALUATION The performance of thei-norm, Lo-norm and Huber’s
detectors was also studied by Monte Carlo technique on

Here we present the numerical resultsdee 0.1: the lower
bounds on power and on false alarm probability are as fo
lows

Now we compare the asymptotic performance of the max . .
imin detectorgin the clas)é&i, ﬂzPandﬁH with respect small samplesN = 20) and the obtained results were quali-

to their lower bounds on the false alarm probability andtat've'y similar to those on large samples.
power. In order to use for comparisons the conventional
signal-noise ratio termSNR, we take the corresponding 5. CONCLUSION

least favorable distributions of the same (unit) variance: sebur main aim is to expose a new result on the application of
a=1/v2, 6>=1ande = 0.1, 6%(f};) = 1 for the classes Huber's minimax approach to robust detection in the particu-
F1, F» and.Zy, respectively. Next, choose the false alarmlar case of the minimum distance Neyman-Pearson detectors.
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First, we generalize the minimum distance detection rule  Variance and Density Value at the Center of Symmetry”,
(2) introducing the maximin Neyman-Pearson detector (2) IEEE Trans. Inform. Theoryvol. 52, pp. 1206-1211,
with the guaranteed lower bound on the power under general 2006.

regularity conditions (Theorem 2). [18] A. Swami and B. Sadler, "On some detection and esti-

Second, the maximin detectors are designed for the “mation problems in heavy-tailed nois&ignal Process-
classes of nondegenerate, with a bounded variancesand ing, vol. 82, pp. 1829-1846, 2002.

contaminated Gaussian noise distributions. ,, . .

Finally, note that the obtained results can be extendel g]inx.ﬂ\(;\f/'la-n?iuasr;?a:'.C\éazng,le%OIEt)uﬁzwsuItgsi;fjg[ﬁ)(glon
on the classes with bounded distribution subranges and their vol. 47 9 589-305. 1999 - 919 g
various combinations [16], [17]. 40, PP : :
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