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ABSTRACT
In this paper, we propose a new class of audio feature that
is derived from the well-known mel frequency cepstral coef-
ficients (MFCCs) which are widely used in speech process-
ing. More precisely, we calculate suitable short-time statis-
tics during the MFCC computation to obtain smoothed fea-
tures with a temporal resolution that may be adjusted de-
pending on the application. The approach was motivated by
the task of audio segmentation where the classical MFCCs,
having a fine temporal resolution, may result in a high
amount of fluctuations and, consequently, an unstable seg-
mentation. As a main contribution, our proposed MFCC-
ENS (MFCC-Energy Normalized Statistics) features may be
adapted to have a lower, and more suitable, temporal resolu-
tion while summarizing the essential information contained
in the MFCCs. Our experiments on the segmentation of radio
programmes demonstrate the benefits of the newly proposed
features.

1. INTRODUCTION

The choice of suitable audio features is crucial for the most
tasks in the field of audio information retrieval. Considering
the task of audio segmentation, where a target signal is to be
partitioned into a sequence of temporal segments, each being
assigned a label such as Speech or Music, the temporal reso-
lution of the underlying features is of particular importance.

To motivate the subsequently proposed new class of tem-
porally adaptive features, we consider the particular prob-
lem of segmenting an audio signal recorded from a radio
broadcast into the classes of Music (C1), Speech (C2) and
Speech+Music (C3). A fourth class will be implicitly as-
sumed for temporal segments which are not assigned any of
the other class labels during the segmentation process.

As an example, Fig. 1 shows an excerpt of a radio pro-
gramme consisting of three subsequent segments of speech,
music and speech again. A correct segmentation hence
would be a sequence of three segments labeled C2, C1 and
C2. The spectrogram (a) shows a time-frequency represen-
tation of the audio signal, the extracted MFCC-features are
depicted in (b). In the figures throughout this paper, re-
gions of high energy are depicted by bright colors, whereas
regions of lower energy are darker. In (c) and (d), classi-
fication results obtained during the segmentation procedure
described in Sec. 3 are shown: MFCC-features are fed into
a GMM to obtain a classification for each feature value and
hence a detection curve (c). As may be observed, the classi-
fication curve is significantly fluctuating which is due to the
high MFCC sampling rate in combination with the relatively
high short-time variability in certain components of human

Figure 1: (a) Excerpt of a radio programme (14 seconds)
consisting of music and speech segments. (b) Extracted
MFCC-features. (c) The speech likelihood is detected us-
ing a MFCC-based GMM-classifier. (d) The results are sub-
sequently smoothed by median filtering (green) and thresh-
olded (red line) to obtain segments of the speech class C2.

speech. In order to obtain a more stable classification, a sub-
sequent smoothing step is applied using a sliding median fil-
ter (green curve, (d)) which is followed by a threshold-based
classification into speech segments (red line, (d)). In our ex-
ample, segments exceeding the experimentally found thresh-
old (i.e, values above the red line) are classified as speech.
Although the smoothing has some of the desired effect of re-
ducing fluctuations, it blurs the segment boundaries, result-
ing in an inexact segmentation. Furthermore, some of the
fluctuations are still present resulting in an erroneous classi-
fication in the left speech segment.

A potential source of the classification errors illustrated
before is that the smoothing operation is performed on the
classification results and hence does not account for the prop-
erties of the actual signal features in the region of the smooth-
ing window. From those considerations and inspired by a
related approach using chroma features [4], this papers pro-
poses to perform the smoothing at an earlier stage and in-
corporate this operation into the computation of the MFCC
features. More precisely, we consider the spectral signal rep-
resentation that is obtained by mel filtering the original signal
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and compute certain short-time statistics of the mel spectrum
coefficients followed by downsampling. Afterwards, the re-
maining part of the MFCC computation is performed, result-
ing in the so called MFCC-ENS (MFCC-Energy Normalized
Statistics) features. In this, we are able to adjust the resulting
feature resolution and sampling rate by suitably choosing the
length of the statistics window and a downsampling factor.

Using the above segmentation scenario, we provide a
comparison of the proposed MFCC-ENS features and the
classical MFCC features. It turns out, that the MFCC-ENS
are suitable to locally summarize the (MFCC-) audio prop-
erties. As a result, the MFCC-ENS-based classifiers yield
less segmentation errors and more stable segmentation re-
sults than the standard MFCC do. We furthermore illustrate
that the MFCC-ENS result from the MFCCs using a kind of
seamless smoothing operation with the MFCCs at one end,
which makes them rather promising for future applications.

The paper is organized as follows. In Sec. 2 we give
the construction of the MFCC-ENS features and motivate it
by the derivation of CENS-features (Chroma Energy Nor-
malized Statistics) from chroma features as proposed in [4].
As an application, Sec. 3 details the segmentation scenario
described above. Sec. 4 presents the evaluation results on
both the segmentation performance and the comparison of
MFCC-ENS and MFCCs. References to previous work will
be given in the respective sections.

2. CONSTRUCTION OF MFCC-ENS FEATURES

To introduce the newly proposed features, we first summa-
rize the standard process of computing MFCCs (2.1). To
motivate the subsequently described approach to construct
MFCC-ENS by using short-time MFCC statistics (2.3), we
first briefly review the related approach of deriving CENS-
from chroma features (2.2).

2.1 MFCCs
To compute MFCCs, successive blocks of an input signal
are analyzed using a short time Fourier transform (STFT).
For this, a typical block-length of 20 ms and a step size of
10 ms are used. For each of those temporal blocks, a fea-
ture vector is obtained as follows from its STFT-spectrum.
First, the logarithmic amplitude spectrum is computed to
account for the characteristics of human loudness sensa-
tion. To restrict the features to the human frequency range,
only values X(1), . . . ,X(N) corresponding to the region of
R = [133,6855] Hz are used subsequently. In the next step,
40 frequency centers f1, . . . , f40 are selected from R follow-
ing a logarithmic scheme that approximates the Mel-scale
of human frequency perception [9]. Using triangular win-
dows ∆i centered at the frequency centers fi, a rough spectral
smoothing is performed yielding 40 mel-scale components
M(i) = ∑ j∈∆i ∆i( j) · |X( j)|, 1 ≤ i ≤ 40. To approximately
decorrelate the vector (M(1), . . . ,M(40)) a discrete cosine
transform (DCT) is applied yielding m = DCT ·M. As a last
step, only the first 12 coefficients m12 = (m(1), . . . ,m(12))
remain, the other are rejected. We refer to [8] for more de-
tails on MFCCs.

As an Example, the top part of Fig. 2 shows MFCC fea-
tures extracted from about 30 seconds of an audio signal con-
taining three subsequent segments of orchestra music, male
speech and a radio jingle comprising two speakers with back-
ground music.

Figure 2: Three feature sets, MFCCs (top), MFCC-ENS800
10

(center), CENS (bottom), extracted from an artificially con-
catenated audio fragment (33 seconds) consisting of orches-
tra music (left), male speech (center) and an radio jingle with
two speakers and background music (right).

In speech processing applications one usually includes
first and second order differences of m12 and the subsequent
MFCC vectors to model temporal evolution. Those are also
called delta- and delta-delta- coefficients. By furthermore
including a single component to the initial 12 dimensions
to represent the local signal energy, this results in a 39-
component MFCC vector that is frequently used in speech
recognition. Note that although we also considered delta-
and delta-delta-coefficients for the applications discussed in
the remainder of this paper, we will w.l.o.g. restrict our pre-
sentation to the basic 12-dimensional MFCC components in
order to better illustrate the underlying principles.

2.2 Review of CENS features

Chroma-based audio features have turned out to be a pow-
erful feature representation in the music retrieval context,
where the chroma correspond to the twelve traditional pitch
classes C,C],D, . . . ,B of the equal-tempered scale, see [1].
To construct chroma features, the audio signal is converted
into a sequence of twelve-dimensional chroma vectors. Let
v = (v(1),v(2) . . . ,v(12)) ∈ R12 denote such a vector, then
each entry expresses the short-time energy content of the
signal in the respective chroma, where v(1) corresponds to
chroma C, v(2) to chroma C], and so on. Such a chroma de-
composition can be obtained for example by suitably pooling
the spectral coefficients obtained from an STFT [1] as it is
used for the MFCCs. Due to the octave equivalence, chroma
features show a high degree of robustness to variations in
timbre and instrumentation. A typical feature resolution is
10 Hz where each chroma vector corresponds to a temporal
window of 200 ms.

To obtain features that robustly represent the harmonic
progression of a piece of music, the computation of local
statistics has been proposed in [4]. To absorb variations in

1505



dynamics, in a preliminary step each chroma vector v is re-
placed by its relative energy distribution v/∑

12
i=1 v(i). Vec-

tors with insignificant energies are replaced by the uniform
distribution. Afterwards, two types of short-time statistics
are computed from these energy distributions. First, each
chroma energy distribution vector v = (v(1), . . . ,v(12)) ∈
[0,1]12 is quantized by applying a discrete 5-step quantizer
Q yielding Q(v) := (Q(v(1)), . . . ,Q(v(12))) ∈ {0, . . . ,4}12.
The thresholds are chosen roughly logarithmic to account
for the logarithmic sensation of sound intensity, see [9].
In second step, the sequence of quantized chroma distribu-
tion vectors is convolved component-wise with a Hann win-
dow of length w ∈ N and then downsampled by a factor of
d ∈ N. This results in a sequence of 12-dimensional vec-
tors, which are finally normalized with respect to the Eu-
clidean norm. The resulting features are referred to as CENS
(chroma energy normalized statistics), which represent a
kind of weighted statistics of the energy distribution over a
window of w consecutive vectors. A configuration that has
been successfully used for the audio matching taks, w = 44
and d = 10, results in a temporal resolution of 1 Hz [4]. The
combination of different resolution levels has been success-
fully applied to obain multiresolution techniques for audio
alignment [5].

In the bottom part of Fig. 2, the harmonic content of
the orchestra music (first 10 seconds) is clearly visible in
the CENS features which only contain significant energy in
the chroma bands corresponding to the harmonics (comb-like
structure). Also the harmonic content of the jingle (last sec-
onds) is well-reflected by the characteristic comb structure.
Due to the use of short-time statistics, the CENS reflect the
coarse harmonic structure with smoothed-out local fluctua-
tions.

2.3 MFCC-ENS-Construction

The basic approach to construct smoothed MFCCs con-
sists of applying the short-time statistics operations from the
CENS construction at a suitable instant during the MFCC
computation. To include all aspects of the MFCCs which are
related to human perception into the short-time statistics, the
MFCC-ENS computation starts using the mel-scale coeffi-
cients M = (M(1), . . . ,M(40)). Subsequently, the following
steps are performed:

• M is replaced by a normalized version M/∑
40
i=1 |M(i)| in

order to achieve invariance w.r.t dynamics. If ∑
40
i=1 |M(i)|

is below a threshold, M is replaced by the uniform disti-
bution.

• Each component of the resulting vector is quantized us-
ing the above discrete quantizer Q : [0,1]→{0,1,2,3,4}
which is more precisely defined by Q(a) := 0 for a ∈
[0,0.05), Q(a) := 1 for a ∈ [0.05,0.1), Q(a) := 2 for
a ∈ [0.1,0.2), Q(a) := 3 for a ∈ [0.2,0.4), and Q(a) := 4
for a ∈ [0.4,1]. As a result, besides the rough log-
characteristics, only the more significant components are
preserved and reduced into four classes. This step per-
forms a kind of frequency statistics.
• To furthermore introduce time-based statistics, the re-

sulting sequence of quantized 40-dimensional vectors is
smoothed by filtering each of the 40 components using a
Hann-window of length ` ms.

• As a last step, the vector sequence is downsampled by an

Figure 3: Evolution of MFCC-ENS for different param-
eters. From top to bottom: MFCCs and feature sets
MFCC-ENS250

20 , MFCC-ENS800
10 , MFCC-ENS1200

6.67 for the
frist 22 seconds (music and speech) of the audio example
shown in Fig. 2.

integer factor resulting in a vector sequence of sampling
rate f Hz.

• Each vector is then decorrelated using a DCT opera-
tion as performed at the end of the MFCC computa-
tion. By restriction to the lowest 12 coefficients of each
DCT-vector, we obtain a vector sequence MFCC-ENS`

f
of smoothed MFCCs with a smoothing range of ` ms and
sampling rate of f Hz.

By construction, the MFCC-CENS’s time resolution may
be flexibly chosen by adjusting the window sizes and down-
sampling factors which are directly related to the quantities
` and f . As an example, the center part of Fig. 2, shows
MFCC-ENS800

10 (a window length equivalent to 800 ms at a
feature sampling rate of 10 Hz) for the given audio example.

As the DCT is a linear mapping, the smoothing opera-
tion that is performed during MFCC-ENS computation in the
mel-spectral domain also takes effect after applying DCT. As
an illustration, Fig. 3 compares the classic MFCC features
(top) to the features obtained by the gradual transition from
MFCC-ENS250

20 to MFCC-ENS1200
6.67 .

We note that one particular parameter in the MFCC-ENS
computation that may be adjusted in the future is the quan-
tizer Q that, to this point, has been copied from the CENS
computation. Because MFCCs are already based on a log-
arithmic amplitude spectrum, a different choice of Q might
be more appropriate. As, however, replacing Q by a linear
quantizer did not result in a better performace during our seg-
mentation tests, a more detailed investigation was postponed.

Transform-domain filtering has long been used to obtain
robust feature representations for speech processing. An im-
portant step was the introduction of the RASTA processing
concept [3] that was used to suppress log-spectrum com-
ponents by applying recursive bandpass filterbanks to the
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Figure 4: Overview on the two-stage segmentation proce-
dure.

spectral trajectories, thereby averaging out components that
change at higher or lower rates than perceivable by humans.
While RASTA processing and related techniques have been
successfully applied to noise suppression and speech en-
hancement, our approach puts an additional focus on an ad-
justable feature resolution and resulting data rate, which is of
importance for the targeted speech retrieval tasks.

3. APPLICATION TO SPEECH SEGMENTATION

As an application, we consider the segmentation scenario de-
scribed in the introduction. In particular, we consider the task
of segmenting broadcast radio programmes where the possi-
ble classes are Music (C1), Speech (C2) and Speech+Music
(C3). Fig. 4 shows an overview of our two-stage segmenta-
tion procedure consisting of an offline training phase and an
online segmentation phase.

In the training phase, a suitable amount of audio mate-
rial is recorded, manually segmented and labeled using the
classes (C1)-(C3). Note that for practical purposes, class
(C3) was choosen to also subsume audio effects and other
types of noise that could not always be properly separated
from the other classes. Hence, a more proper label for class
(C3) will be Mixed forms. For each class, an equal amount of
audio data is gathered and both MFCC- and CENS-features
are extracted at specific sampling rates (that generally differ
from MFCC to CENS), resulting in six feature sets F MFCC

1 -
F MFCC

3 and F CENS
1 - F CENS

3 . For each of those feature sets,
a Gaussian mixture model (GMM) is trained which is used
in the subsequent segmentation phase.

During the (online) segmentation phase, sequences of
both MFCC- and CENS-features are extracted from a
recorded audio signal at the same sampling rates as used
during training. Subsequently, two GMM-based classifiers
are used for classification. The first classifier works on the
extracted CENS-features and uses the CENS-based GMMs
to perform a binary classification into the two classes Mu-
sic and Non-Music. In our settings it turns out that a log-

likelihood ratio test based on the GMMs for speech and mu-
sic is a good approximation for this task. The segments clas-
sified as Music are labeled by (C1) and are used for the later
on segment generation. The remaining segments are handed
over to the second classifier. This classifier uses the MFCC-
trained GMMs to perform a binary classification into the
classes Speech and Mixed forms. For this, a log-likelihood
ratio test using the GMMs for the classes music and mixed
forms is used. Segments classified as speech are labeled as
(C2) while the mixed forms results are labeled (C3). The
subsequent step of segment combination assembles the out-
puts of both classifiers and outputs a properly formated list of
labeled segments. The overall system will be called MFCC-
based segmenter.

For use with the MFCC-ENS features, the MFCCs in the
above procedure are replaced by the MFCC-ENSs. For ex-
ample, the MFCC-training sets are replaced by F MFCC−ENS

1
- F MFCC−ENS

3 for a suitably chosen MFCC-ENS-resolution.
While the other components of the segmenter stay the same,
the resulting system will be called MFCC-ENS-based seg-
menter.

We note that the above GMM-based classifiers output
classification likelihoods at a sampling rate induced by the
feature sequence. To obtain a stable classification output,
a subsequent smoothing operation based on median filter-
ing followed by a threshold-based decision as illustrated in
the introduction is performed which depends on the actual
feature resolution and feature type. Note that the thresholds
used in our evaluations have been determined experimentally
based on our training corpus.

The basic strategies used in the latter approach to au-
dio segmentation have been proposed and investigated in
several previous studies. A combined use of MFCC- and
chroma-based features to account for the particularities of
both speech and music was recently described in an approach
to speech/music discrimination [7]. Among various other
classification strategies, GMMs have been widely used in the
audio domain. An application to discriminating speech and
music is for example described in [2].

4. EVALUATION

To illustrate the effect of MFCC-ENS-based smoothing,
Fig. 5 revisits the audio fragment shown in Fig. 1. Parts (b)-
(d) of the figure show the corresponding results for speech
detection obtained using the MFCC-ENS800

10 features instead
of MFCCs. For the subsequent median filtering, the win-
dow size was adapted in order to obtain equivalent tempo-
ral smoothing regions with both approaches. It can be ob-
served that the MFCC-ENS-based detection is more stable
und short-term fluctuations are clearly reduced. As a result,
the left hand speech segment, which was wrongly classified
using MFCCs is now classified correctly.

For a larger-scale comparison of the segmentation per-
formance, we prepared an audio collection consisting of the
following material taken from a classic radio station. For
training the MFCC- and CENS-based GMMs, we used 20
minutes of audio for each of the three classes (C1), (C2) and
(C3). For training, we used the Expectation Maximization al-
gorithm which was run until convergence. The GMMs con-
sisted of 16 mixtures each with dimensions of 12 (CENS)
and 39 (MFCCs). For the MFCC-ENS-based segmenter we
used MFCC-ENS800

10 features. The training set was increased
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Figure 5: (a) Audio example revisited from Fig. 1. (b)
Extracted MFCC-ENS800

10 features. (c) Log-likelihood ra-
tio of speech against mixed forms class. (d) Log-likelihood
(green) smoothed by median-filtering (length 20 samples)
with speech detection threshold (red).

Table 1: Confusion matrix for results of MFCC-based seg-
menter (left) and MFCC-ENS-based segmenter (right). Used
classes: Music (C1), Speech (C2) and Mixed forms (C3).

Seg. MFCC MFCC-ENS
result True class True class
[%] ↓ C1 C2 C3 C1 C2 C3
C1 98.3 0 0 98.3 0 0
C2 1.7 84.68 33.89 1.7 97.55 6.19
C3 0 15.32 66.11 0 2.45 93.81

to 40 minutes (speech) and 100 minutes (mixed foms) in or-
der to account for the lower feature resolution.

The segmentation was performed using the procedure de-
scribed in Sect. 3. Our test data consisted of 4:09 hours of a
contiguous audio programme recorded from the radio station
and labeled manually. The material comprises 206.42 min-
utes of music (C1), 13.5 minutes of speech (C2) and 30.15
minutes of (C3)-segments (mainly jingles and commercials
consisting of mixed speech and music). For this data, the
overall rate of correct classifications using the MFCC-based
segmenter was 93.68%, where we evaluated one classifica-
tion result per second. The left part of Table 1 shows the
confusion matrix for the three involved classes. As might
be expected, the class C3 containing superpositions of music
and spoken language causes the largest classification errors.

The right part of Table 1 shows the corresponding confu-
sion matrix for the MFCC-ENS-based segmenter. As may be
observed, confusion of classes C2 and C3 is significantly re-
duced due to the improved MFCC-ENS-based classifier. The
overall rate of correct classifications is 97.72%. A manual in-
spection of the log-likelihood curves used for segmentation
confirms the observation that speech segments are now much
more clearly separated from the other classes as was already

illustrated in Fig. 5.
We conclude this section by remarking that although the

size of the training set in minutes was larger when using
MFCC-ENS our tests indicate that a further increase may be
beneficial. This will we subject of future investigations.

5. CONCLUSIONS

In this paper, we introduced a class of audio feature, MFCC-
ENS, which is constructed by computing suitable short-time
statistics of the well-known CENS-feature. More precisely,
quantization and smoothing operations are performed on the
mel-spectrum representation to generate compact summaries
of a signal’s short-time acoustic contents. By introducing
parameters controlling the new features’ time resolution, the
feature granularity may be flexibly adjusted with the standard
MFCCs resolution appearing as a special case. The features
were evaluated for the application of segmenting broadcast
radio. It was shown that due to the smoothing properties,
MFCC-ENS can aid in overcoming unstable segmentation as
may result when using MFCCs.

Future work will deal with further investigating MFCC-
ENS and their properties. Innovative applications using
MFCCs such as unsupervised discovery of speech pat-
terns [6] that right now rely on performing temporal smooth-
ing in a higher level step may also benefit from the proposed
MFCC-ENS features.
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