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ABSTRACT

Inertial navigation systems (INS) and global navigation
satellite systems (GNSS) are often combined to ensure high
accuracy navigation. The last generation of inertial mea-
surement units referred to as micro-electro-mechanical sys-
tems (MEMS) might also be used in a lot of applications
thanks to their relatively low cost. However, the information
given by the MEMS is less accurate than with classical INS.
In particular, the performance of an integrated GNSS/MEMS
navigation systems decreases drastically during GNSS out-
ages. This paper studies a neural network based procedure
that allows one to compensate this performance loss.

1. INTRODUCTION

Vehicle navigation systems often include an inertial measure-
ment unit (IMU) to bridge GNSS satellite outages (signal
blockage) or GNSS signal degradation (jamming, multipath).
Efficient inertial navigation systems (INS) include accurate
but high cost IMUs. Recently, a new generation of inertial
sensors called micro-electro-mechanical systems (MEMS)
has become available at relatively low cost. These sensors
might be used in many mass-market applications, e.g., for
land vehicles. However, the performance of these systems is
largely dependent upon the quality of inertial sensors, espe-
cially during GNSS outages. A possible solution for com-
pensating navigation errors is to use learning strategies re-
sulting from the theory of neural networks (NN) or fuzzy
logic. These strategies were used successfully for hybrid
GNSS/INS navigation in land vehicular applications [1, 2].
In these previous studies, an offline training of navigation er-
rors was achieved and an adaptation of the initial system was
performed online. This paper shows that NN can also be used
for online training of GNSS/MEMS navigation errors.

The paper is organized as follows. Section 2 recalls the
main elements of GNSS/MEMS navigation with a particular
interest on the hybridization procedure. Section 3 presents
the NN based strategy that will be studied in this paper. The
application of this strategy to GNSS/MEMS navigation is in-
vestigated in Section 4. Simulation results shown in Section
5 allows one to appreciate the performance of the proposed
navigation algorithm.

2. NAVIGATION PRINCIPLES

As described in [3, p. 3], navigation can be defined as the ac-
curate determination of a position and a velocity relative to a
known reference. Navigation can be achieved using many
different techniques leading to dead reckoning navigation
[4], celestial navigation [5], inertial navigation [3, Sec. 6],
[6, Sec. 9] or satellite based navigation [3, Sec. 5], [6, Sec.
2.3]. This paper focuses on inertial and satellite navigation
systems as well as their hybridization that will be described
in the next sections.

2.1 Inertial navigation

Largely described in the literature [3, Sec. 6], [6, Sec. 2.2],
this type of navigation is based on the integration and projec-
tion of accelerations given by accelerometers to provide ve-
locity and then position. The fundamental idea comes from
Newton’s second law of motion. Of course, It will need also
the estimation of the orientation of the sensor which can be
expressed by the Euler angles computed thanks to angular
rates given by rate gyro.

Accelerations (resp. angular rates) are not directly ob-
servable from the IMU’s outputs, i.e., accelerometer outputs
(resp. gyroscope outputs), which are available. These mea-
sures are corrupted by different noises that will produce nav-
igation errors. As described in [3, Sec. 6.4], the navigation
errors can arise from different sources including instrumen-
tation errors, computational errors, alignment errors and en-
vironment errors. Neglecting computational errors, the nav-
igation errors will depend upon the three remaining sources
that are due to accelerometers and gyroscopes in the case of
INS. A very general model for MEMS accelerometers and
gyroscopes can be written

S= Φ(Γ,Ω,θ), (1)

where


S is the MEMS output,
Γ is the true acceleration,
Ω is the true angular rate,
θ contains the intrinsic MEMS parameters,
Φ is the MEMS nonlinearity function.

The interested reader is invited to consult [7], [6, p. 214-
219] for more details about model 1. A classical inertial
platform is represented in Fig. 1 where the complexity of
the inertial navigation problem can be easily observed. This
complexity results from coordinate frame transformations,
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Figure 1: Inertial platform defined in the navigation frame.

different physical phenomenon compensation, . . . In this fig-
ure, f B

B/I andωB
B/I are the accelerometer and gyroscope out-

puts of the body frame with respect to the inertial frame co-
ordinatized in the body frame,f N

B/I is the specific force of
the body frame with respect to the inertial frame coordina-
tized in the navigation frame obtained from the transforma-
tion matrix CB2N and ωB

B/N is the angular rate of the body
frame with respect to the navigation frame coordinatized in
the body frame obtained after compensation of both inertial
rotation rate of the earthωB

E/I and transport rateωB
N/E of the

navigation frame relative to the earth (see [3, p. 187-197] for
more details). It is important to note that the different mea-
surements resulting from the inertial platform are not conta-
minated by any external source of noise. However, it is well
known that navigation based on inertial sensors leads to er-
rors that are unbounded over time.

2.2 Satellite navigation

GNSS is the standard generic term for satellite-based radio-
navigation systems. These systems include the global posi-
tioning system (GPS), the Russian global navigation satel-
lite system (GLONASS), the European Galileo or the Chi-
nese Beidou (Compass) that are currently under investiga-
tion. This paper focuses on GPS (that is the only fully oper-
ational system) whose principle is simple but whose imple-
mentation is more tedious. The main idea of GPS is to mea-
sure the elapsed time between the emission of radio wave-
forms from satellites with known positions and their arrivals
to the mobile to be located. Knowing radio wave velocity,
the range between the satellites and the mobile can be deter-
mined, as well as the mobile position by triangulation. How-
ever, the range is corrupted by many noise sources. The ob-
served measurements (usually referred to as pseudo-ranges)
can be mathematically described as follows

ρ
i = Ri +c(∆τR−∆τSi )+c∆τa +ω

i , (2)

where



ρ i is the pseudo-range between the receiver
and theith satelliteSi ,

Ri is the true range between the receiver
and theith satelliteSi ,

c is the light velocity,
∆τR is the receiver clock error,
∆τSi is theith satellite clock error,
∆τa is a delay due to atmospheric crossing,
ω i is a residual error.

The pseudo-ranges can be contaminated by different
noise sources including signal jamming, signal outages and
multipath. However, it is well known that estimation errors
resulting from the resolution of (2) are bounded.

2.3 Hybrid navigation

The complementary of GNSS and INS systems has been used
efficiently in many applications: short-term position errors
of INS are relatively small but degrade without remaining
bounded whereas GNSS errors do not degrade with time but
are more important during a short time interval. Many differ-
ent GNSS/INS integration architectures have been proposed
in the literature [3, Sec. 7.2 and 7.3], [6, Sec. 10]. This paper
focuses on a tightly coupled architecture for GPS aided INS
integration depicted in Fig. 2. The associated state model
can be written as {

Ẋt = AtXt +Btvt ,
Yt = ht(Xt)+wt ,

(3)

where



Xt is the state vector,
Yt is the observation vector,
At is the state transition matrix,
Bt is the state noise matrix,
ht is the observation function,
vt is the process noise,
wt is the observation noise.
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Figure 2: Hybridization architecture.

The GNSS/INS state vector is classically defined asXt =
(δ pt ,δvt ,δρt ,bs,t ,bt , ḃt) where

δ pt are the INS position errors,
δvt are the INS velocity errors,
δρt are the INS attitude errors,
bs,t = (ba,t ,bg,t) are the accelerometer and gyroscope biases,
(bt , ḃt) are the GPS receiver clock bias and drift.

The estimation ofXt from the state model (3) can be achieved
by many different filtering strategies based on the extended
Kalman filter (EKF), the unscented Kalman filter or particle
filtering. This study concentrates on the classical EKF for
simplicity reasons.

3. NEURAL NETWORKS

The human brain is composed of a great number of neurons
that are organized in a huge network allowing learning and
memorizing. An artificial NN is a collection of elementary
neurons (defined in 3.1) trying to model the human brain.
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Training the NN consists of estimating its parameters by min-
imizing an appropriate cost function. In this study, we will
use a typical cost function defined as the squared error be-
tween the NN output and a known desired output associated
to an element of the learning set. After training has been
performed, the NN can be used in its “generalization mode”,
i.e., the NN output is computed for data vectors that do not
belong to the training set. More details regarding training
and generalization are provided below.

3.1 Elementary cell: the Neuron

The output of an elementary neuron is defined as a weighted
combination of its inputs that pass through a nonlinear acti-
vation functionϕ (as shown in Fig. 3). The activation func-
tion used in this paper is the hyperbolic tangent yielding the
following input/output relationship:

OUT = tanh

(
n

∑
j=1

w j IN j

)
. (4)

The NN weights are the intrinsic parameters that have to
be estimated during the “training mode”. This estimation can
be conducted using different optimization algorithms based
on gradient descent, Newton’s methods or mixed strategies
(e.g., the Levenberg-Marquardt algorithm that combines ad-
vantages from gradient descent and Newton’s methods).
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Figure 3: Generic elementary neuron.

3.2 Neural network structure

An NN is a collection of elementary cells organized in one or
several layers as depicted in Fig. 4. The NN structure is de-
fined by the number of layers and the number of neurons in
each layer. It is well known that any continuous multivariate
function (after appropriate normalization yielding outputs in
[−1,+1]) can be approximated by a single hidden layer NN
[8]. However, the NN structure is generally determined em-
pirically (by cross validation). An NN with two hidden layers
with ten neurons on each layer has provided good results for
the current application.

3.3 Neural network training

As described in [9], the main property of the NN is its abil-
ity to learn from its environment and to improve its perfor-
mance through learning. This learning can be conducted with
a teacher (supervised learning) or without teacher (unsuper-
vised learning)(the teacher has a certain knowledge of the
environment thanks to input-output examples belonging to
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Figure 4: Neural network structure.

the learning set). This paper focuses on supervised learn-
ing that is achieved using the popular back-propagation al-
gorithm [10], [9, Sec. 4.3]. The learning rule used in this
paper is very classical and summarized below:
1. Initialization,
2. Presentations of training samples,
3. Forward computation,
4. Backward computation,
5. Iteration.

Training can be stopped when the cost function is lower
than an appropriate threshold, or when the maximum au-
thorized number of epochs (number of presentations of the
learning set) is reached. Fig. 5 shows an example of cost
function (blue line) and threshold (black line) versus the
number of epochs presented to the NN. This example cor-
responds to one experiment detailed in section 5. This figure
allows one to adjust the number of epochs required to obtain
a required precision for training.
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Figure 5: Convergence example for one experiment pre-
sented in this paper.

4. NN-AIDED GNSS/MEMS INTEGRATION

As explained before, hybrid GNSS/MEMS navigation
should be interested in many practical applications. Indeed,
because of their low cost, MEMS sensors might be used
in mass market applications. However, the performance of
MEMS in stand alone mode, i.e., during GNSS outages, is
not satisfactory. The idea developed in this paper is to learn
the behavior of the GNSS/MEMS system thanks to an NN
whose learning is performed during the time intervals with-
out outages. This knowledge is then used to improve naviga-
tion performance during outages.

The main difference between the proposed methodology
and previous studies is the learning strategy. Indeed, the

2158



training was achieved offline in [1] and [2] with a large va-
riety of input/output data in order to cover most of the an-
ticipated various dynamics and motion scenarios during real
navigations. The system was then adapted online using error
corrections resulting from training. Here and contrary to the
analysis conducted in [1] and [2], MEMS parameters vary
from one run to another. Thus, the proposed algorithm does
not use any offline training. Instead, error corrections are
learnt online using the past of the vehicle motion. More pre-
cisely, the NN weights are adjusted from intput/output sam-
ples collected during time intervals that are not subjected to
outages. We want to use the difference between inertial and
hybrid navigation to compensate errors during outages. Con-
sequently, GNSS outages will be simulated online in training
mode and will allow us to determine the difference between
inertial and hybrid navigation. A similar strategy was pro-
posed in [11] with a different NN architecture. More pre-
cisely, the NN input vector used in this study contains the
following features


∆t : elapsed time from beginning of outage,
Sa : accelerometer outputs,
Sg : gyroscope outputs,
∆pMEMS : distance from beginning of outage,
vMEMS : inertial estimations of velocities,
ρMEMS : inertial estimations of attitudes.

The NN outputs allowing us to compensate inertial errors
(in terms of position) are defined by the differences be-
tween hybrid and inertial position estimates, denoted as
pGNSS/MEMS− pMEMS. The learning set used in this study
is composed of simulated 30s outages (we have considered
that an outage cannot exceed a duration of 30s). The resulted
training architecture is shown in Fig. 6.
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Figure 6: Neural network training architecture.

When a real GNSS outage is encountered, the NN works in
its generalization mode to compensate inertial position errors
as depicted in Fig. 7.

5. SIMULATION RESULTS

The results presented in this paper are obtained by calculat-
ing the position mean absolute error (MAE) defined by (5)
wherep is the real position and ˆp is the hybrid position es-
timates with or without NN corrections. This MAE is com-

INS
Inertial measures
Sensor outputs

Estimated inertial 
errors

Corrected inertial measures

Neural 
Network

+

-

Figure 7: Neural network generalization architecture.

puted after a hundred of Monte Carlo runs as follows

MAE =
1
n

n

∑
j=1

‖p− p̂‖, (5)

wheren = 100. Three different experiments with 30s GNSS
outages will be discussed. The first experiment considers a
mobile with fixed position. A constant velocity trajectory
will be studied in the second experiment. The last experiment
is characterized by a real trajectory in ISAE campus Supaéro.

5.1 Experiment 1: fixed position

The first experiment considers a 30s outage in the interval
[1350s,1380s]. The associated MAE are shown in Fig. 8 for
GNSS/MEMS (thick blue line) and NN-aided GNSS/MEMS
(thin green line). The advantage of using the NN for compen-
sating the navigation errors is clearly shown on this example.
Indeed, the MAE after a 30s outage is about 400m without
NN whereas it is approximately 100m when NN is used for
error compensation. Note that the estimated position is bet-
ter without NN corrections during the first 5s of the outage
showing that the NN has some difficulties to learn small dif-
ferences between hybrid and inertial position estimates.
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Figure 8: Position mean absolute error (fixed position).

5.2 Experiment 2: constant velocity

The second experiment considers a constant velocity trajec-
tory. The Fig. 9 shows the same type of results than in the
previous experiment. The NN-aided integration system pro-
vides better navigation performance during the outage when
compared to the navigation without NN corrections (except
during the first 5s of the outage as previously). After a 30s
outage, the position accuracy is about 500m without NN cor-
rections whereas it is close to 100m in the NN-aided case.
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Figure 9: Position mean absolute error (constant velocity).

5.3 Experiment 3: real trajectory

The last experiment studies a real trajectory in Toulouse,
France (ISAE campus Supaéro) depicted in Fig. 10. An 30s
outage (green line in Fig. 10) is simulated during this tra-
jectory (red line in Fig. 10). Fig. 11 shows position absolute
error for a particular run in presence and absence of NN error
corrections. NN-aided GNSS/MEMS integration clearly pro-
vides more accurate position estimates than GNSS/MEMS
without NN corrections.

Figure 10: Reference trajectory in Toulouse, France.

6. CONCLUSION

Current progress in MEMS technology has made possible
the use of inertial sensors for low cost mass market appli-
cations. However, the performance of a GNSS/MEMS sys-
tem is closely related to the IMU quality, especially during
critical navigation scenarios. These scenarios include urban
canyon characterized by partial satellite outages, poor geo-
metric dilution of precision (GDOP), and total satellite out-
ages. This paper proposed an approach to improve the qual-
ity of MEMS based navigation systems during these critical
scenarios by using an appropriate NN to compensate naviga-
tion errors.

The strategy implemented in this study uses an NN to
learn on-line the system behavior during time intervals that
do not contain satellite outages. This learning is then used
advantageously in the presence of outages. Simulation re-
sults illustrated the performance of the proposed navigation
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Figure 11: Position absolute error (real trajectory).

strategy during GNSS outages for different state models (mo-
bile with fixed position, constant velocity, real trajectory).

Progresses in MEMS technology should continue in the
future decade and might lead to high accuracy navigation
systems. Further investigations include the reduction of
training time by simulating superposed outages and the val-
idation of the proposed NN-aided GNSS/MEMS integration
on real data. Our future works also contain the development
of new MEMS calibration procedure based on nonparametric
system identification.
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