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Abstract. A least squares formulation for the design of
frequency invariant beamformers (FIBs) is proposed with
two solutions provided. One is based on the Lagrange mul-
tipliers method and the other one is based on an orthogo-
nal decomposition of the coefficient vector to transform the
constrained design problem into an unconstrained one. De-
sign examples including both broadside and off-broadside
main beams are provided with satisfactory frequency invari-
ant property and sidelobe attenuation.
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1. INTRODUCTION

Broadband beamforming has been studied extensively due
to its wide applications to sonar, radar and communications [1].
Amongst them is a class of beamformers with frequency in-
variant responses [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
which can form beams pointing to the signal of interest with
a constant beamwidth. In [5, 11, 12, 13, 14], the design
was achieved based on a simple multi-dimensional inverse
Fourier transform by exploiting the relationship between the
array’s spatial and temporal parameters and its beam pat-
tern. More recently, a direct optimization approach was
adopted using the convex optimization methods [15, 16].

The least squares approach is a conventional and well-
known method for the design of both FIR filters and broad-
band beamformers [17, 18]. Compared with the convex op-
timization method, it can provide a closed-form solution to
the problem and is more computationally efficient. Several
broadband beamforming design methods based on the least
squares formulation have been proposed in [18]. However
those proposed methods are for the design of general broad-
band beamformers and not directly applicable to the design
of FIBs. To solve the FIB design problem, we need to intro-
duce a spatial variation formulation into the cost function as
a frequency invariance controlling element. As a result, the
unity response used as the desired response over the whole
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Figure 1: A signal impinges from an angle θ onto a uni-
formly spaced broadband linear array with M sensors, each
followed by a J-tap filter.

signal bandwidth at the look direction in [18] is replaced by
constraining the response at a single reference frequency.
Then a linearly constrained least squares formulation is de-
rived and it can be solved in two different ways. One is to
use the Lagrange multipliers method, which is a direct so-
lution to the least squares problem with linear constraints.
The other one aims to transform the constrained optimiza-
tion problem into an unconstrained one by decomposing the
coefficient vector into two orthogonal components.

This paper is organized as follows. A brief review of
the general broadband beamforming structure with tapped
delay-lines (TDLs) is provided in section 2 and the least
squares formulation to the FIB design problem with two so-
lutions is then proposed in Section 3. Design examples are
provided in section 4 and conclusions drawn in section 5.
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2. BROADBAND BEAMFORMING STRUCTURE
WITH TDLS

A broadband beamforming structure based on a uniformly
spaced linear array is shown in Fig. 1. Its response as a
function of the signal frequency ω and arrival angle θ can
be expressed as

R̃(ω, θ) =
M−1∑
m=0

J−1∑

k=0

wm,ke−jmω∆τe−jkωTs , (1)

where ∆τ = d
c cos θ, Ts is the delay between adjacent

samples in the TDL, d is the array spacing, and c is the
wave propagation speed.

With the normalized angular frequency Ω = ωTs, we
obtain the response as a function of Ω and θ

R(Ω, θ) =
M−1∑
m=0

J−1∑

k=0

wm,ke−jmµΩ cos θe−jkΩ with µ =
d

cTs

(2)
We can rewrite the the response in a vector form

R(Ω, θ) = wT s(Ω, θ) (3)

where w is the coefficient vector defined as

w = [w0,0, · · ·wM−1,0, · · · , w0,J−1 · · ·wM−1,J−1]T , (4)

and s(Ω, θ) is the M × J steering vector given by

s(Ω, θ) = sTs(Ω)⊗ s∆τ (Ω, θ) (5)

where ⊗ represents the Kronecker product, and

sTS
(Ω) = [1, e−jΩ, · · · , e−j(J−1)Ω]T . (6)

s∆τ (Ω, θ) = [1, e−jµΩ cos θ, · · · , e−j(M−1)µΩ cos θ]T (7)

3. THE LEAST SQUARES APPROACH

The least squares cost function proposed in [18] is given as
follows

JLS =
∫

Ωi

∫

Θ

F (Ω, θ)
∣∣wT s(Ω, θ)−D(Ω, θ)

∣∣2 dΩdθ

(8)
where Ωi and Θ represent the frequency range of interest
and the angle range, and F (Ω, θ) is a positive real-valued
weighting function and D(Ω, θ) is a desired response func-
tion. In [18], it is focused on the specific design case with
F (Ω, θ) = 1 and D(Ω, θ) = 1 in passband and F (Ω, θ) =
α and D(Ω, θ) = 0 over stopband.

Now let (Ωn, θk) be the grid uniformly chosen from the
continuous frequency and angle ranges. Then the formula-
tion changes to

JLSD
=

∑

Ωn∈Ωi

∑

θk∈Θm

∣∣wT s(Ωn, θk)− 1
∣∣2

+ α
∑

Ωn∈Ωi

∑

θk∈Θs

∣∣wT s(Ωn, θk)
∣∣2 (9)

where Θs and Θm denote the sidelobe region and mainlobe
region, respectively,

(9) can be rewritten as a quadratic function

JLSD
= wT QLSw− 2wT a + dLS (10)

with

QLS =
∑

Ωn∈Ωi

∑

θk∈Θm

SR(Ωn, θk)+α
∑

Ωn∈Ωi

∑

θk∈Θs

SR(Ωn, θk),

(11)
a =

∑

Ωn∈Ωi

∑

θk∈Θm

sR(Ωn, θk), (12)

dLS =
∑

Ωn∈Ωi

∑

θk∈Θm

1, (13)

where SR(Ωn, θk) is the real part of S(Ωn, θk) = s(Ωn, θk)s(Ωn, θk)H

and sR(Ωn, θk) is the real part of s(Ωn, θk).
The solution to the minimization of (10) is given by

wLS = Q−1
LSa (14)

In the above formulation, there is no constraint to guar-
antee a frequency invariance property. we need to introduce
a frequency invariance controlling element into the design
and it is denoted as SV (spatial variation), defined as

SV =
∑

Ωn∈Ωi

∑

θk∈ΘF I

∣∣wT s(Ωn, θk)− wT s(Ωr, θk)
∣∣2

(15)
where ΘFI represents the direction range in which frequency
invariance is considered. It can be either the main beam di-
rection area or the whole angle range, for example, from 0◦

to 180◦ for a linear array. Without loss of generality, here
we will always consider the full angle range. Ωr is a fixed
reference frequency. The parameter SV is a measurement
of the Euclidean distance between the response at the fixed
reference frequency Ωr and that at all the other operating
frequencies over a range of directions in which frequency
invariance is considered. When the beamformer has a fre-
quency invariant response, the value of SV will be zero.

Since the frequency invariance property is expected to
be held also in the sidelobe region, we only need to min-
imize the spectrum energy of the beamformer at the refer-
ence frequency Ωr over the sidelobe region, which is given
by

J1 =
∑

θk∈Θs

∣∣wT s(Ωr, θk)
∣∣2 (16)
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Moreover, the unity response over the whole frequency
band of interest in the look direction in the original formula-
tion can be replaced by just constraining the response of the
beamformer at the reference frequency in the look direction
θr to be unity, which is given by

wT s(Ωr, θr) = 1 (17)

Then, a constrained least squares formulation of the FIB
design problem is obtained by combining (15), (16) and (17)

JCLS =
N−1∑
n=0

K−1∑

k=0

∣∣wT s(Ωn, θk)− wT s(Ωr, θk)
∣∣2

+ β
∑

θk∈Θs

∣∣wT s(Ωr, θk)
∣∣2

subject to wT s(Ωr, θr) = 1
(18)

where N and K are the number of samples chosen uni-
formly over the frequency and the angle ranges considered
for frequency invariance, respectively, and β is a trade off
parameter between the frequency invariance property and
the sidelobe attenuation. We can rewrite (18) as

JCLS = wT QCLSw subject to s(Ωr, θr)Hw = 1 (19)

where

QCLS =

N−1∑
n=0

K−1∑

k=0

Re{(s(Ωn, θk)− s(Ωr, θk))

(s(Ωn, θk)− s(Ωr, θk))H}
+ β

∑

θk∈Θs

S(Ωr, θk)R

(20)
where Re{•} is the real part of its variable.

Note that s(Ωr, θr) is complex-valued and we can change
the single complex constraint into two real ones as follows

CT w = f (21)

where C = [s(Ωr, θr)R, s(Ωr, θr)I ] and f = [1, 0]T

Then we rewrite (19) as

JCLS = wT QCLSw subject to CT w = f (22)

The problem in (22) can be solved by the Lagrange mul-
tipliers method directly and its solution is given by

w = Q−1
CLSC(CT QCLSC)−1f (23)

In addition, the constrained optimization problem in (22)
can be transformed into an unconstrained one in a similar

way as in the area of linear constrained minimum variance
beamforming [19, 20]. The basic idea is to decompose the
coefficient vector w into two orthogonal components wq

and −v as
w = wq − v (24)

where wq lies in the range of matrix C and v is in the null
space of C, i.e. the space of all v fulfilling CT v = 0. To-
gether the range and null space of a matrix span the en-
tire space. So this decomposition can be used to represent
any w. To meet the constraint equation (21), we must have
CT wq = f, then we have

wq = (CT )†f = C(CT C)−1f (25)

where {·}† is the pseudo-inverse operation.
The vector v can be expressed as a linear combination

of the basis vectors of the null space of C

v = Bwa (26)

where B satisfying CT B = 0 can be obtained from C us-
ing orthogonalization methods, such as the singular value
decomposition, and wa is given by

wa = (BT QCLSB)−1BT QCLSwq . (27)

With wa, wq and B, we can obtain the final solution for w.

4. DESIGN EXAMPLE

To show the effectiveness of the proposed methods, we give
four design examples with either broadside or off-broadside
main beams.

The dimension of the array is 14 × 16, i.e. 14 sensors
and with each one followed by a 16-tap FIR filter. The array
spacing is assumed to be half the wavelength corresponding
to the maximum frequency π so that µ equals one. The
frequency range of interest is set to be [0.4π, 0.9π]. The
fixed reference frequency is Ωr = 0.6π and β = 0.05.

Firstly we show examples with a broadside main beam,
i.e. the look direction is θ = 90◦. The sidelobe region is
[0◦, 75◦] ∪ [105◦, 180◦]. The resultant beam pattern with
the solution in (23) is shown in Fig. 2 and the one with
the solution in (24) is shown in Fig. 3, both of which ex-
hibit good frequency invariant properties over the frequency
range [0.4π, 0.9π] with a satisfactory sidelobe attenuation.

Now we change the look direction to θ = 60◦ and the
sidelobe region to [0◦, 45◦]∪ [75◦, 180◦]. As seen from Fig.
4 and Fig. 5, the design results are satisfactory in terms of
both frequency invariance and sidelobe attenuation.

5. CONCLUSION

A least squares formulation for the design of frequency in-
variant beamformers has been proposed with two solutions
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Figure 2: The designed beam pattern using the solution in
(23) with its main beam at θ = 90◦.
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Figure 3: The designed beam pattern using the solution in
(24) with its main beam at θ = 90◦.
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Figure 4: The designed beam pattern using the solution in
(23) with its main beam at θ = 60◦ .

020406080100120140160180

0.4

0.5

0.6

0.7

0.8

0.9

−80

−70

−60

−50

−40

−30

−20

−10

0

DOA θ

Ω/π

ga
in

/[d
B

]

Figure 5: The designed beam pattern using the solution in
(24) with its main beam at θ = 60◦ .
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provided. One is based on the Lagrange multipliers method
and the other one is based on an orthogonal decomposition
of the coefficient vector to transform the constrained design
problem into an unconstrained one. Examples including
both broadside and off-broadside main beam designs were
provided, clearly showing the effectiveness of the proposed
approach.
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