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ABSTRACT

The difficulties and possibilities connected to indoor posi-
tioning suggest using several sources of navigational infor-
mation. Apart from the signal processing of the individual
sources this gives rise to the need for information fusion.
This article aims at presenting and describing the signal
processing methods and issues faced when constructing a
navigation system based on a local ultra wide band (UWB)
ranging system and an inertial navigation system (INS). The
signal processing methods within the individual systems are
described together with techniques for fusing the informa-
tion from them. Finally, filtering results of experimental data
is presented with expected convergence properties and posi-
tioning accuracy of below±4 cm.

1. INTRODUCTION

The applications in which indoor positioning information is
critical or beneficial are numerous, efficient travelling, indus-
trial automation, and cargo handling to mention a few. How-
ever, in comparison with an outdoor environment, an indoor
environment adds several limitations and difficulties as well
as possibilities for a positioning system. For example, the
nature of the environment, including many obstacles and nar-
row passages, requires high accuracy. Further, an indoor en-
vironment often has an attenuated global positioning system
(GPS) signal making the GPS, the current paradigm of radio
navigation, difficult to use. On the other hand, the limited ex-
tent and controlled nature of the indoor environment adds the
possibility of external infrastructure and several studies show
the feasibility of using local radio positioning system forin-
door positioning [1][2][3]. However, apart from attenuating
the GPS signal, the structures and infrastructures enclosing
and traversing the indoor environment will disturb and at-
tenuate the radio signal used by the local radio positioning
system as well. Thus, additional sources providing comple-
mentary navigational information are desirable. Finally,the
nature of many of the applications, for which an indoor posi-
tioning system would be aimed, puts limitations on the size
and the cost of the system.

Exploring the possibilities of a radio based local indoor
positioning system, a low cost navigation system based on a
UWB radio ranging system and an INS, was built. A system
level presentation of the system can be found in [4].

Apart from the signal processing of the individual sig-
nals, using two sources of navigational information adds the
issue of fusing the information in a sensible manner. This ar-
ticle aims at presenting the signal processing and information
fusion methods and issues faced when designing and imple-
menting the system.

The outline of the article is as follows. In Section 2 the

individual systems, the UWB radio ranging system and the
INS, are presented. In Section 3 the method of fusing the
navigational information from the two systems is described.
In Section 4 experimental results are presented.

1.1 Notation

Vector quantities are denoted with boldface letters, e.g.x,
and matrix quantities are denoted with capital boldface let-
ters, e.g.P. The scalark is used as time index. Estimated
states will be indicated with a circumflex, e.g. ˆxk, while mea-
sured quantities will be indicated with a tilde, e.g. ˜zl ,k. 0 and
I will be used to denote zero vectors and matrices, and iden-
tity matrices, of indicated sizes. The symbol≡ will be used
when new quantities are defined from old ones. The symbols
:= will be used when variables are assigned new values. The
euclidean-2-norm will be written as| · |. The transpose of a
vector or matrix is indicated with superscripted T.

2. NAVIGATION SYSTEM

The navigation system consists of two complementary sub-
systems, a UWB radio ranging system and an INS. Further,
the system can be divided into a user part, the navigation
unit, consisting of an inertial measurement unit (IMU) and
a UWB master unit together with a PC, and an infrastruc-
ture part consisting of UWB slave units of known location
in the operation area. The UWB radio ranging system works
by measuring the distance between the master unit and the
slave units, see Section 2.1, while the INS uses the IMU, pro-
viding measurement of linear acceleration and angular rates,
to propagate mechanisation equations to obtain estimates of
navigational states, see Section 2.2. The propagation of the
mechanisation equations as well as the information fusion is
performed on the PC.

2.1 Ultra wide band radio ranging system

The UWB radio ranging system measures distance between a
master unit and a slave unit by measuring the round trip time
(RTT) of a UWB radio pulse. The logical circuit architecture
of the master and the slave unit is based on the system pre-
sented in [5] while the UWB radio pulse generator is based
on the step recovery diode design presented in [6].

In short, the master unit activates a slave unit by transmit-
ting a unique slave identity code. Upon receiving the identity
code the slave unit will switch into an echo mode for a fixed
time period during which, after a fixed time delay, it will
answer each received UWB radio pulse with another UWB
radio pulse generating a “round trip”. After sending the iden-
tity code the master transmits a series of pulses. After each
pulse it listens for the retransmitted pulse and measures the
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RTT with an analogue power detector and a time-to-digital
converter. After the fixed time period in the echo mode the
slave will exit the mode and again start listening for its iden-
tity code and the master can activate another unit. While a
specific unit is activated, all the others are in a disabled state
for the same fixed time period.

Ideally, with infinite bandwidth and no measurement
noise, the RTT-to-distance relation should read

tRTT =
2 ·zl

c
+ t0,master+ t0,slavel

wheretRTT is the RTT,zl the distance between master and
slave unit l , c the speed of light, andt0,master and t0,slavel
the delays introduced by the hardware in the master and
slave unit, respectively. However, as explained in [5], due
to limited bandwidth and measurement noise, the true RTT-
to-distance relation shows an approximately linear (depend-
ing on pulse shape) relation but with a slightly higher slope
kRTT, which has to be determined by calibration. Also, the
hardware time delays,t0,masterandt0,slavel , are due to compo-
nent manufacturing tolerances, detector threshold level,and
unknown inter-equipment signal path, i.e. cabling length,
not known beforehand. However, since only one master
unit was available they had to be determined in pairs, i.e.
t0,l ≡ t0,master+ t0,slavel , for each slave unitl . Finally adding
a measurement noise termn0, scaled bykRTT, whose vari-
ance, due to limited bandwidth and free space path loss, is
dependent on RTT, gives the RTT-to-distance relation

tRTT = kRTT ·zl + t0,l +n0 ·kRTT,

for slavel and distancezl , and solving for the distance

zl =
tRTT− t0,l

kRTT
+n0.

Further, as explained in Section 3, to correctly combine
the distance measurement with the INS, the covariance of
the measurement noise as a function of RTT had to be de-
termined. Based on calibration data an exponential function
was found to describe the observed covariance well,

R= cov(n0,n0) = σ2
0 exp(kσ2zl ). (1)

As shown in [4] the range measurements can be used by
themselves to estimate position and velocity by using a track-
ing filter, but here only using the unfiltered distance measure-
ments to support the INS will be treated. However, note that,
even though the distance measurements can be used to infer
the position, they contain little information about orientation.
Also, the mere dependence on position (as in contrast to the
inertial measurements which depend on the second deriva-
tive of position, acceleration) and the slow update rate (10
Hz) give a poor dynamic range.

2.2 Inertial navigation

The INS can be divided into a sensor part (the IMU), and a
computational part. In our case the IMU is an Inertia-LinkR©

from MicroStrainR©. The IMU contains temperature com-
pensated MEMS triaxial accelerometer and gyroscope. The
computational part is implemented on a PC to which the IMU
is connected.

The navigational states are collected in a state vectorx,
composed of subvectors of positionr, velocityv, and attitude
θ , all in three dimensions,

xnav = [r v θ ]
T
,

while the linear accelerationa, and the angular velocityω , in
three dimensions alike, are collected in a system input vector
u,

u = [a ω ]
T
.

The navigational states, driven by the linear accelerationand
angular velocity, propagate according to some nonlinear dif-
ferential equation,

ẋnav(t) = fnav
(
xnav(t),u(t)

)
,

and the measured linear acceleration and angular velocity ˜uk,
are functions of the true linear acceleration and angular ve-
locity uk, sensor states , temperature, time, etc, plus a mea-
surement noisen1,k,

ũk = fmeas(uk, . . . )+n1,k.

Assuming the dominant contribution offmeas(·) to be an ad-
dition of bias terms (more sensor states could easily be added
to the system), the measurements are modelled as

ũk = uk−bk +n1,k

whereb is composed of slowly varying accelerometer biases
ba and gyroscope biasesbω ,

b = [ba bω ]T.

The variation (drift) of the bias terms is assumed to be driven
by some stochastic zero mean noise. Finally, appending the
bias terms to the navigational states,

x = [xnav b]T,

and using a discrete approximation offnav(·) the full state
vectorx, are assumed to propagate according to a difference
equation

xk+1 = fins(xk, ũk)+n2,k

where the noise termn2,k, describs the deviation from the
ideal fnav(·), caused by measurement noise and model ap-
proximation and discretization errors, and the slow drift in
the bias states. The noise term is assumed zero mean.

Given an initial estimate of the system states, ˆx0, and
inertial measurements, ˜uk, the INS can give estimates of the
system states for allk by propagating the estimates according
to

x̂k+1 = fins(x̂k, ũk). (2)

However, since the IMU in use has a strapdown configu-
ration of the individual sensors, the measurements will be
done in a sensor frame different from the navigation frame.
Further, according to the equivalence principle, the gravita-
tional acceleration will be indistinguishable from a true ac-
celeration and hence must be compensated for. This means
that the propagation of the mechanization equations will have
to be performed in several steps. With the current estimate
of orientation the measurement will first have to be trans-
formed into the navigation frame. After this a gravity model
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Figure 1: Conceptional diagram of a strap-down INS. The
dash arrows indicate points for insertion of calibration (aid-
ing) data.

is used to compensate for the gravitational acceleration, and
finally the accelerometer and gyroscope measurements are
integrated to achieve position, velocity, and attitude. Asfor
the bias states, which are assumed driven by a white noise
(random walk), their propagation according to equation (2)
will only be identity. A block diagram description of the INS
and hence the effect of equation (2), can be seen in Figure 1.
Detailed description of common implementations of (2) can
be found in standard inertial navigation litterature [7][8].

As described above, the INS is selfcontained and with the
correct state initialization capable of giving estimates (rela-
tive to the initial values) of a complete set of navigational
states (position, velocity, and attitude) for infinite time. In-
ertial measurements can be done at high rates (in the present
system 100Hz), which together with the fact that they corre-
spond to the second and first derivative of position and orien-
tation, gives a high dynamic range, and they are essentially
immune to external disturbances. However, due to the inte-
grative nature of the INS, amplifying low frequency noise,
and the low performance solid state sensors in use, the errors
will swiftly grow beyond acceptable levels after only a few
seconds of stand alone use.

3. INFORMATION FUSION

As noted, the INS will have unbounded errors and only rela-
tive navigational information while the UWB range measure-
ments do not provide attitude information and give a poor
dynamic range. By combining these two systems we can
compensate for these shortcomings and obtain better naviga-
tional information than from any individual system. This is
done with a range aided INS architecture.

In short, as shown in the illustration of the system in Fig-
ure 2, in the range aided INS architecture the INS provides
the main navigational system. Hence, the extended Kalman
filter (EKF) does not directly estimate the INS states but in-
stead estimates the error in the INS states based on the dis-
crepancy of the estimated range, calculated from the esti-
mated INS states, and the range measured by the UWB radio
ranging system. The estimated errors are then fed back to the
INS for correction of its states. The advantage of this struc-
ture in comparison with a tracking filter is that the compu-
tationally costly covariance update is done at the lower pace
of the range measurement and that the number of states is
reduced since acceleration and angular velocity are not esti-
mated. Also, it allows for a modular setup since the INS is
left more or less untouched.
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Figure 2: Conceptional diagram of the information fusion.

3.1 Error model

Given an estimation of the INS state ˆxk, define error states as

δxk ≡ xk− x̂k.

From the mechanisation equations (2) and the above defi-
nition a discrete approximation of the differential equation
describing the propagation of the error states is found,

δxk+1 = ferr(δxk,xk, ũk)+n3,k.

Derivation of error equations in various coordinate systems
can be found in [7][8].

3.2 Range error

To utilize the EKF structure the range measurements need to
be related to the error states. From the knowledge of the po-
sition rslavel of the UWB slave unitl , to which we refer the
current range measurement, and our true and estimated posi-
tions, r̂k andrk, a range and a range prediction are defined
and calculated as

zl ,k ≡ |rslavel − rk| and ẑl ,k = |rslavel − r̂k|.

In accordance with previous error definitions the error in the
range predictionδzl ,k and the measured error in the range
predictionδ z̃l ,k are defined as

δzl ,k ≡ zl ,k− ẑl ,k and δ z̃l ,k ≡ z̃l ,k− ẑl ,k.

The measured range is assumed to relate to the true range via
an additive measurement noise,

z̃l ,k = zl ,k +n4,k,

and therefore so is the measured error in the range prediction
to the true error in range prediction,

δ z̃l ,k = z̃l ,k− ẑl ,k = zl ,k +n4,k− ẑl ,k = δzl ,k +n4,k.

To spell it out we have

δ z̃l ,k = δzl ,k +n4,k = zl ,k− ẑl ,k +n4,k

= |rslavel − rk|− |rslavel − r̂k|+n4,k

= |rslavel − (δrk + r̂k)|− |rslavel − r̂k|+n4,k

= hl ,k(δxk)+n4,k

where we have defined the measurement function,hl ,k(·), as

hl ,k(δxk) ≡ |rslavel − (δrk + r̂k)|− |rslavel − r̂k|.
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3.3 Error estimation

The filtering consists of two phases, prediction and update.
In the prediction phase the state estimations and the estima-
tion error covariances are propagated. However, since it is
the error states we are estimating, any nonzero estimation
should be fed back to the INS. Naturally it turns out that

ferr(015×1,xk, ũk) = 015×1

and hence once the estimated error states are fed back to the
INS (and therefore set to zero) they will remain identical to
zero throughout the prediction phase. In other words, the
feedback loop saves us from having to propagate the error
states and from the prediction phase perspectiveδ x̂k = 0 for
all k. This does not hold true for the estimation error covari-
ances,

Pk = cov
(
(δxk− δ x̂k),(δxk− δ x̂k)

)
,

which propagate as

Pk+1 = FkPkF
T
k +Qk

where

Fk =
∂ ferr

∂δx

∣
∣
∣
∣
δ x̂k,ũk

and Qk = cov(n3,k,n3,k).

Now, as soon as a range measurement is available, the
filter will enter the update phase in which the error states
are updated with the new knowledge that the range mea-
surement adds. As described in Section 3.2 a range predic-
tion is calculated and the measured error in the range pre-
diction is formed. The new information in the measured
range prediction error is in the innovationyk, see below.
However, because of the feedback loopδ x̂k = 015×1, giving
hl ,k(δ x̂k) = 0, and therefore the innovation is the measured
error in the range prediction itself,

yk = δ z̃k−

=0
︷ ︸︸ ︷

hl ,k(δ x̂k) = δ z̃k.

Further, to update the error state estimation, the Kalman gain,
Kl ,k, is needed, which depends on the observation matrix,

Hl ,k =
∂hl

∂δx

∣
∣
∣
∣
δ x̂k

.

Once againδ x̂k = 0 and therefore

Hl ,k =

[
r̂x,k−rx,slavel
|rslavel

−r̂k|

r̂y,k−ry,slavel
|rslavel

−r̂k|

r̂z,k−rz,slavel
|rslavel

−r̂k|
01×12

]

(3)

and together with the estimation error covariance the Kalman
gain is calculated as

Kl ,k = PkH
T
l ,k(Hl ,kPkH

T
l ,k +Rk)

−1

whereRk comes from equation (1).
Thus, when a range measurement is available, the error

states are updated as

Table 1: Summary of the signal processing algorithm in the
UWB radio range aided INS navigation system.

x̂0 := xinit , P0 := Pinit , δ x̂0 := 015×1
loop k

if z̃l ,k exist : l
Hl ,k = (see (3)),Rk = (see (1))
Kl ,k = PkH

T
l ,k(Hl ,kPkH

T
l ,k +Rk)

−1

δ x̂k = Kl ,k(z̃l ,k−|rslavel − r̂k|)
Pk := (I15×15−Kl ,kHk)Pk
x̂k := x̂k + δ x̂k, δ x̂k := 015×1

endif
x̂k+1 = fins(x̂k, ũk)
Pk+1 = FkPkF

T
k +Qk

endloop

δ x̂k : =

=015×1
︷︸︸︷

δ x̂k +Kl ,kyk

= Kl ,k
(
δ z̃l ,k−

=0
︷ ︸︸ ︷

hl ,k(δ x̂−
k )

)

= Kl ,k(z̃l ,k−|rslavel − r̂k|),

and hence also the estimation error covariances have to be
updated,

Pk := (I15×15−Kl ,kHl ,k)Pk.

Finally, the estimated error states are fed back to the INS,
which also necessarily sets the estimated error states to zero,

x̂k := x̂k + δ x̂k ⇒ δ x̂k := 015×1.

To start the INS and the information fusion, the INS
states, the error states, and the estimation error covariances
need to be initialized, i.e. ˆx0, δ x̂0, andP0 set. However, due
to the feedback loop the system is not sensitive to this and
will normally converge as long as the values are within the
right order of magnitude.

A summary of the information fusion algorithm can be
found in Table 1. Details on and motivation for the Kalman
filter can be found in standard estimation literature, e.g. [9].

4. EXPERIMENTAL RESULTS

Presented data were collected in an office environment with
line-of-sight condition to the slaves along the whole tra-
jectory. Four slave units were placed in a rectangle while
the navigation unit was swiftly, without turning it, moved
counter clockwise in two laps around an 1x1 meter square.
The resulting estimated position and slave constellation can
be seen in Figure 3, showing the first lap, and Figure 4, show-
ing the second lap. The resulting orientation estimate, for
both laps and an initial stationary phase, can be seen in Fig-
ure 5. The initial jump to 20◦ is a mere filter artifact and the
concurrent orientation error state estimation error covariance
is large. The initial INS state vector,x0, as well as the error
state vector,δx0, were both initialized to zero while the esti-
mation error covariances were initiated to large values. The
position as well as the roll and pitch converge swiftly during
the initial stationary phase while the yaw starts to converge
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Figure 3: Positioning results from the range aided INS. First
lap (counter clockwise) shown with start in the lower left cor-
ner. The incorrect orientation estimate at the start and the
convergence of the same can clearly be seen in the estimated
trajectory of the first (lower) side.
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Figure 4: Positioning results from the range aided INS. Sec-
ond lap shown with start in the lower right corner. The orien-
tation estimate has converged and the error are within 4 cm
of the true trajectory.

as soon as there is an acceleration in the horizontal plane
and has reached a steady orientation estimate for the second
lap. The erroneous orientation estimates during the first lap
can clearly be seen, especially along the first (lower), side
but also from the bulging appearance of the other sides. This
behavior is gone around the second lap for which the orienta-
tion has converged. The position discrepancy for the second
lap between the estimated and the manually measured trajec-
tory is below 4cm. However, due to difficulties of measuring
the exact position of the antennas and the system in motion,
the uncertainty of the true trajectory is of about the same or-
der of magnitude. The same holds for the true orientation
but the correct behavior of the position estimates around the
second lap as in contrast to the first lap indicates that approx-
imately the right yaw has been estimated.
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Figure 5: Estimated orientation from the range aided INS.
0-60s is a static phase. The first lap is run over the period of
60-100s and the second lap over 100-140s.
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