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ABSTRACT individual systems, the UWB radio ranging system and the
The difficulties and possibilities connected to indoor posi INS; aré presented. In Section 3 the method of fusing the
tioning suggest using several sources of navigationairinfo Navigational information from the two systems is described
mation. Apart from the signal processing of the individual!M S€ction 4 experimental results are presented.
sources this gives rise to the need for information fusion, .
This article aims at presenting and describing the signafl-1 Notation
processing methods and issues faced when constructing\actor quantities are denoted with boldface letters, eg.
navigation system based on a local ultra wide band (UWBhnd matrix quantities are denoted with capital boldface let
ranging system and an inertial navigation system (INS). Theers e.g.P. The scalak is used as time index. Estimated
signal processing methods within the individual systerss arstates will be indicated with a circumflex, exg., While mea-
described together with techniques for fusing the informasyred quantities will be indicated with a tilde, ezg.”0 and
tion from them. Finally, filtering results of experimentaltd 1 || pe used to denote zero vectors and matrices, and iden-
is presented with expected convergence properties and posjty matrices, of indicated sizes. The symboMwill be used

tioning accuracy of below:4 cm. when new quantities are defined from old ones. The symbols
:= will be used when variables are assigned new values. The
1. INTRODUCTION euclidean-2-norm will be written ds|. The transpose of a

The applications in which indoor positioning informatian i vector or matrix is indicated with superscripted T.

critical or beneficial are numerous, efficient travellinguis-
trial automation, and cargo handling to mention a few. How- 2. NAVIGATION SYSTEM
ever, in comparison with an outdoor environment, an indoo
environment adds several limitations and difficulties a#i we
as possibilities for a positioning system. For example, th

The navigation system consists of two complementary sub-
systems, a UWB radio ranging system and an INS. Further,

fth , + includi bstacl nd he system can be divided into a user part, the navigation
nature of the environment, including many obstacles and naf,,; ‘consisting of an inertial measurement unit (IMU) and

row passages, requires high accuracy. Further, an indeor e yyg master unit together with a PC, and an infrastruc-
vironment often has an attenuated global positioning 8yste e hart consisting of UWB slave units of known location
(GPS) signal making the GPS, the current paradigm of radigy, i operation area. The UWB radio ranging system works

navigation, difficult to use. On the other hand, the limitgel e 0 a4ring the distance between the master unit and the
tent and controlled nature of the indoor environment ades thslave units, see Section 2.1, while the INS uses the IMU, pro-

possibility of external infrastructure and several stadieow viding measurement of linear acceleration and angulassate

the feasibility of using local radio positioning system iof "5 agate mechanisation equations to obtain estimétes o

dhoorG%ogitipnin? [ﬁ][21[3]- Howeve:j, arf)art froT atenudi o vigational states, see Section 2.2. The propagatioreof th
the signal, the structures and infrastructures emgosi o ohanjisation equations as well as the information fusion i
and traversing the indoor environment will disturb and at- erformed on the PC.

tenuate the radio signal used by the local radio positionin
system as well. Thus, additional sources providing comples . . .
mentary navigational information are desirable. Findlig 2.1 Ultrawide band radio ranging system
nature of many of the applications, for which an indoor posi-The UWB radio ranging system measures distance between a
tioning system would be aimed, puts limitations on the sizenaster unit and a slave unit by measuring the round trip time
and the cost of the system. (RTT) of a UWB radio pulse. The logical circuit architecture
Exploring the possibilities of a radio based local indoorof the master and the slave unit is based on the system pre-
positioning system, a low cost navigation system based onsented in [5] while the UWB radio pulse generator is based
UWSB radio ranging system and an INS, was built. A systeron the step recovery diode design presented in [6].
level presentation of the system can be found in [4]. In short, the master unit activates a slave unit by transmit-
Apart from the signal processing of the individual sig- ting a unique slave identity code. Upon receiving the idgnti
nals, using two sources of navigational information adé@s thcode the slave unit will switch into an echo mode for a fixed
issue of fusing the information in a sensible manner. This artime period during which, after a fixed time delay, it will
ticle aims at presenting the signal processing and infdonat answer each received UWB radio pulse with another UWB
fusion methods and issues faced when designing and impleadio pulse generating a “round trip”. After sending thenide
menting the system. tity code the master transmits a series of pulses. After each
The outline of the article is as follows. In Section 2 the pulse it listens for the retransmitted pulse and measuees th
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RTT with an analogue power detector and a time-to-digital The navigational states are collected in a state vegtor

converter. After the fixed time period in the echo mode thecomposed of subvectors of positipyvelocityv, and attitude

slave will exit the mode and again start listening for itsnide 6, all in three dimensions,

tity code and the master can activate another unit. While a

specific unit is activated, all the others are in a disablatést Xpav=1[ Vv 0]

for the same fixed time period. . . . o
Ideally, with infinite bandwidth and no measurementWhile the linear acceleratiom and the angular velocity, in

noise, the RTT-to-distance relation should read three dimensions alike, are collected in a system inpubwvect

u,

T
)

2-z —la .
trRTT = —— +lomastert tO.SIave ) . v [ ) ] ) .
¢ The navigational states, driven by the linear acceleratioh

wheretgrT is the RTT,z the distance between master and@ngular velocity, propagate according to some nonlingar di
slave unitl, ¢ the speed of light, anthmaster and to siave ferential equation,

the delays introduced by the hardware in the master and ) = f ) ult

slave unit, respectively. However, as explained in [5], due Xnau(t) = frav(xnau(t), u(t)),

to limited bandwidth and measurement noise, the true RT Ty, the measured linear acceleration and angular velagity ~
to-distance relation shows an approximately linear (dépen re fynctions of the true linear acceleration and angular ve

ing on pulse shape) relation but with a slightly higher slopg.;; sensor states . temperature. time. etc. plus a mea-
krtT, Which has to be determined by calibration. Also, thesure);nlg(ﬁt Noisey ' P ' » €6 P

hardware time delay$ masterandto siave, are due to compo-
nent manufacturing tolerances, detector threshold lewrl, i = fmead Uk, ... ) + N1y

unknown inter-equipment signal path, i.e. cabling length, '

not known beforehand. However, since only one masteAssuming the dominant contribution éfead-) to be an ad-
unit was available they had to be determined in pairs, i.edition of bias terms (more sensor states could easily bechdde
to, = tomaster+ tosiave, fOr each slave unit Finally adding to the system), the measurements are modelled as

a measurement noise temmy, scaled bykgrt, whose vari-

ance, due to limited bandwidth and free space path loss, is Uy = ug — bx+nyk

dependent on RTT, gives the RTT-to-distance relation ] ) )
whereb is composed of slowly varying accelerometer biases

trTT = KRTT - 2 +to) + No - KRTT, b, and gyroscope biasés,,
for slavel and distance;, and solving for the distance b=[ba by
trTT —toy The variation (drift) of the bias terms is assumed to be drive
= TT, =+ No. by some stochastic zero mean noise. Finally, appending the

bias terms to the navigational states,

Further, as explained in Section 3, to correctly combine B bIT
the distance measurement with the INS, the covariance of X = [Xnav b]’,
the measurement noise as a function of RTT had to be d%

termined. Based on calibration data an exponential functiovggtgringrg g;ssirriteede;gpr;)OX|rga;tc;nafgfg\é(r-éi;hetéualll dc’itffaet?en ce
was found to describe the observed covariance well, ’ propag 9

equation
Xkr1 = fins(xk, Tik) +n2k

where the noise term,y, describs the deviation from the

As shown in [4] the range measurements can be used hgleal fqa(-), caused by measurement noise and model ap-
themselves to estimate position and velocity by using &trac proximation and discretization errors, and the slow drift i
ing filter, but here only using the unfiltered distance measur the bias states. The noise term is assumed zero mean.
ments to support the INS will be treated. However, note that, Given an initial estimate of the system states, and
even though the distance measurements can be used to infieertial measurementsy, the INS can give estimates of the
the position, they contain little information about origtibn.  system states for atliby propagating the estimates according
Also, the mere dependence on position (as in contrast to thHe
inertial measurements which depend on the second deriva- X1 = Fins(Xk, Uk)- (2)
tive of position, acceleration) and the slow update rate (1
Hz) give a poor dynamic range.

R= cov(no, no) = o3 explky22). @)

(however, since the IMU in use has a strapdown configu-
ration of the individual sensors, the measurements will be
22 Inertial navigation donein a sensor frame differ_ent from th(_e navigation frame.

' Further, according to the equivalence principle, the geaavi
The INS can be divided into a sensor part (the IMU), and dional acceleration will be indistinguishable from a true a
computational part. In our case the IMU is an Inertia-l%hk celeration and hence must be compensated for. This means
from MicroStrai®. The IMU contains temperature com- that the propagation of the mechanization equations wittha
pensated MEMS triaxial accelerometer and gyroscope. Th® be performed in several steps. With the current estimate
computational partis implemented on a PC to which the IMUof orientation the measurement will first have to be trans-
is connected. formed into the navigation frame. After this a gravity model
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Figure 1: Conceptional diagram of a strap-down INS. Thg
dash arrows indicate points for insertion of calibratioiul{a

ing) data. ) ) ) . . .
Figure 2: Conceptional diagram of the information fusion.

is used to compensate for the gravitational acceleratiom, a 3-1 Error model
finally the accelerometer and gyroscope measurements a@ven an estimation of the INS statg, tefine error states as
integrated to achieve position, velocity, and attitude.fés .
the bias states, which are assumed driven by a white noise OXk = Xk — Xk-
(random walk), their propagation according to equation (2)
will only be identity. A block diagram description of the INS . . .
and hence the effect of equation (2), can be seen in Figure Tr0m theé mechanisation equations (2) and the above defi-
Detailed description of common implementations of (2) carition & discrete approximation of the differential eqaat
be found in standard inertial navigation litterature [J][8  cd€Scribing the propagation of the error states is found,

As described above, the INS is selfcontained and with the Oxkt1 = ferr(dxk, Xk, k) + N3k
correct state initialization capable of giving estimatesg- o . . ) )
tive to the initial values) of a complete set of navigationalDerivation of error equations in various coordinate system
states (position, velocity, and attitude) for infinite time-  ¢an be found in [7][8].
ertial measurements can be done at high rates (in the pres%né
system 100Hz), which together with the fact that they corre™¢ Rangeerror
spond to the second and first derivative of position and erienTo utilize the EKF structure the range measurements need to
tation, gives a high dynamic range, and they are essentiallye related to the error states. From the knowledge of the po-
immune to external disturbances. However, due to the intesition rgjave 0of the UWB slave unit, to which we refer the
grative nature of the INS, amplifying low frequency noise, current range measurement, and our true and estimated posi-
and the low performance solid state sensors in use, theserraions, rx andry, a range and a range prediction are defined
will swiftly grow beyond acceptable levels after only a few and calculated as

seconds of stand alone use. . . -
2k = |rslavg —Tk| and Z k= |rsjave — Tk/-

3. INFORMATION FUSION In accordance with previous error definitions the error i th

. range predictiordz x and the measured error in the range
As noted, the INS will have unbounded errors and only relapredictions?  are defined as

tive navigational information while the UWB range measure-

ments do not provide attitude information and give a poor 0zk=2x—2x and OZx=Zyx—Zx.

dynamic range. By combining these two systems we ca

compensate for these shortcomings and obtain better ravig

tional information than from any individual system. This is

done with a range aided INS architecture. Zk=72Zx+Nak
In short, as shown in the illustration of the system in Fig- . . -

ure 2, in the range aided INS architecture the INS provide@nd therefore so is the measured error in the range predlictio

the main navigational system. Hence, the extended Kalmaf the true error in range prediction,

filter (EKF) does not directly estimate the INS states but in- OF . =F 1 — 5 = 5, = )

stead estimates the error in the INS states based on the dis- A=Ak A= ek Nake— A= 024+ M

crepancy of the estimated range, calculated from the estfo spell it out we have

mated INS states, and the range measured by the UWB radio s _ 5

ranging system. The estimated errors are then fed back to the 0% = 02kt Nak =2k~ Ak TNk

INS for correction of its states. The advantage of this struc = |rsiave — Tk| — [Tsiave — Fk| + Nak

ture in comparison with a tracking filter is that the compu- = |I'slavg — (Ork+ Ti)| — |rslave — Tk| + Nak

tationally costly covariance update is done at the loweepac — hy (BxK) 41

of the range measurement and that the number of states is = kO] Tk

reduced since acceleration and angular velocity are niet esivhere we have defined the measurement functiog;), as

mated. Also, it allows for a modular setup since the INS is . ~

left more or less untouched. hi k(0%) = |rsiavg — (Ork + k)| — |rslave — Tk|-

he measured range is assumed to relate to the true range via
additive measurement noise,
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3.3 Error estimation

Table 1: Summary of the signal processing algorithm in the

The filtering consists of two phases, prediction and updateJWB radio range aided INS navigation system.

In the prediction phase the state estimations and the estima™

tion error covariances are propagated. However, since it

the error states we are estimating, any nonzero estimation

should be fed back to the INS. Naturally it turns out that

ferr (015x1, Xk, Uk) = O15x1

and hence once the estimated error states are fed back to the
INS (and therefore set to zero) they will remain identical to
zero throughout the prediction phase. In other words, the
feedback loop saves us from having to propagate the error

states and from the prediction phase perspediije= 0 for

all k. This does not hold true for the estimation error covari-

ances,
Py = cov((dxk — O%k), (dxx — OXk)),
which propagate as
Pi.1=FPF} + Q
where

 Ofer
T 00x

Fy and Qg = cov(nz,ng).

5%,y

Now, as soon as a range measurement is available, t@dated,

X0 := Xinit, Po := Pinit, 0Xo := 015x1
loop k
if 7y exist:l
H, x = (see (3))R« = (see (1))
Kk = P H[[ (H PH[ + Rt
oxk = K k(% x— |rslave — 1)
Py := (I15x15— K|  Hy) Py
endif
&k+l = fins(&kaﬁk)
Py, 1 = FiPyFy + Qx
endloop

is

=015x1

oxx +Kj kyk

~ :OA
=K, (07— h (0% ))

=Kk(Zx— |I'slave — 1),

55\(k .

and hence also the estimation error covariances have to be

Py := (Ins15 — K H k) Py

filter will enter the update phase in which the error states

are updated with the new knowledge that the range me&eijnally, the estimated error states are fed back to the INS,

surement adds. As described in Section 3.2 a range predighich also necessarily sets the estimated error statesdp ze
tion is calculated and the measured error in the range pre-

diction is formed. The new information in the measured
range prediction error is in the innovatigR, see below. _ _ _
However, because of the feedback labfy = 0151, giving To start the INS and the information fusion, the INS

hy k(8%k) = 0, and therefore the innovation is the measuredtates, the error states, and the estimation error covasan
error in the range prediction itself, need to be initialized, i.exg, 0Xxg, andP set. However, due

to the feedback loop the system is not sensitive to this and
will normally converge as long as the values are within the
right order of magnitude.

A summary of the information fusion algorithm can be
found in Table 1. Details on and motivation for the Kalman
filter can be found in standard estimation literature, €p. [

Xk =Xk +0xk = OXk:=015¢1.

)
" —_—l .
Yk = 0Z — hy k(0%k) = O%.

Further, to update the error state estimation, the Kalmam ga
K| x, is needed, which depends on the observation matrix,

4. EXPERIMENTAL RESULTS

Presented data were collected in an office environment with
line-of-sight condition to the slaves along the whole tra-
jectory. Four slave units were placed in a rectangle while
the navigation unit was swiftly, without turning it, moved
counter clockwise in two laps around an 1x1 meter square.
The resulting estimated position and slave constellataon c
be seenin Figure 3, showing the first lap, and Figure 4, show-
) ] ) ] ing the second lap. The resulting orientation estimate, for
and together with the estimation error covariance the Kalmaggth laps and an initial stationary phase, can be seen in Fig-
gain is calculated as ure 5. The initial jump to 20is a mere filter artifact and the
concurrent orientation error state estimation error davee
is large. The initial INS state vectaxy, as well as the error
state vectordxg, were both initialized to zero while the esti-
whereR, comes from equation (1). mation error covariances were initiated to large values Th
Thus, when a range measurement is available, the errgosition as well as the roll and pitch converge swiftly dgrin
states are updated as the initial stationary phase while the yaw starts to coneerg

H, oh

KT 08x g,

Once agaixy = 0 and therefore

rA><.k*r><,slavq rAy.k*ry,slavq fz.k*rz.slave;

H, x

®3)

O1x12

- "‘slavq —1y "‘slavq —1y] "‘slavq —T]

Kk =PH (H P H +R) !
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Figure 3: Positioning results from the range aided INS.tFirsFigure 5: Estimated orientation from the range aided INS.
lap (counter clockwise) shown with startin the lower left-co 0-60s is a static phase. The first lap is run over the period of
ner. The incorrect orientation estimate at the start and th@0-100s and the second lap over 100-140s.
convergence of the same can clearly be seen in the estimated
trajectory of the first (lower) side.
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