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ABSTRACT
A robust music genre classification framework is proposed that
combines the rich, psycho-physiologically grounded properties of
slow temporal modulations of music recordings and the power of
sparse representation-based classifiers. Linear subspace dimension-
ality reduction techniques are shown to play a crucial role within the
framework under study. The proposed method yields a music genre
classification accuracy of 91% and 93.56% on the GTZAN and the
ISMIR2004 Genre dataset, respectively. Both accuracies outper-
form any reported accuracy ever obtained by state of the art music
genre classification algorithms in the aforementioned datasets.

1. INTRODUCTION

Music genre is probably the most popular description of music con-
tent [2], although there is no a commonly agreed definition of music
genre, since it depends on cultural, artistic, or market factors, and
the boundaries between genres are fuzzy [27].

There is evidence that the audio signal carries information about
genre [27, 29]. Most of the music genre classification algorithms
resort to the so-called bag-of-features approach [27], which models
the audio signals by their long-term statistical distribution of short-
time features. Features commonly exploited for music genre clas-
sification can be roughly classified into timbral texture, rhythmic,
pitch content ones, or their combinations [29]. Having extracted de-
scriptive features, pattern recognition algorithms are employed for
their classification into genres. Frequently used classifiers are the
nearest-neighbor (NN), support vector machines (SVMs), or clas-
sifiers, which resort to Gaussian mixture models, linear discrimi-
nant analysis, non-negative matrix factorization (NMF), etc. Sev-
eral common audio datasets have been used in experiments in order
to make the reported classification accuracies comparable. Notable
results on music genre classification are summarized in Table 1.

Psycho-physiological investigations indicate that the acoustic
stimulus is encoded by the primary auditory cortex in terms of its
spectral and temporal characteristics at various degrees of resolu-
tions. This is accomplished by cells whose responses are selective
to a range of spectral and temporal resolutions resulting into a neu-
ral representation [33]. In particular, when the acoustic stimulus
is either speech or music, its perceptual properties are encoded by
slow temporal modulations [28, 7, 9, 25, 24].

Recently, the interest on sparse representations of signals has
revived [3]. The related research has been focused on two aspects
of sparse representations: First, pursuit methods have been devel-
oped for solving the optimization problems which arise, such as the
matching pursuit [18], the orthogonal matching pursuit [23], and
the basis pursuit [6]. Second, overcomplete dictionaries have been
derived, such as the K-SVD algorithm [1]. However, the aforemen-
tioned methods aim at representing the signals rather than classi-
fying them. Furthermore, the dictionary atoms do not possess any
particular semantic meaning as they are chosen from standard bases
such as wavelet, curvelet, Gabor functions, etc. It is worth men-
tioning, that the sparsest representation is naturally discriminative.
Indeed, among all subsets of basis vectors, the subset, which most

Table 1: Notable classification accuracies achieved by music genre
classification approaches.

Reference Dataset Accuracy
Bergstra et al. [5] GTZAN 82.50%
Li et al. [14] GTZAN 78.50%
Panagakis et al. [22] GTZAN 78.20%
Lidy et al. [16] GTZAN 76.80%
Benetos et al. [4] GTZAN 75.00%
Holzapfel et al. [11] GTZAN 74.00%
Tzanetakis et al. [29] GTZAN 61.00%
Holzapfel et al. [11] ISMIR2004 83.50%
Pampalk et al. [21] ISMIR2004 82.30%
Panagakis et al. [22] ISMIR2004 80.95%
Lidy et al. [15] ISMIR2004 79.70%
Bergstra et al. [5] MIREX2005 82.34%
Lidy et al. [16] MIREX2007 75.57%
Mandel et al. [19] MIREX2007 75.03%

compactly expresses the input signal, is selected and all other pos-
sible, but less compact representations, are rejected [17, 31].

The appealing properties of slow temporal modulations from
the human perceptual point of view and the strong theoretical foun-
dations of sparse representations have motivated us to propose a
robust framework for automatic music genre classification here.
To this end, a bio-inspired auditory representation is extracted that
maps a given music recording to a two-dimensional (2D) represen-
tation of its slow temporal modulations. Such a representation ex-
tends the concept of joint acoustic and modulation frequency anal-
ysis [28] by exploiting the properties of the human auditory system
[9, 30] and is referred to as auditory temporal modulation repre-
sentation. Second, these auditory temporal modulations form an
overcomplete dictionary of basis signals for music genres, which is
exploited for sparse representation-based classification (SRC) pro-
posed in [31]. If sufficient training music recordings are available
for each genre, it is possible to express any test representation of
auditory temporal modulations as a compact linear combination of
the dictionary atoms for the genre, where it belongs to. This repre-
sentation is designed to be sparse, because it involves only a small
fraction of the dictionary atoms and can be computed efficiently
via L1 optimization. The classification is performed by assigning
each test recording to the class where the dictionary atoms, that are
weighted by non-zero coefficients, belong to.

Since we are interested to build overcomplete dictionaries ex-
tracted from training representations of auditory temporal modula-
tions, the dimensionality of such vectorized representations must be
much smaller than the cardinality of the training set. Accordingly,
we investigate several dimensionality reduction techniques, such as
NMF [13], principal component analysis (PCA) [12], random pro-
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jections [31], even downsampling, as in [31]. The features extracted
by the aforementioned dimensionality techniques are next classified
by SRC. Performance comparisons are made against SVMs with a
linear kernel and a NN classifier, which employs the cosine sim-
ilarity measure (CSM). The reported genre classification rates are
juxtaposed against those achieved by the algorithms listed in Ta-
ble 1 for the GTZAN and the ISMIR2004 Genre datasets. More
specifically, two sets of experiments are conducted. First, stratified
ten-fold cross-validation is applied to the GTZAN dataset. The pro-
posed genre classification method yields an accuracy of 91%. Sec-
ond, experiments on the ISMIR2004Genre dataset are conducted
by adhering to the protocol employed during ISMIR2004 evalua-
tion tests, which splits the dataset into two equal disjoint subsets
with the first one being used for training and the second one being
used for testing. The proposed genre classification method yields
an accuracy of 93.56%. To the best of the authors’ knowledge, the
achieved classification accuracy is the highest ever reported for
both datasets.

The remainder of the paper is as follows. In Section 2, the bio-
inspired auditory representation based on a computational auditory
model is briefly described. The SRC framework, that is applied to
music genre classification, is detailed in Section 3. Experimental
results are demonstrated in Section 4. Conclusions are drawn and
future research direction are indicated in Section 5.

2. BIO-INSPIRED JOINT ACOUSTIC AND MODULATION
FREQUENCY REPRESENTATION OF MUSIC

A key step for representing music signals in a psycho-
physiologically consistent manner is to focus on how the audio in-
formation is encoded in the human primary auditory cortex. The
primary auditory cortex is the first stage of the central auditory sys-
tem, where higher level mental processes take place, such as per-
ception and cognition [20]. In this section, we briefly describe how
a 2D representation of auditory temporal modulations can be ob-
tained by modeling the path of auditory processing. The auditory
representation is a joint acoustic and modulation frequency repre-
sentation [28], that discards much of the spectro-temporal details
and focuses on the underlying slow temporal modulations of the
music signal. There is evidence that such a representation carries
important time-varying information [28, 7, 9, 25, 24].

The computational model of human auditory system consists of
two basic processing stages. The first stage models the early audi-
tory system, which converts the acoustic signal into a neural repre-
sentation, the so-called auditory spectrogram, i.e. a time-frequency
distribution along a tonotopic (logarithmic frequency) axis. At the
second stage, the temporal modulation content of the auditory spec-
trogram is estimated by wavelets applied to each row of the auditory
spectrogram.

The computation of the auditory spectrogram consists of three
operations, which mimic the early stages of human auditory pro-
cessing. In this paper, the mathematical model of Yang et. al [32]
is adopted. Initially, a constant-Q transform is applied to the acous-
tic signal s(t). That is, a bank of filters, such that the ratio of each
filter center frequency to its resolution is kept constant. Here, the
constant-Q transform is implemented via a bank of 96 overlapping
bandpass filters with center frequencies uniformly distributed along
the tonotopic axis over 4 octaves. First, the output of cochlear fil-
ter is transduced into an auditory nerve pattern by a hair cell stage,
which converts the cochlear output into inner hair cell intracellular
potential. The just described process is modelled by highpass filter-
ing corresponding to the fluid-cilia coupling, followed by an instan-
taneous nonlinear compression, which models the gated ionic chan-
nels, and finally lowpass filtering that models the hair cell mem-
brane leakage. At a second step, a lateral inhibitory network (LIN)
detects the discontinuities in the response along the tonotopic axis
of the auditory nerve array. LIN can be approximated by a first-
order derivative with respect to the logarithmic frequency followed
by a half-wave rectifier. Next, the output of LIN is integrated over
a short decaying exponential window with time constant 8 ms, that

accounts for the further loss of phase-locking observed in the mid-
brain.

Higher central auditory stages, especially the primary auditory
cortex, further analyze the auditory spectrogram by estimating the
signal content in slow spectro-temporal modulations. In this paper,
we are interested in the slow temporal modulations only present in
the auditory spectrogram. In order to mimic the human perception
of temporal modulation, we apply the concept of modulation scale
analysis [28] in order to derive a compact representation that cap-
tures the underlying temporal modulations of an audio signal.

The modulation scale analysis consist of two stages. First, for
discrete rate r, a wavelet filter is applied along each temporal row
of the auditory spectrogram. This operation can be interpreted as
filtering the temporal envelope of each cochlear channel output.
For each audio frame, the multiresolution wavelet analysis is im-
plemented via a bank of Gabor filters, that are selective to different
temporal modulation parameters ranging from slow to fast tempo-
ral rates (in Hz). Since, the analysis yields a frequency-rate-time
representation for each frame, the entire auditory spectrogram is
modeled by a three-dimensional (3D) representation of frequency,
rate, and time. Finally, the power of the 3D temporal modulation
representation is obtained by integrating across the wavelet trans-
lation axis. Thus a joint frequency-rate representation results that
has no uniform resolution in the modulation frequency indexed by
the discrete rate. The resulting 2D representation is the auditory
temporal modulation. Psychophysiological evidence [26] justifies
the choice of r ∈ {2,4,8,16,32,64,128,256} (Hz) to represent the
temporal modulation content of sound. The cochlear model em-
ployed in the first stage, has 96 filters covering 4 octaves along the
tonotopic axis (i.e. 24 filters per octave). Accordingly, the auditory
temporal modulation of a music recording is naturally represented
by a second-order tensor (matrix) X̃ ∈ R

I1×I2
+ , where I1 = I f = 96

and I2 = Ir = 8. Hereafter, let x = vec(X̃) ∈ R
I1·I2
+ = R

768
+ denote

the lexicographically ordered vectorial representation of the audi-
tory temporal modulation.

The auditory temporal modulation representation is computed
for each audio recording in the dataset. By vectorizing each rep-
resentation, an ensemble of music recordings can be represented
by the matrix X ∈ R

768×samples
+ , where samples indicates the total

number of the dataset recordings.

3. SPARSE REPRESENTATION-BASED
CLASSIFICATION

The problem of determining the class label of a test auditory tem-
poral modulation representation, given a number of labeled training
temporal modulations representations from N music genres is ad-
dressed based on SRC [31].

Let us denote by Ai = [ai,1|ai,2| . . . |ai,ni ] ∈ R
768×ni
+ the dictio-

nary that contains ni auditory modulation representations stemming
from the ith genre as column vectors (i.e., atoms). Given a test au-
ditory representation y ∈ R

768
+ that belongs to the ith class, we can

assume that y is expressed as a linear combination of the atoms that
belong to the ith class, i.e.

y =
ni

∑
j=1

ai, j ci, j = Ai ci (1)

where ci, j ∈ R are coefficients, which form the coefficient vector

ci = [ci,1,ci,2, . . . ,ci,ni ]
T .

Let us, now, define the matrix A = [A1|A2| . . . |AN ] ∈ R
768×n
+

by concatenating the n auditory modulation representations, which
stem from N genres. Thus the linear representation of the test audi-
tory representation y in (1) can be equivalently rewritten as

y = Ac (2)

where c = [0T | . . . |0T |cTi |0T | . . . |0T ]T is the augmented coefficient
vector whose elements are zero except those associated with the ith
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genre. Thus, the entries of c contain information about the genre
the test auditory representation y belongs to.

Since the genre label of any test auditory representation is un-
known, we can predict it by seeking the sparsest solution to the
linear system of equations y = Ac. More formally, given the ma-
trix A and the test auditory representation y, the problem of sparse
representation is to find the coefficient vector c such that y = Ac
and ||c||0 is to minimized, i.e.

c∗ = argmin
c

||c||0 subject to Ac = y (3)

where ||.||0 is the L0 quasi-norm returning the number of the non-
zero entries of a vector. Finding the solution to optimization prob-
lem defined in (3) is NP-hard due to the nature of the underlying
combinational optimization. An approximate solution to the prob-
lem (3) can be obtained by replacing the L0 norm with the L1 norm
as follows:

c∗ = argmin
c

||c||1 subject to Ac = y (4)

where ||.||1 denotes the L1 norm of a vector. In [8], it has been
proved that if the solution is sparse enough, then the solution of (3)
is equivalent to the solution of (4), which can be solved in polyno-
mial time by standard linear programming methods [6].

Since, we are interested to build overcomplete dictionaries de-
rived from the auditory temporal modulation representations, the
dimensionality of atoms must be much smaller than the training set
cardinality. Thus, we can reformulate the optimization problem in
(4) as follows:

c∗ = argmin
c

||c||1 subject to WT Ac = WTy (5)

where W ∈ R
768×k with k << min(768,n) is a projection matrix.

The projection matrix W can be obtained by any linear dimen-
sionality reduction technique, such as NMF [13], PCA, a random
projection matrix whose entries are independently sampled from a
zero-mean normal distribution, and each column is normalized to
unit length or even downsampling as proposed in [31]. The dimen-
sionality reduction of the original auditory modulation space has
two benefits: first it reduces the computational cost of linear pro-
gramming solvers [6] of (4) and second it facilitates the creation
of a redundant dictionary based on the training auditory temporal
modulation representations.

A test auditory modulation can be classified as follows. First, y
is projected onto the reduced dimensionality space through the pro-
jection matrix W as ŷ = WT y. Then the following optimization
problem is solved

c∗ = argmin
c

||c||1 subject to WT Ac = ŷ. (6)

Ideally, the coefficient vector c∗ contains non-zero entries in posi-
tions associated with the columns of WTA stemming from a single
genre, so that we can easily assign the test auditory representation
y to that genre. However, due to modeling errors, there are small
non-zero entries in c∗ that are associated to multiple genres. To
cope with this problem, each auditory modulation representation is
classified to the genre that minimizes the L2 norm residual between
ŷ and y̆ = WT A δi(c), where δi(c) ∈ R

n is a new vector whose
nonzero entries are only the entries in c that are associated to the ith
genre [31].

4. EXPERIMENTAL EVALUATION

In order to assess the discriminating power of both the auditory tem-
poral modulations and SRC, experiments are conducted on the two
publicly available datasets, which are widely used for music genre
classification [5, 11, 14, 15, 21, 29]. The first dataset, abbreviated
as GTZAN, was collected by G. Tzanetakis [29] and consists of 10

genre classes, namely Blues, Classical, Country, Disco, HipHop,
Jazz, Metal, Pop, Reggae, Rock. Each genre class contains 100 au-
dio recordings 30 sec long. The second dataset, abbreviated as IS-
MIR2004 Genre, comes from the ISMIR 2004 Genre classification
contest and contains 1458 full audio recordings distributed over six
genre classes as follows: Classical (640), Electronic (229), Jazz-
Blues (52), MetalPunk (90), RockPop (203), World (244), where
the number within parentheses refers to the number of recordings
which belong to each genre class.

All the audio recordings were converted to monaural wave for-
mat at a sampling frequency of 16 kHz and quantized with 16 bits.
Moreover, the audio signals have been normalized, so that they have
zero mean amplitude with unit variance in order to remove any
factors related to the recording conditions. Since the ISMIR2004
Genre dataset, consists of full length tracks, we extracted a segment
of 30 sec just after the first 30 sec of a recording to exclude any in-
troductory parts that may not be directly related to the music genre
the recording belongs to. The auditory temporal modulations rep-
resentation is computed over a segment of 30 sec duration for any
recording of both datasets.

Following the experimental set-up used in [29, 16, 14, 22],
stratified 10-fold cross-validation is employed for experiments con-
ducted on the GTZAN dataset. Thus each training set consists of
900 audio files. Thus a training matrix AGTZAN ∈ R

768×900
+ is con-

structed by vectorizing each auditory temporal modulations repre-
sentation associated to the training set. The experiments on the
ISMIR 2004 Genre dataset were conducted according to the IS-
MIR2004 Audio Description Contest protocol. The protocol de-
fines training and evaluation sets, which consist of 729 audio files
each. Thus the corresponding training matrix AISMIR ∈ R

768×729
+

is constructed is constructed by vectorizing each auditory tempo-
ral modulations representation associated to the training set. Each
column of each training matrix was normalized to unit length.

The projection matrix W ∈ R
768×k is derived from each train-

ing matrix AGTZAN and AISMIR by employing either NMF or PCA
with k ∈ {12,48,85,192}, which corresponds to downsample ratios
1/8, 1/4, 1/3, and 1/2 respectively. The same values of parame-
ter k are used in order to construct the random projection matrix.
Since the low dimensional feature space obtained by the aforemen-
tioned dimensionality reduction algorithms is linear, SVMs with
linear kernel and NN with CSM will be used as alternatives to SRC.

In Figure 1, the classification accuracy achieved by the three
different classifiers is plotted as a function of the feature space di-
mension, when the various subspace analysis methods are applied
to both the GTZAN and the ISMIR 2004 Genre datasets. On the
GTZAN dataset the best classification accuracy (91.0 %) was ob-
tained when NMF extracts features, that are classified by SRC.
The standard deviation of the classification accuracy was estimated
thanks to 10-fold cross-validation. At the best classification accu-
racy, its standard deviation was found to be 1.76%. The reported
classification accuracy outperforms those listed in Table 1. The in-
terval ± one standard deviation is overlaid in all plots for the various
dimensions k. On the ISMIR 2004 Genre dataset the best classifica-
tion accuracy (93.56%) was obtained, when PCA extracts features
that are classified by SRC. The confidence interval for the best clas-
sification accuracy on the ISMIR 2004 Genre dataset can be esti-

mated as ±z1−γ/2

√
p(1−p)

n , where z1−γ/2 is the standard Gaussian

percentile for confidence level 100 (1 − γ)% (e.g. for γ = 0.05,
z1−γ/2 = z0.975=1.967), p= 0.9356 is the experimentally measured
classification accuracy, and n = 729 is the number of test record-
ings. The 95% confidence interval is then 1.79%. Again, the
achieved classification accuracy outperforms all previously reported
rates shown in Table 1.

The experimental results reported in this paper indicate that the
dimensionality reduction is crucial, when SRC is applied to music
genre classification. This was not the case with face recognition in
[31], where the classification accuracy achieved by SRC was inde-
pendent of the dimensionality reduction algorithm used. The de-
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Figure 1: Classification accuracy for various features extraction methods and classifiers. (a) SRC on the GTZAN dataset; (b) SRC on the
ISMIR2004 Genre dataset; (c) Linear SVM on the GTZAN dataset; (d) Linear SVM on the ISMIR2004 Genre dataset; (e) NN on the
GTZAN dataset; (f) NN on the ISMIR2004 Genre dataset.

pendence of SRC on the dimensionality reduction technique used
could be a point of future research.

5. CONCLUSIONS - FUTURE WORK

In this paper, a robust music genre classification framework has
been proposed by considering the properties of the auditory human
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perception. 2D auditory temporal modulations are used for music
representation, while the sparse representation-based classification
has been employed for genre classification. The crucial role of fea-
ture extraction and particularly dimensionality reduction for music
genre classification has been demonstrated. The best classification
accuracies measured in this paper outperform any rate ever reported
for state of the art music genre classification algorithms applied to
both the GTZAN and the ISMIR2004 Genre datasets.

In many real applications, both commercial and private, the
number of available audio recordings per genre is limited. Thus,
it is desirable the music genre classification algorithm to perform
well in such small sample sets. Future research will address the
performance of SRC framework under such conditions.

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse rep-
resentation,” IEEE Trans. Signal Processing, vol. 54, no. 11,
pp. 4311–4322, Nov. 2006.

[2] J. J. Aucouturier and F. Pachet, “Representing musical genre:
A state of the art,” Journal of New Music Research, pp. 83–93,
2003.

[3] R. G. Baraniuk, E. Candes, R. Nowak, and M. Vetterli (Guest
Eds.), Special issue on Sensing, Sampling, and Compression.
IEEE Signal Processing Magazine, vol. 25, no. 2, Mar. 2008.

[4] E. Benetos and C. Kotropoulos, “A tensor-based approach
for automatic music genre classification,” in Proc. EUSIPCO
2008, Lausanne, Switzerland, 2008.

[5] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kegl,
“Aggregate features and Adaboost for music classification,”
Machine Learning, vol. 65, no. 2–3, pp. 473–484, 2006.

[6] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic de-
composition by basis pursuit,” SIAM J. Sci. Comput., vol. 20,
no.1 pp. 33–61, 1998.

[7] T. Chi, Y. Gao, M. C. Guyton, P. Ru, and S. Shamma,
“Spectro-temporal modulation transfer function and speech
intelligibility,” Journal of the Acoustical Society of America,
no. 5, pp. 2719–2732, Nov. 1999.

[8] D. L. Donoho, and X. Huo, “Uncertainty principles and ideal
atomic decomposition,” IEEE Trans. Information Theory, vol.
47, no. 7. pp. 2845–2862, 2001.

[9] S. D. Ewert and T. Dau,“Characterizing frequency selectivity
for envelope fluctuations,” Journal of the Acoustical Society of
America, vol. 108, pp. 1181–1196, 2000.

[10] S. Greenberg, E. D. Brian, and Y. Kingsbury, “The modula-
tion spectrogram: In pursuit of an invariant representation of
speech,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Sig-
nal Processing, pp. 1647–1650, 1997.

[11] A. Holzapfel and Y. Stylianou, “Musical genre classification
using nonnegative matrix factorization-based features,” IEEE
Trans. Audio, Speech, and Language Processing, vol. 16, no.
2, pp. 424–434, Feb. 2008.

[12] H. Hotelling, “Analysis of a complex of statistical variables
into principal components,” Journal of Educational Psychol-
ogy, vol. 24, 417–441, 498–520.

[13] D. D. Lee and H. S. Seung, “Algoritnms for non-negative ma-
trix factorization”, in Advances in Neural Information Pro-
cessing Systems, vol. 13, pp. 556–562, 2001.

[14] T. Li, M. Ogihara, and Q. Li, “A comparative study on content-
based music genre classification,” in Proc. 26th Int. ACM
SIGIR Conf. Research and Development in Informaion Re-
trieval, Toronto, Canada, 2003, pp. 282–289.

[15] T. Lidy and A. Rauber, “Evaluation of feature extractors and
psycho-acoustic transformations for music genre classifica-

tion,” in Proc. 6th Int. Symposium Music Information Re-
trieval, London, UK, 2005.

[16] T. Lidy, A. Rauber, A. Pertusa, and J. Inesta, “Combining au-
dio and symbolic descriptors for music classification from au-
dio,” ” in Music Information Retrieval Information Exchange
(MIREX), 2007.

[17] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,
“Discriminative learned dictionaries for local image analysis,”
in Proc. IEEE Computer Society Conf. Computer Vision and
Pattern Recognition, 2008.

[18] S. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Trans. on Signal Processing,
vol. 41, pp. 3397–3415, 1993.

[19] M. Mandel and D. Ellis, “LABROSA’s audio music similar-
ity and classification submissions,” in Music Information Re-
trieval Information Exchange (MIREX), 2007.

[20] R. Munkong and J. Biing-Hwang, “Auditory perception and
cognition,” IEEE Signal Processing Magazine, vol. 25, no. 3,
pp. 98–117, May 2008.

[21] E. Pampalk, A. Flexer, and G., Widmer, “Improvements
of audio-based music similarity and genre classification,” in
Proc. 6th Int. Symp. Music Information Retrieval, London,
UK, 2005.

[22] I. Panagakis, E. Benetos, and C. Kotropoulos, “Music genre
classification: A multilinear approach,” in Proc. 9th Int. Symp.
Music Information Retrieval, Philadelphia, USA, 2008.

[23] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal
matching pursuit: Recursive function approximation with ap-
plications to wavelet decomposition, ” in Proc. 27th Annual
Asilomar Conf. on Signal, Systems, and Computers, 1993.

[24] N. C. Singh and F. E. Theunissen, “Modulation spectra of nat-
ural sounds and ethological theories of auditory processing,”
Journal of the Acoustical Society of America, vol. 114, no. 6,
pp. 3394–3411, 2003.

[25] M. Slaney and R. F. Lyon, “On the importance of time-a tem-
poral representation of sound,” in Visual Representations of
Speech Signals (M. Cooke, S. Beet, and M. Crawford, Eds.),
New York, NY: J. Wiley & Sons, 1993. pp. 95–116.

[26] S. A. Shamma, “Encoding sound timbre in the auditory sys-
tem,” IETE Journal of Research, vol. 49, no. 2–3, pp.145–156,
2003.

[27] N. Scaringella, G. Zoia, and D. Mlynek, “Automatic genre
classification of music content: A survey,” IEEE Signal Pro-
cessing Magazine, vol. 23, no.2, pp. 133–141, Mar. 2006.

[28] S. Sukittanon, L. E. Atlas, and J. W Pitton, “Modulation-scale
analysis for content identification,” IEEE Trans. Signal Pro-
cessing, vol. 52, no. 10, pp. 3023–3035, Oct. 2004.

[29] G. Tzanetakis and P. Cook, “Musical genre classification of
audio signals,” IEEE Trans. Speech and Audio Processing, vol.
10, no. 5, pp 293–302, Jul. 2002.

[30] S. Woolley, T. Fremouw, A. Hsu, and F. Theunissen, “Tuning
for spectro-temporal modulations as a mechanism for auditory
discrimination of natural sounds”, Nature Neuroscience, vol.
8, no. 10, pp. 1371–1379, 2005.

[31] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Yi Ma “Ro-
bust Face recognition via sparse representation,” IEEE Trans.
Pattern Analysis and Machine Intelligence vol. 31, no. 2, pp.
210–227, Feb. 2009.

[32] X. Yang, K. Wang, and S. A. Shamma, “Auditory represen-
tations of acoustic signals,” IEEE Trans. Information Theory,
vol. 38, no. 2, pp. 824–839, Mar. 1992.

[33] D. N. Zotkin, T. Chi, S. A. Shamma, and R. Duraiswami,
“Neuromimetic sound representation for percept detection and
manipulation,” EURASIP Journal on Applied Signal Process-
ing, vol. 2005, no. 9, pp. 1350–1364, 2005.

5


