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ABSTRACT
This paper discusses the idea of a lifting scheme for multi-
scale implementation of kernel estimation procedures usedin
statistical estimation. The resulting decomposition is related
to the Burt-Adelson pyramid, but the design of the filters is
well adapted to nonequispaced samples. The proposed de-
composition has an oversampling rate of 2, where the over-
sampling can be seen as an alternative to primal lifting steps
(update steps) as a tool for stabilising and anti-aliasing.We
then propose an adaptive version of this multiscale kernel
estimation with truncated kernels. Truncated kernels allow
sharp representations of jumps. Illustrations show that our
method is numerically well conditioned, suffers less from vi-
sual effects due to false detections, and allows indeed sharp
transitions if equiped with an adaptive choice among trun-
cated kernels. All variants of the proposed method have lin-
ear computational complexity.

Key words: wavelet; lifting; kernel; adaptive; smooth-
ing; thresholding

1. INTRODUCTION

The lifting scheme [20, 21, 22] is an implementation of a fil-
terbank in a wavelet transform. A wavelet filterbank is one
stage in the multiscale decomposition that transforms scaling
coefficientssj+1,k,k= 1, . . . ,2 j+1 at fine scalej +1 into scal-
ing coefficientssj ,k,k = 1, . . . ,2 j at coarse scalej plus detail
or wavelet coefficientswj ,k at scalej. Scaling coefficients
are further processed in the filterbank of the next stage. The
lifting implementation is a sequence of lifting steps, as in-
dicated in Figure 1. Lifting steps come in two main types:
update or primal lifting steps and prediction or dual lifting
steps. Prediction steps compute the offset of a subset of the
input samples from a prediction (low pass filter) based on the
complementary subset of input samples. The resulting oper-
ation can be seen as a high pass filter on the input samples.
The update steps operate as low pass filter on the subset of
input values that proceeds to the next, coarse scale. It can
be seen as an anti-aliasing operation after subsampling the
input stream. All classical wavelet decompositions can be
reorganised as a sequence of lifting steps. The lifting im-
plementation offers interesting benefits. First, the number
of computations is lower than in the classical filterbank [15]
implementation or in the polyphase implementation [19] (of
which the lifting scheme is a further elaboration). Second,
the inverse transform follows immediately, since every sin-
gle lifting step can easily be undone. This is because fil-
ter operations in the lifting scheme take place on copies of
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Figure 1: A general lifting scheme is a (mostly alternat-
ing) sequence of primal and dual lifting steps, initiated by
a splitting stage. The dots between the splitting stage and the
dual lifting step in the diagram indicate that a general lifting
scheme may consist of more than one sequence of dual and
primal lifting steps: after a primal step, a new dual step may
follow.

input, while the original input of the current step proceeds
untouched on another branch to the next step. As a conse-
quence, the input of the filter step is still available after the
filtering has taken place. Besides the algorithmic benefits,
the lifting scheme also introduced an important conceptual
novelty: the scheme serves as a general framework for the
design of new types of wavelet transforms. First, the filter
operations in a lifting scheme can easily be made nonlin-
ear, and even data adaptive [3, 4, 17, 18, 16, 14, 12]. The
most well known example of a nonlinear lifting scheme is
the wavelet transforms that maps integers onto integers [2].
Second, the data that are analysed need not be sampled on
equidistant intervals [6, 7, 5, 13, 9, 8, 24, 23]. This paper
discusses a multiscale version of kernel (density) estimation
where the samples may be irregular.

2. MULTISCALE KERNEL AND LOCAL
POLYNOMIALS

Kernel estimation is a well-known technique in non-
parametric statistics for regression of smooth functions.The
noise can be additive normal, but also multiplicative, Poisson
distributed. An important application is probability density
estimation from observations.

Given n observations(xi ,yi), a kernel estimator can be
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defined in every pointx as

f̂ (x) =
∑n

i=1K
( x−xi

h

)

yi

∑n
i=1K

( x−xi
h

) (1)

In this expressionK(u) is a kernel function, typically a func-
tion with bounded support and

∫ ∞
−∞ K(u)du= 1. The factorh

is the bandwidth. Optimal choice of the bandwidth (i.e., the
bandwidth that leads to the output with smallest error com-
pared the true signal, i.e., the output with maximum signal-
to-noise ratio), or estimation of the optimal value, is an im-
portant topic in Kernel smoothing. Obviously, the bandwidth
can be seen as a scale parameter. In a multiscale version, the
bandwidth will have several valuesh j , where j is the index
refering to scale (resolution level).

Our proposed multiscale decomposition uses expression
(1) as a prediction operator in a lifting scheme, i.e.,

P(x;x j+1,e,s j+1,e) =
∑2 j

k=1K
(

x−xj+1,2k
h j+1

)

sj+1,2k

∑2 j

k=1K
(

x−xj+1,2k
h j+1

) (2)

This is the prediction operator, based on the even indexed
locations and scaling coefficientsx j+1,e ands j+1,e, at scale
j + 1, evaluated in a pointx. Note that, for sake of invert-
ibility, the kernel smoothing takes place on the even indexed
samples only. A naive approach would be to plug in (2) as
prediction step into the scheme of Figure 1 and find some
appropriate update step. That is, the wavelet coefficients at
scalej equalwj ,k = sj ,k−P(x j+1,2k+1;x j+1,e,s j+1,e). This is
problematic for the following reason. The prediction value
in an odd indexed pointx j ,2k+1 at scalej depends on all even
indexed samples within bandwidthh j+1 distance. The pre-
diction operator already includes a smoothing. This is in
contrast to, for instance, polynomial or average polynomial
predictions [22]. As a consequence, ifx j ,2k+1 is close to one
of its even neighbours, sayx j ,2k, the prediction value is not
close to the observation in that even value. In other words

lim
u→xj,2k

P(u;x j+1,e,s j+1,e) 6= sj ,2k

Polynomial prediction (i.e., the Deslauriers-Dubuc [10] re-
finement scheme) has this continuity property. In absence of
this continuity, the limiting function of a subdivision scheme
(i.e., the inverse transform on an infintely fine grid with all
detail coefficients equal to zero) cannot possibly be smooth,
and hence the scheme is of no practical use for applications
as smoothing or compression.

In order to make the output of the refinement (subdivi-
sion) step continuous, the even indexed observations should
be filtered as well. The classical update lifting step would
not be of any help here as it would not have any effect on the
subdivision process. Instead we apply the same smoothing
on the even indexed coefficients as well. Because this fil-
tering step would not be invertible as such, we need to store
the difference between input and output. The result is the
scheme in Figure 2. FilterPe is the kernel smoothing evalu-
ated at the even indexed locations, whilePo is the same ker-
nel smoothing in the odd locations. The presented scheme
computes offsets (details) for both even and odd coefficients,
such that the number of detail coefficients equals the length
of the input and (up to boundary effects) the overall transform
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Figure 2: A lifting scheme with predictions on both even
and odd indexed samples. Although the operationsPe and
Pocan be designed separately, practical implementations use
the same operations, evaluated in the even and odd indexed
locations respectively, for reasons of continuity.
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Figure 3: Inverse lifting scheme for Figure 2

doubles the number of data. The kernel smoothing predic-
tion contains a parameterh j , which is the kernel bandwidth,
mentioned before. The optimal bandwidth is generally lower
than what one would expect in a traditional kernel smoothing
routine. The heuristical choice adopted in Section 4 has been
found to approach the optimal choice quite well in the given
simulation settings.

The inverse transform first reconstructs the even indexed
observations and then uses them as input for the kernel
smoothing procedure. As indicated in Figure 3, there is no
need to apply the kernel smoothing onto the even indexed lo-
cations, as we already have the smoothed and original values
at that moment. The scheme as a whole satisfies the perfect
reconstruction property.

Besides smoothness of subdivision, the oversampling can
also replace the use of an update step.

Our scheme is related to the well known class of Burt-
Adelson pyramids [1]. The blurring in our scheme takes
place on the even indexed observations and is used as pre-
diction on the odd indexed observations. The scheme is per-
fectly adapted to data on irregular point sets: the filters and
even the filter lengths (number of nonzeros) depend on the
location of the neighbouring points. This is in contrast to
the Deslauriers-Dubuc scheme where the number of nonze-
ros is fixed. A fixed number of taps may lead to instabilities
if neighbouring points are at highly nonequidistant intervals,
thereby mixing up different scales within a single resolution
level [24, 23].

The kernel smoothing procedure can be seen as a run-
ning weighted average of neighbouring observations. If all
observationsyi have the same, constant valuec, then so have
all predictions, and hence all detail coefficients at all levels
will be zero. In other words, the scheme has one dual van-
ishing moment. In order to enhance the number of dual van-
ishing moments (thereby creating more sparsity and better
compressibility), one could replace the kernel smoothing by
a more advanced local polynomial smoothing.
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Finally, we also note that since kernel methods are useful
in settings beyond the classical additive normal noise case,
our decomposition is expected to be promising in — for in-
stance — multiplicative (Poisson) noise reduction.

3. ADAPTIVE LIFTING

Adaptive lifting for denoising [16, 14] is less restricted by
side conditions than adaptive lifting schemes for application
in data compression. Indeed, no special attention needs to
be paid to the compressibility of the adaptivity information
itself. This side information can be stored and used upon
reconstruction. Just as in [16, 14], we propose an adaptive
scheme that choses among several prediction schemes, based
on the abolute values of the resulting coefficients. That is,let

P(i)(x;x j+1,e,s j+1,e) =
∑2 j

k=1Ki

(

x−xj+1,2k
h j+1

)

sj+1,2k

∑2 j

k=1Ki

(

x−xj+1,2k
h j+1

)

with different values ofi be a collection of prediction
schemes, and define the resulting candidate wavelet coeffi-
cients as

w(i)
j ,k = sj+1,2k+1−P(i)(x j+1,2k+1).

Then we could pick the final coefficient as

wj ,k = w(i∗)
j ,k wherei∗ = argmin

i

∣

∣w(i)
j ,k

∣

∣. (3)

Inspired by an edge adaptive method in (one-scale) ker-
nel smoothing [11], we choose among three kernelsKi . First,
let K0 be the kernel used in Equation (2). Then, we de-
fine KR(x) as the right-truncated version ofK0(x) andKL(x)
the left-truncated version. That is,KL(x) = K0(x) · I(x ≥ 0)
whereI(x ≥ 0) is the Heaviside step function (or indicator
function or characteristic function on the positive axis).We
let i ∈ {0,L,R}.

The selection of the final coefficient is a bit different from
(3), as proposed in [16, 14]. Indeed, suppose that all three
candidates would yield a noise-free value of zero (or close
to zero). Such a situation is far from unlikely, as smooth
intervals in classical wavelet analysis lead to negliglible co-
efficients. The eventual selection in (3) would then heavily
depend on the noise. As illustrated in the simulation sec-
tion, our experiments seem to indicate that this results in
small wiggly effects in the reconstruction and especially in
a tendency towards the detection of false jumps in otherwise
smooth but non-constant functions. In order to reduce these
random effects, the truncated kernels are only taken into ac-
count if they deliver a coefficient which is (say) 3 times
smaller in magnitude than the full kernel’s coefficient, that
means if the full kernel’s coefficient issignificantlyhigher
(and hence less favourable) than one of the truncated alterna-
tives.

4. ILLUSTRATIONS, SIMULATIONS AND
DISCUSSION

We illustrate our methods with the piecewise smooth “sky-
line” signal, depicted in Figure 4 and defined forx ∈ [0,1]
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Figure 4: The “skyline” testfunction. This signal combines
jumps, constant and linear intervals.
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Figure 5: 2049 noisy observations of the signal in Figure 4.
The locations of these observations are drawn from a uniform
distribution on[0,1].
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

2 if x≤ 1/16
5 if 1/16< x≤ 5/64
1 if 5/64< x≤ 5/32
0 if 5/32< x≤ 21/128
3 if 21/128< x≤ 1/4
7 if 1/4 < x≤ 17/64
0 if 17/64< x≤ 25/64
64
5 x−5 if 25/64< x≤ 15/32

1 if 15/32< x≤ 1/2
3 if 1/2 < x≤ 75/128
2 if 75/128< x≤ 85/128
20
3 − 128

15 x if 85/128< x≤ 25/32
0 if 25/32< x≤ 1615/2048
10 if 1615/2048< x≤ 51/64
16x− 51

4 if 51/64< x≤ 55/64
1 if 55/64< x≤ 1

The simulation is set up as follows. We first generate and
order n = 2049 data pointsxi from a uniform distribution
on [0,1]. Then we generate noisy observationsYi = f (xi)+
ηi , whereηi ∼ N(0,σ2) andσ = 1/3. The observations are
shown in Figure 5.

We apply an adaptive multiscale kernel smoothing proce-
dure with cosine kernels, i.e.,K(x) = I(|x| < 1) · cos(πx/2)
and bandwidthshJ = 3(xn−x1)/n (such that on average the
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Figure 6: Output from classical lifting with a cubic interpo-
lating polynomial as prediction step. The result is heavilybi-
ased due to numerical instability, specific for non-equidistant
grids.
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Figure 7: Output from lifting on a grid adaptive coarsening
(splitting) routine. The grid adaptive coarsening eliminates
most numerical problems.

fine scale kernels contain three data points: left, central,
right) andh j = 2h j+1. Well founded choices for these pa-
rameters are of course subject of further research.

In order to evaluate our method, we compare it with re-
lated lifting schemes on for irregular point sets. As a lifting
scheme we use a cubic interpolating polynomial as predic-
tion step followed by a two taps update, designed such that
the primal wavelet basis has two vanishing moments [22].
The output of a level-dependent minimum mean squared er-
ror threshold appears in Figure 6. The figure shows an un-
acceptable bias due to bad numerical condition of classical
lifting. The numerical problems are specific for inhomoge-
neous grids and have been reported in [24, 23]. It should be
emphasized that these problems occur even if the grid is rel-
atively homogeneous as in this case: points were generated
uniformly on the interval.

Figure 7 shows the output of the same lifting scheme ap-
plied on a grid adaptive coarsening procedure, as elaborated
in [24], again with a level-dependent minimum mean squared
error threshold approach. The numerical problems have been
solved, but the reconstruction shows lots of prominent effects
from false positives, i.e., coefficients that falsely survived the
threshold.

Next three figures illustrate the methods presented in this
text. First, Figure 8 plots the reconstruction from a plain mul-
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Figure 8: Output from a multiscale kernel transform. No
numerical problems here, even with a simple even-odd split-
ting.
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Figure 9: Output from an adaptive multiscale kernel trans-
form. Each coefficient results from selection among a two
sided kernel prediction and two one sided kernel predictions.
Reconstructions of singularities are sharp, but the method
sometimes detects jumps that are in fact gradual transitions
(slopes).

tiscale kernel transform followed by a level-dependent mini-
mum mean squared error threshold. Although the coarsening
proceeds by even-odd splitting, no numerical problems oc-
cur, thanks to the fact that the prediction with kernels yields
prediction coefficients that are always bounded between 0
and 1.

Figure 9 contains the output from the adaptive multiscale
kernel transform with one full and two truncated kernels and
decision rule (3). Jumps are much sharper in this reconstruc-
tion. The method has a tendency, however, to reconstruct
the linear sections as a sequence of jumps as well. A better
compromise is probably Figure 10, where a truncated kernel
is used as prediction only if it delivers asignicantlysmaller
coefficient than the two-sided kernel.

5. CONCLUSIONS, ONGOING AND FUTURE
RESEARCH

We have introduced a multiscale version of kernel smooth-
ing, using a lifting scheme construction. We have defined
forward and inverse transforms and proposed an adaptive
version of the scheme, driven by a statistical hypothesis test-
ing procedure. Issues under current investigation includea
proper choice of the bandwidth at each scale. We also in-
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Figure 10: Output from an adaptive multiscale kernel trans-
form, where two sided kernels are given priority above the
one sided alternatives. This routine shows less falsely dis-
covered singularities.

vestigate the possibility of different reconstruction schemes,
including non-linear ones. Indeed, as the decomposition is
overcomplete, the reconstruction is not unique. As for the
actual denoising, we are interested in tree-structured coeffi-
cient selection, as well as in a smoothing that treats even and
odd details in a possibly different way. This is because even
details serve mainly perfect reconstruction, while the oddde-
tails describe the sparsity of the signal representation. An
extension towards multiscale local polynomial smoothing is
another objective for further research.
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