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ABSTRACT . Dual
Lifting

Primal
This paper discusses the idea of a lifting scheme for multi- | Lifting
scale implementation of kernel estimation procedures imsed
statistical estimation. The resulting decomposition lates

to the Burt-Adelson pyramid, but the design of the filters is
well adapted to nonequispaced samples. The proposed de -
composition has an oversampling rate of 2, where the over—mpm%@
sampling can be seen as an alternative to primal liftingsstep
(update steps) as a tool for stabilising and anti-aliasiig.
then propose an adaptive version of this multiscale kernel
estimation with truncated kernels. Truncated kernelsaallo
sharp representations of jumps. lllustrations show that ou
method is numerically well conditioned, suffers less framv _. . . .

sual effects due to false detections, and allows indeegshaf'9UT€ 1: A general lifting scheme is a (mostly alternat-
transitions if equiped with an adaptive choice among trunlng) sequence of primal and dual lifting steps, initiated by
cated kernels. All variants of the proposed method have lind sph'gtujg stage. The dc_)ts between the splitting Stag‘?h’.‘f‘dt
ear computational complexity. dual lifting step in the diagram indicate that a generahgt

Key words wavelet; lifting; kernel; adaptive; smooth- SCheéme may consist of more than one sequence of dual and
- . primal lifting steps: after a primal step, a new dual step may
ing; thresholding follow
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1. INTRODUCTION

The lifting scheme [20, 21, 22] is an implementation of a fil-jnpyt, while the original input of the current step proceeds
terban_k ina Wav_elet transform. A_Wavelet fllterbank_ is oneyntouched on another branch to the next step. As a conse-
stage in the multiscale decomposition that transformsragal quence, the input of the filter step is still available aftes t
coefficientssj 1, k=1,...,2/"* atfine scalg +1intoscal- filtering has taken place. Besides the algorithmic benefits,
ing coefficientss; .,k =1,...,2) at coarse scalg¢plus detail the lifting scheme also introduced an important conceptual
or wavelet coefficientsv; i at scalej. Scaling coefficients novelty: the scheme serves as a general framework for the
are further processed in the filterbank of the next stage. Theesign of new types of wavelet transforms. First, the filter
lifting implementation is a sequence of lifting steps, as in operations in a lifting scheme can easily be made nonlin-
dicated in Figure 1. Lifting steps come in two main types:ear, and even data adaptive [3, 4, 17, 18, 16, 14, 12]. The
update or primal lifting steps and prediction or dual liffin most well known example of a nonlinear lifting scheme is
steps. Prediction steps compute the offset of a subset of thke wavelet transforms that maps integers onto integers [2]
input samples from a prediction (low pass filter) based on th€econd, the data that are analysed need not be sampled on
complementary subset of input samples. The resulting opeequidistant intervals [6, 7, 5, 13, 9, 8, 24, 23]. This paper
ation can be seen as a high pass filter on the input samplafiscusses a multiscale version of kernel (density) estimat
The update steps operate as low pass filter on the subsetwhere the samples may be irregular.

input values that proceeds to the next, coarse scale. It can

be seen as an anti-aliasing operation after subsampling the

input stream. All classical wavelet decompositions can be 2. MULTISCALE KERNEL AND LOCAL
reorganised as a sequence of lifting steps. The lifting im- POLYNOMIALS

plementation offers interesting benefits. First, the numbe o ] ] ]

of computations is lower than in the classical filterbankj[15 Kernel estimation is a well-known technique in non-
implementation or in the polyphase implementation [19] (ofParametric statistics for regression of smooth functidiee
which the lifting scheme is a further elaboration). Secondnoise can be additive normal, but also multiplicative, Bois

the inverse transform follows immediately, since every sin distributed. An important application is probability dégs

gle liting step can easily be undone. This is because filestimation from observations.

ter operations in the lifting scheme take place on copies of Givenn observationgx;,yi), a kernel estimator can be
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defined in every point as Odd
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In this expressioi (u) is a kernel function, typically a func- even
tion with bounded support an(’, K (u)du= 1. The factoih
is the bandwidth. Optimal choice of the bandwidth (i.e., the
bandwidth that leads to the output with smallest error comfigure 2: A lifting scheme with predictions on both even
pared the true signal, i.e., the output with maximum signaland odd indexed samples. Although the operatieaand
to-noise ratio), or estimation of the optimal value, is an im Pocan be designed separately, practical implementations use
portant topic in Kernel smoothing. Obviously, the bandWwidt the same operations, evaluated in the even and odd indexed
can be seen as a scale parameter. In a multiscale version, faeations respectively, for reasons of continuity.
bandwidth will have several valuds, wherej is the index
refering to scale (resolution level). odd - .

Our proposed multiscale decomposition uses expression i ® (Spiit) - —Detail

(1) as a prediction operator in a lifting scheme, i.e.,
Input —®
2 K (2N o
k=1 Ra ) Si+l2k ) T
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P(X; Xj+1e Sj+1,e) =

This is the prediction operator, based on the even indexed
I_ocations and scaling co_efficieniﬁﬂ,e andsj e, at _scale
j +1, evaluated in a point. Note that, for sake of invert-

ibility, the kernel smoothing takes place on the even indexedoubles the number of data. The kernel smoothing predic-

samples only. A naive approach would be to plug in (2) a5 contains a paramethy, which is the kernel bandwidth,

prediction step into the scheme of Figure 1 and find somg, o ioned before. The optimal bandwidth is generally lower
appropriate update step. That s, .the wavelet coefficiants #han what one would expectin a traditional kernel smoothing
scalej equaw; x = Sj k —P(Xj+1.2¢-1:Xj41e:8j41e)- TNISIS 4 tina The heuristical choice adopted in Section 4 has bee

problergc?ycdfor tge erI}LQW|ng rteas?n_. dThe pdred|ct|(?|n valuet,, \nq to approach the optimal choice quite well in the given
in an odd indexed poin; o1 at scalej depends on all even o oo Serings.

indexed samples within bandwidtty.; distance. The pre- The inverse transform first reconstructs the even indexed

diction operator already includes a smoothing. This is .inobservations and then uses them as input for the kernel

contrast to, for instance, polynomial or average IOOIynd’m'a‘smoothing procedure. As indicated in Figure 3, there is no
p][e_tmctlons [2.2]'hﬁ‘s a consequ?rr:cex}fzckjﬂ[_ls closle to onet need to apply the kernel smoothing onto the even indexed lo-
OT IS even NeIgnobours, Saf x, the prediction value IS Not = i as we already have the smoothed and original values
close to the observation in that even value. In other words at that moment. The scheme as a whole satisfies the perfect
reconstruction property.

Figure 3: Inverse lifting scheme for Figure 2

lim P(u;xji1e,8Sj1e) 7 Sj,2

U—X; 2 Besides smoothness of subdivision, the oversampling can
also replace the use of an update step.
Polynomial prediction (i.e., the Deslauriers-Dubuc [16] r Our scheme is related to the well known class of Burt-

finement scheme) has this continuity property. In absence @dfdelson pyramids [1]. The blurring in our scheme takes
this continuity, the limiting function of a subdivision sgtme  place on the even indexed observations and is used as pre-
(i.e., the inverse transform on an infintely fine grid with all diction on the odd indexed observations. The scheme is per-
detail coefficients equal to zero) cannot possibly be smootHectly adapted to data on irregular point sets: the filterd an
and hence the scheme is of no practical use for applicatioreven the filter lengths (number of nonzeros) depend on the
as smoothing or compression. location of the neighbouring points. This is in contrast to
In order to make the output of the refinement (subdivi-the Deslauriers-Dubuc scheme where the number of nonze-
sion) step continuous, the even indexed observations ghoutos is fixed. A fixed number of taps may lead to instabilities
be filtered as well. The classical update lifting step wouldf neighbouring points are at highly nonequidistant intdsy
not be of any help here as it would not have any effect on théhereby mixing up different scales within a single resalnti
subdivision process. Instead we apply the same smoothirigvel [24, 23].
on the even indexed coefficients as well. Because this fil- The kernel smoothing procedure can be seen as a run-
tering step would not be invertible as such, we need to storeing weighted average of neighbouring observations. If all
the difference between input and output. The result is thebservationy; have the same, constant valyyéhen so have
scheme in Figure 2. Filte®. is the kernel smoothing evalu- all predictions, and hence all detail coefficients at alklev
ated at the even indexed locations, wiilgis the same ker- will be zero. In other words, the scheme has one dual van-
nel smoothing in the odd locations. The presented schenishing moment. In order to enhance the number of dual van-
computes offsets (details) for both even and odd coeffisjentishing moments (thereby creating more sparsity and better
such that the number of detail coefficients equals the lengtbompressibility), one could replace the kernel smoothing b
of the input and (up to boundary effects) the overall trammafo  a more advanced local polynomial smoothing.

404



Finally, we also note that since kernel methods are useful **
in settings beyond the classical additive normal noise,case .o/ ]
our decomposition is expected to be promising in — for in-
stance — multiplicative (Poisson) noise reduction. 8

6k 4

3. ADAPTIVE LIFTING

a4 4

Adaptive lifting for denoising [16, 14] is less restrictegl b 5 i
side conditions than adaptive lifting schemes for applcat —
in data compression. Indeed, no special attention needs to of i
be paid to the compressibility of the adaptivity informatio ‘ ‘ ‘ ‘
itself. This side information can be stored and used upon ° 02 o4 o6 o8 *
reconstruction. Just as in [16, 14], we propose an adaptive

scheme that choses among several prediction schemes, based

on the abolute values of the resulting coefficients. Thaets, Figure 4. The “skyline” testfunction. This signal combines
jumps, constant and linear intervals.

X—=Xj+

1,2k
524 .( e )51+1,2k 12 ‘ ‘ ‘ ‘
52 (M) 10} ]
k_l Ki hj1

sk

pl) (X Xj11eSj+1e) =

with different values ofi be a collection of prediction
schemes, and define the resulting candidate wavelet coeffi-
cients as ar 8

W) = s _pi(x, :
Ik = Sitl2k+1 (Xj41,261)- m
ol
Then we could pick the final coefficient as 2 ‘ ‘ ‘ ‘

[e] 0.2 0.4 0.6 0.8 1

Wik = wgij() wherei* = arg rr|1|n|w§')k| (3) . _ . S
Figure 5: 2049 noisy observations of the signal in Figure 4.

The locations of these observations are drawn from a uniform
Inspired by an edge adaptive method in (one-scale) kerd|str|but|on on[0, 1].

nel smoothing [11], we choose among three kerKel$irst,

let Ko be the kernel used in Equation (2). Then, we de-
fine Kr(x) as the right-truncated version K§(x) andK (x)
the left-truncated version. That & (x) = Ko(x) - 1(x > 0)
wherel (x > 0) is the Heaviside step function (or indicator
function or characteristic function on the positive axigje
leti € {O,L,R}.

The selection of the final coefficient is a bit different from
(3), as proposed in [16, 14]. Indeed, suppose that all three
candidates would yield a noise-free value of zero (or close
to zero). Such a situation is far from unlikely, as smooth
intervals in classical wavelet analysis lead to negliglibb-
efficients. The eventual selection in (3) would then heavily — f(X) =
depend on the noise. As illustrated in the simulation sec-
tion, our experiments seem to indicate that this results in
small wiggly effects in the reconstruction and especially i
a tendency towards the detection of false jumps in otherwise
smooth but non-constant functions. In order to reduce these

as
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random effects, the truncated kernels are only taken into ac 12 51 I}f 5lf 15512048;5)(5_631/ 64
count if they deliver a coefficient which is (say) 3 times 1 =7 If 55/64< Xz 1 /
smaller in magnitude than the full kernel's coefficient,ttha : /64<X<

means if the full kernel’'s coefficient isignificantlyhigher . o _
(and hence less favourable) than one of the truncated altern ~ The simulation is set up as follows. We first generate and

tives. ordern = 2049 data points; from a uniform distribution
on [0,1]. Then we generate noisy observatidhs- f(x) +
4. ILLUSTRATIONS, SIMULATIONS AND ni, wheren; ~ N(0,02) ando = 1/3. The observations are
DISCUSSION shown in Figure 5.

We apply an adaptive multiscale kernel smoothing proce-
We illustrate our methods with the piecewise smooth “sky-dure with cosine kernels, i.eK(x) = 1(]x| < 1) - coqmx/2)
line” signal, depicted in Figure 4 and defined foe [0,1]  and bandwidth®; = 3(x, — X1)/n (such that on average the
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Figure 6: Output from classical lifting with a cubic interpo  Figure 8: Output from a multiscale kernel transform. No
lating polynomial as prediction step. The resultis heabily numerical problems here, even with a simple even-odd split-
ased due to numerical instability, specific for non-equais  ting.

grids.
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Figure 9: Output from an adaptive multiscale kernel trans-

Figure 7: Output from lifting on a grid adaptive coarseningform. Each coefficient results from selection among a two

(splitting) routine. The grid adaptive coarsening elintgza  Sided kernel_predictio_n and two one sided kernel predistion
most numerical problems. Reconstructions of singularities are sharp, but the method

sometimes detects jumps that are in fact gradual transition
(slopes).

fine scale kernels contain three data points: left, central,

right) andh; = 2h;1. Well founded choices for these pa- tiscale kernel transform followed by a level-dependentimin

rameters are of course subject of further research. )
In order to evaluate our method, we compare it with reMUM mean squared error threshold. Although the coarsening
! proceeds by even-odd splitting, no numerical problems oc-

lated lifting schemes on for irregular point sets. As arifi L : ;
scheme V\?e use a cubic interpglatingppolynomial as p?:edicqur’ thanks to the fact that the prediction with kernelsdsel

tion step followed by a two taps update, designed such thEP[rediction coefficients that are always bounded between 0
the primal wavelet basis has two vanishing moments [22]‘?Jlnd 1

The output of a level-dependent minimum mean squared e[- Figure 9 contains the output from the adaptive multiscale

ror threshold appears in Figure 6. The figure shows an u <ernel transform with one full and two truncated kernels and

acceptable bias due to bad numerical condition of cIassic%eCiSion rule (3). Jumps are much sharper in this reconstruc
lifting. The numerical problems are specific for inhomoge- ion. The met_hod has a tendency, h_owever, to reconstruct
tge linear sections as a sequence of jumps as well. A better

neous grids and have been reported in [24, 23]. It should b = bablV Fi 10. wh N ted k I
emphasized that these problems occur even if the grid is re -OMPromise IS probably Figure LU, Where a truncaled kerne

atively homogeneous as in this case: points were generatiytSed as prediction only if it deliverssignicantlysmaller
uniformly on the interval coefficient than the two-sided kernel.

Figure 7 shows the output of the same lifting scheme ap-
plied on a grid adaptive coarsening procedure, as elalibrate - CONCLUSIONRSE’SENA%%L’?IG AND FUTURE
in [24], again with a level-dependent minimum mean squared
error threshold approach. The numerical problems have beaftle have introduced a multiscale version of kernel smooth-
solved, but the reconstruction shows lots of prominentédfe ing, using a lifting scheme construction. We have defined
from false positives, i.e., coefficients that falsely sued the  forward and inverse transforms and proposed an adaptive
threshold. version of the scheme, driven by a statistical hypothests te
Next three figures illustrate the methods presented in thigng procedure. Issues under current investigation inchude
text. First, Figure 8 plots the reconstruction from a plailm proper choice of the bandwidth at each scale. We also in-
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