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ABSTRACT

In this paper a new method for localization of sources of
brain rhythmic activity is presented. The empirical mode
decomposition (EMD) method is applied to an appropriate
channel and one of the extracted intrinsic mode functions
(IMFs) is selected as a reference signal for one of the brain
rhythms. Then the spatial notch filter which is a constrained
spatial filter based on a reference is applied to find the loca-
tion of the desired rhythmic source. The use of EMD which
is fully adaptive and data-driven method for analyzing non-
stationary and nonlinear time series along with the recently
developed spatial filter is a powerful method for localization
of different rhythms in different frequency bands inside the
brain. The method is applied on the simulated data and real
BCI database. The results validate the effectiveness of the
proposed method for localization of sources with different
time-frequency signatures.

Index Terms— empirical mode decomposition (EMD),
intrinsic mode functions (IMFs), spatial notch filter, refer-
ence.

1. INTRODUCTION

Electroencephalogram (EEG) is the electrical activity of the
brain that gives us the possibility of studying brain functions
with a high time resolution, although with a relatively mod-
est spatial resolution [1]. Localization of ongoing oscillatory
activity is important for establishing the normal spatial and
spectral variation of cortical rhythmicity in the healthy hu-
man brain, and for characterizing abnormal changes induced.
For estimation of the overall level of rhythmic activity, par-
ticularly when such a level is to be compared across dif-
ferent brain regions, localization of the generators of rhyth-
mic activity is essential [2]. One method for localization of
brain rhythmic activity is to combine frequency analysis with
source localization methods [3],[4]. Based on this model the
spatial distribution of the activity in a certain frequency band
needs to be studied. Therefore, potential maps can be con-
structed for each frequency point using Fourier transform,
and these potential maps can be subsequently used for source
localization algorithms. This method, called “FFT dipole ap-
proximation” [3]. The shortcoming of this method is that
Fourier spectral analysis is a full description of the dynamics
only if the underlying system is linear. Moreover Fourier
spectrum defines uniform harmonic components globally.
Therefore, it requires many additional harmonic components
to simulate nonuniform data. One approach has been synthe-
sizing a signal that only contains the target time-frequency

This work is supported by The Leverhulme Trust

© EURASIP, 2009

627

components of interest, and then apply a single-dipole local-
ization procedure to this synthesized signal [5]. It is reported
that this approach is tedious and in some cases is computa-
tionally intensive [6]. Another approach is time-frequency
multiple signal classification (MUSIC) algorithm [6]. In this
model the locations of neural sources are estimated from the
corresponding time-frequency region of interest. In the pro-
posed algorithm, quadratic time-frequency representations
are used to provide better performance in comparison with
the linear representations such as the well-known short-time
Fourier transform (STFT) and the wavelet transform. The
goal of the this method is to localize a source for a time-
frequency region of interest.

In this paper we propose a new method for localization
of brain rhythmic activity using the EMD [7] and our re-
cently developed spatial notch filter [8]. Here, we seek to
localize brain rhythms using the EMD algorithm in order to
localize an oscillation inside the brain. EMD is a fully adap-
tive and data-driven method for analyzing nonstationary and
nonlinear time series. In the proposed method first the EMD
as a signal-dependent decomposition method is applied to
one channel of the EEG time series to decompose it to wave-
forms modulated in amplitude and frequency. The iterative
extraction of these components called intrinsic mode func-
tions (IMFs), is based on the local representation of the sig-
nal as sum of a local oscillating component and a local trend.
The IMFs can be considered as the reference signals for the
brain rhythmic activities. The spatial notch filter is then ap-
plied to the EEG data considering the resulted reference sig-
nal. The output of the spatial notch filter is minimized in the
location of the desired source. As long as the spatial notch
filter is tuned to a pre-determined reference signal as input,
there is no need to specify the number of brain sources.

The simulated results indicate that this method has the
ability of correct localization of the brain rhythms even in
low SNRs when the reference signal obtained by the EMD
method is not exact. One important issue is selecting the
appropriate channel which best approximates the reference
signal for a certain brain thythm. If the EMD is performed
on most relevant channels, the algorithm will lead to accurate
localization of the corresponding sources. Then, a real data
for BCI application is selected to localize the well-known mu
rhythm in the brain.

The remainder of the paper is structured as follows. In
section 2 the spatial notch filter is described. Then, in section
3 the EMD method is briefly explained and in section 4, the
source localization approach is described. In section 5 the
results of applying the proposed method on both simulated
data and real data are provided. Finally, section 6 concludes
the paper.



2. SPATIAL NOTCH FILTER

The new developed spatial notch filter is based on minimiz-
ing the distance between the reference signal and a filtered
version of the EEG including the spatial information of the
brain sources. The sources are modeled as current dipoles
and their propagation to the sensors is mathematically de-
scribed by an appropriate forward model [9],[10]. Consider
the EEG signal as an n X T matrix - X, where n is the num-
ber of electrodes and T is the length of the signals in terms
of time samples

m
X=HMS+N=) (Hjmjs;)+N (1
j=1

The term HMS + N is the matrix form of the model and H
is an n X 3m matrix describing the forward mixing model of
the m sources to the n electrodes. H is further decomposed
into m matrices H as

H=[H,..H,.H, 2)

where H; is an n X 3 matrix whose each column describes
the potential at the electrodes due to the jth dipole for each
of the three orthogonal orientations and m; is a 3 x I vec-
tor describing the orientation of the jth dipole. For example,
the first column of H; describes the forward model of the x
component of the jth dipole when the y and z components are
zero, where x,y and z refer to the spatial coordinates. and s;,
which is a 1 X T vector, is the time course of the jth dipole
and N is the combination of the measurement noise and the
modeling error. The constrained problem of the spatial notch
filter is defined as

min  fy(w) subjectto f.(w)=0 3)
where f;(w) is the Euclidean distance between the reference
signal and the filtered EEG and f,(w) is a constrained func-
tion which puts a null in a spatial location p [8];

T 2

Jaw) = [lr—w" (X)]l3 @
f.w) =wTH(p) =0

where w refers to the filter for extracting the desired source
and r is the reference signal corresponding to the desired
source. The constrained problem can be converted to an un-
constrained optimization procedure by using Lagrange mul-
tipliers. Therefore, we can have the following equation:

F(w) = faw)+ few)k = e —w" (X)[2+w"H(p)x (5)

where K is a 3 x I vector of Lagrange multipliers. After solv-
ing the above equation (by minimizing its gradient with re-
spect to w) the filter w will be obtained as [8]

wl = (ex" —xeX"C ' H(p)(H(p)" C; 'H(p))H(p)")C; !
(6)

where C, = XX is the covariance matrix of X. Based on
this model, we have a beamformer which puts a null in the
location of a source and then tries to find the desired source
in other places which best matches the reference signal. In
the case that beamformer has put the null in the location of
the desired source then it fails to find such a match and the
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filter w returns zero. Therefore, when the filter output is zero
or close to zero it means the exact source location is found.

3. EMPIRICAL MODE DECOMPOSITION

EMD [7] is a nonlinear technique to adaptively represent
nonstationary signals as sum of their IMFs. EMD considers
the oscilations in signals at a very local level. Each resulted
IMF by the EMD method satisfies two basic conditions: (i)
in the complete data set, the number of extrema and the num-
ber of zero crossings must be the same or differ at most by
one, (ii) at any point, the mean value of the envelope defined
by the local maxima and the envelope defined by the local
minima is zero. The EMD algorithm [11] for the signal z()
can be summarized as follows:

1. Serg1(t) = z(t)

2. Detect the extrema (both maxima and minima) of g (t)

3. Generate the upper and lower envelopes e (t) and e;(t)
respectively by connecting the maxima and minima sep-
arately with cubic spline interpolation

4. Determine the local mean as: m(t) = w@%z(t)

5. IMF should have zero local mean; subtract m(t) from the
original signal as: g(t) = g1(t) —m(?)

6. Decide whether g|(t) is an IMF or not by checking the
two basic conditions as described above

7. Repeat step 2 to 6 and stop when an IMF g|(t) is ob-
tained.

Once the first IMF is derived, define d;(r) = g;(¢), which is
the smallest temporal scale in z(¢). To find the rest of the
IMFs, generate the residue r; () of the data by subtracting
d, (t) from the signal as: r(t) = z(t) —di(z). r((z) is treated
as the new data and subjected to the same sifting process as
described above. The sifting process is continued until the
final residue is a constant, monotonic function, or a function
with only maxima and one minima from which no more IMF
can be derived. At the end of the decomposition the signal
z(1) is represented as:

M
2(t) =Y dp(t) +ru(r) )
p=1

where M is the number of IMFs and ry(¢) is the final residue.
The EMD algorithm is applied to one channel of EEG data to
decompose it to different brain rhythms. One of the selected
IMFs can be used as a reference signal for one of the rhythms
inside the brain.

4. SOURCE LOCALIZATION APPROACH

The new method for localization of brain oscillatory activi-
ties is a two step procedure. In the first step, the EMD method
is applied to one channel of the EEG data to decompose it
into oscillations that are orthogonal to each other. One ad-
vantage is that only one channel is required to obtain differ-
ent brain rhythms. However, the selection of the best channel
for a specific thythm may require some prior knowledge. Af-
ter applying the EMD, we may have several oscillations in a
specified frequency band. In this case, first we are able to
approximate a brain rhythm inside the brain using the EMD
algorithm, then we can have a reference signal for one brain
rhythm obtained by the EMD that can be subjected to the spa-
tial notch filter. The selected IMF obtained from the EMD



can be considered as the reference signal r in equation (6) to
perform the localization. Therefore, a distinct foci for any
oscillation inside the brain can be found. This is important
for different functional states where a number of oscillations
in distinct locations of the brain are dominant and active.

5. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed localization
method, this method is applied to both simulated data and
real data. what follows is the description of the simulated
data and real data and the results of applying the localization
method to both datasets.

5.1 Simulated Data

Four frequency and amplitude modulated sine waves that be-
long to four different frequency bands have been generated.
A forward model has been obtained using the BrainStorm
software [12]. We have used a three layer spherical head
model with conductivities of 0.33, 0.0042, 0.33 uS/cm, for
scalp, skull, and brain, respectively. The generated signals
have been placed in different locations inside the brain. The
location for alpha, beta, theta and delta rhythms are shown in
Fig. 1. Using the generated signals and the forward model
and by assigning the location and moment for each source
signal, the mixture EEG signals in 25 channels are generated
using equation (1). Then the Gaussian noise is added to all
the channels. We have applied the EMD to different EEG
channels and for every channel each resulted IMF is consid-
ered as the reference signal r to be used in spatial notch filter
formula. Therefore, using the reference signal r obtained by
EMD, the spatial notch filter is applied to give the location of
the desired signal. Table 1 shows the error of localization us-
ing the IMF which corresponds to the desired brain rhythm
obtained from different channels. For some channels, the
zero error is obtained. Then the selection of the best channel
is essential when dealing with the real data. Our experiment
showed that the best channel is the channel nearest to the
source considering the orientation and moment of the source
and also the channel that its resulted IMF has continuous in-
stantaneous frequency. The original simulated brain rhythms
and the extracted brain rhythms using EMD obtained from
some of the channels are shown in Fig. 2. Table 2 contains
the correlation coefficient of the resulted IMF as reference
and the original signal. In general the reference does not
need to be exact and for the case that the correlation coeffi-
cient is high, the chance of having the localization error of
zero or close to zero is high.

5.2 Real data

The real data used in this paper is the BCI competition data
[13]. The recording was made using BrainAmp MR plus
amplifiers and a Ag/AgCl electrode cap. Signals from 59
EEG positions were measured that were most densely dis-
tributed over sensorimotor areas. Signals were bandpass fil-
tered between 0.05 and 200 Hz and sampled at 1000 Hz with
16 bit (0.1 uV) quantization. Here a version of the data that
is downsampled to 100 Hz is used. The dataset is recorded
from healthy subjects. In the whole session motor imagery
has been performed without feedback. Based on the avail-
able EEG data, the corresponding forward model has been
created. The head model is the same as the simulated data
but we increased the number of grid points inside the brain
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to have a better estimation. As a result, the limit of the x,y
and z axis is increased in the read data and it is evident in
Fig. 4. The EMD is applied on the C3 channel to decom-
pose it to several IMFs. One of the extracted IMFs in the
alpha frequency band is chosen and is shown in Fig. 3. The
suppression of mu rhythm during the motor imaginary task
can be seen in this IMF. This IMF is selected as the reference
signal for mu rhythm. Then, the spatial notch filter is applied
providing the reference signal for the mu rhythm. The re-
sult of localization of mu rhythm is shown is Fig. 4. This
is consistent with previous finding about the location of mu
rhythm [6]. Therefore, the EMD algorithm along with the
spatial notch filter has the ability of localizing different brain
rhythms inside the brain.

6. DISCUSSION AND CONCLUSION

In this paper a new method for localization of different brain
rhythms inside the brain is proposed. The method is a two
step algorithm which first uses EMD algorithm to obtain
brain rhythms from only one channel. Then the spatial notch
filter is applied to find the location of the extracted brain
rhythm from the multi-channel EEG. The selection of the
best channel for extracting the appropriate brain rhythm is
crucial. To achieve that the prior knowledge about differ-
ent brain rthythm can be useful. Also a clustering algorithm
can be applied to the result of localization obtained from
several close electrodes to give the approximate location of
the rhythm in the case that is not clear which channel is the
best for localization. The method can be applied to differ-
ent real data such as mental fatigue data to see whether brain
rhythms have different locations in different mental states.
Indeed, the beamformer performance can be improved by
adding more null constraints to suppress the effect of the cor-
related sources.
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Table 1. Localization error Table 2. Correlation coef-
of brain rhythms in which the ficients of the resulted IMF
reference is obtained from selected as reference and the
different channels original source
Beta Alpha  Theta Beta Alpha Theta
Ch#1 0.0693 0.0632 0.0400 Ch#1 0.6838 0.5228 0.5106
Ch#2 0.0283 0.0400 0.0283 Ch#2 0.7037  0.6651 0.5240
Ch#3 0.0346 0.0400 0.0283 Ch#3 0.7508 0.5915 0.5115
Ch#4 0.0283  0.0400 0 Ch#4 0.6893  0.5895 0.5422
Ch#5 0.0200 0.0400 0.0400 Ch#5 0.7597 0.6310  0.5405
Ch#6 0.0283 0 0.0400 Ch#6 0.7982 = 0.8139 0.6221
Ch#7 0.0283  0.0283  0.0400 Ch#7 0.8501 0.7290  0.5146
Ch#8 0.0283 0 0 Ch#8 0.7919  0.7924 0.7334
Ch#9 0.0200  0.0825 0 Ch#9 0.8032 0.7183 0.7168
Ch#10 0 0.0400 0.0490 Ch#10 0.6732 0.5995 0.4619
Ch#11 0.0283 0.0825 0 Ch#11 0.8829 0.6189 0.6177
Ch#12 0.1562 0 0 Ch#12 0.7023 = 0.7216  0.6403
Ch#13  0.0283 0 0 Ch#13 0.8025 0.6873 0.5817
Ch#14 0.0283 0.0400 0.0283 Ch#14 0.6854 0.6899 0.6110
Ch#15 0.0283  0.0400 0 Ch#15 0.8458 0.7113  0.6625
Ch#16 0.0200 0.0283 0.0283 Ch#16 0.6938 0.6975 0.7479
Ch#17 0.0283 0.0825 0.0283 Ch#17 0.8700 0.6515 0.6763
Ch#18 0.0200 0.0400 0.0632 Ch#18 0.6653 0.6121 0.4393
Ch#19 0.0283 0.0825 0.0283 Ch#19 0.7876 0.5117  0.5511
Ch#20 0.0200 0.0447 0.0283 Ch#20 0.7241 0.7872  0.5509
Ch#21 0.0283 0.0283 0.0490 Ch#21 0.8157 0.7277 0.5575
Ch#22 0.1039 0.0447 0.0283 Ch#22 0.5712 0.5552  0.4320
Ch#23  0.0283 0 0.0400 Ch#23 0.8855 @ 0.5915 0.5165
Ch#24  0.0200 0 0 Ch#24  0.7292 0.7686 0.7503
Ch#25 0.0490 0.0200 0.0283 Ch#25 0.8501 0.6450 0.5666
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Fig. 1. The location of brain rhythms inside the brain; (a) coronal view, (b) transverse view for the simulated data.
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Fig. 2. Original simulated sources; (a) beta rhythm, (c) alpha rhythm, (e) theta rhythm, and the extracted sources using EMD; (b) Extracted
beta rhythm from channel 10, (d) Extracted alpha rhythm from channel 6, (f) Extracted theta rhythm from channel 24, SNR = 7.8775.
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Fig. 3. The Extracted IMF using the EMD algorithm.
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Fig. 4. The location of selected IMF as mu rhythm inside the brain; (a) coronal view, (b) transverse view.
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