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ABSTRACT
This article presents a statistical analysis of the Matrix Pencil
method for estimating the mode and the amplitude of a single
damped complex exponential. This study is based on a per-
turbation analysis of the mode and the amplitude, assuming
a high signal-to-noise ratio. Closed-form expressions of the
mean and variance of these perturbations are derived. It is
shown that the estimates are unbiased and that the estimator
can be tuned in order to obtain a minimal variance. The the-
oretical results are verified using Monte Carlo simulations.

1. INTRODUCTION

Parameter estimation of exponential signals is a fundamental
problem in signal processing. Several methods have been
proposed to solve this problem, such as maximum likeli-
hood approaches [1, 19] and subspace-based methods (MU-
SIC [15], ESPRIT [14], backward linear prediction (BLP)
[8], direct data approximation (DDA) [9], Matrix Pencil [6],
etc). In the case of undamped sinusoids, statistical perfor-
mances of these methods have been extensively studied, ei-
ther for estimating the frequencies [5, 11–13] or the am-
plitudes [4, 20]. A few studies have analyzed the case of
damped signals [7, 10, 16]. Nevertheless, the expressions
obtained in this case are complicated and usually written in
a matrix form. So, it is difficult to use them in order to, for
instance, examine precisely the dependency of the method’s
design parameters on the variance.

In this paper, the estimation method considered is the
well-known “Matrix Pencil” (MP) method developed by Hua
and Sarkar [6]. It is based on a matrix prediction equation
in which the data matrices have a Hankel structure. As for
all subspace-based methods, the MP method uses a singu-
lar value decomposition (SVD) followed by the truncation of
the lowest singular values to reduce noise effect. The per-
turbation analysis developed consists in studying error prop-
agation, starting from the singular values of the data matrix
towards the signal mode and amplitude. Thus, we use the
same approach as in [2, 7, 10] to derive the expression of the
damped mode (frequency and damping factor) variance. As
compared to these works, the first contribution of the present
paper is the derivation of a compact form for the final expres-
sion of the mode variance which is moreover more suitable
for practical use. As a second contribution, the noise sensi-
tivity of the amplitude estimate is also presented and com-
pared to previous results. From the expressions of the mode

and amplitude variances, we give the optimal design param-
eters of MP allowing one to achieve a minimum variance. Of
course, this work can be easily extended to other subspace-
based estimation methods for damped sinusoids implying an
SVD truncation, such as BLP and DDA.

The remaining of the paper is organized as follows. In
section 2, a brief outline of the MP method is given. Sec-
tions 3 and 4 are devoted to the first-order perturbation anal-
ysis of the method, for the mode and amplitude estimates.
In section 5, some Monte Carlo simulations are presented in
order to verify the analytical expressions obtained.

2. MATRIX PENCIL METHOD

Consider the following complex signal composed ofM
damped exponentials:

x̃(n) = x(n)+ e(n) =
M

∑
i=1

ai p
n
i + e(n) (1)

for n = 0, . . . ,N − 1, where{pi = exp(αi + jωi)}M
i=1 are

the damped modes (αi < 0) with complex amplitudesai =
Ai exp( jφi). The signale(n) is a zero-mean complex white
Gaussian noise with varianceσ2

e . Let ri = exp(αi). Model
(1) is used in this section in order to describe the MP method.
Afterwards, we will use the following model (M = 1):

x̃(n) = x(n)+ e(n) = apn + e(n). (2)

Throughout this paper, the tilde symbol(�̃) indicates the
noisy version of the variable(�) which may be a scalar or
a matrix.

All subspace-based methods consist first in estimating
the modes{pi} by using SVD. Then, the amplitudes are
obtained by solving a system of linear equations. The MP
method is based on the following steps [6]:

1. With the available data, form two Hankel matricesX̃0
and X̃1 where X̃i = [x̃i, x̃i+1, . . . , x̃i+L−1] and x̃k =
[x̃(k), x̃(k + 1), . . . , x̃(N − L − 1 + k)]T for k = 0, . . . ,L.
The parameterL ∈ N is similar to the prediction order
in the well-known Prony method withM 6 L 6 N −M.

2. Perform the SVD of matrix̃X1 and set to 0 all but the
first M largest singular values. The resulting matrix is
the best rankM approximation ofX̃1.
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3. Compute the reduced rank pseudoinverse ofX̃1 (denoted
by X̃

†
1) to obtain matrixZ̃:

Z̃ = X̃
†
1X̃0. (3)

4. The estimated modes{ p̃i}M
i=1 correspond to the inverse

of the M eigenvalues of matrix̃Z lying outside the unit
circle in the complex plan.

5. Once the modes are estimated, the amplitudes can be
computed by solving the following linear system in the
least-squares sense:









1 · · · 1
p̃1 · · · p̃M
...

...
p̃K−1

1 · · · p̃K−1
M













ã1
...
ãM



 ≈





x̃(0)
...
x̃(K −1)





P̃K ã ≈x̃K .

It leads toã= (P̃H
K P̃K)−1P̃H

K x̃K . Here,K 6 N represents
the number of equations used to estimate the amplitudes.
The role of this parameter will be discussed later.

3. PERTURBATION OF THE MODE

In the single-mode case (model (2)), the matrixX1 is rank 1
and it can be shown [10] that its SVD is given by:

X1 = σ1u1v
H
1

whereσ1 = Ar(kvku)
1/2 is the unique nonzero singular value

of X1, and

u1 =
exp( jφ)√

ku
[1, p, · · · , pN−L−1]T

v1 =
exp(− jω)√

kv
[1, p∗, · · · , p∗L−1]T

are the corresponding principal singular vectors. The terms
ku andkv are the normalization of vectorsu1 andv1 (ku =
∑N−L−1

i=0 r2i, kv = ∑L−1
i=0 r2i), respectively. The superscripts

“T ” and “H” denote matrix transpose and conjugate trans-
pose, respectively. According to perturbation theory, a small
error inX1 produces a perturbation in the eigenvalueσ2

1 of
XH

1 X1. At high SNR, the first order approximation of this
perturbation is given by [17]:

∆σ2
1 = vH

1 (X̃H
1 X̃1−XH

1 X1)v1

= vH
1 (EH

1 X1 +XH
1 E1)v1. (4)

whereE1 is a Hankel matrix of noise entries. It is built as
X1, that means that̃X1 = X1 +E1. Now, at high SNR, the
matrixX̃1 is approximately rank 1, thus:

X̃
†
1 ≈

1

σ̃2
1

X̃H
1 . (5)

Replacing this expression in (3) and using the fact thatX̃0 =
X0 +E0 (soE0 is also a Hankel matrix of noise elements),
it yields:

∆Z = Z̃−Z≈ 1

σ2
1

(−Z∆σ2
1 +XH

1 E0 +EH
1 X0).
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Figure 1: Plot ofLopt/N as a function ofα for some values
of N.

The first order perturbation of the nonzero eigenvaluez1 of
the matrixZ is then:

∆z1 =
1

σ2
1

vH
1 (−Z∆σ2

1 +XH
1 E0 +EH

1 X0)v1.

Since ˜p = 1/z̃1, it can be shown that∆p ≈ −p2∆z1. More-
over, asZ = 1

pv1v
H
1 and by using the expression of∆σ2

1 in
(4), we finally obtain

∆p =
p

σ1
uH

1 (E1− pE0)v1. (6)

This expression of the mode error shows that the estimate
is unbiased, that isE{∆p}= 0. Hence, it is easy to show that
E{∆ω} = E{∆α} = 0. Moreover, under the assumption of
white Gaussian noise, after some calculations we found that
E

{

(∆p)2
}

= 0, and [3]

E
{

|∆p|2
}

=
σ2

e

A2 .















(1− r2)3(1+ r2N−2L)

(1− r2N−2L)2(1− r2L)
, L 6 N

2

(1− r2)3(1+ r2L)

(1− r2N−2L)(1− r2L)2 , L >
N
2

(7)

From (7), it is possible to obtain the variances of the fre-
quency and the damping factor since var(∆ω) = var(∆α) =

1
2r2 E

{

|∆p|2
}

. In addition, the closed-form expression (7)
can now be exploited to study the role of parameterL in the
estimation variance. Indeed,E

{

|∆p|2
}

is minimized with
respect toL when:

Lopt = arg min
16L<N

E
{

|∆p|2
}

=
N
2
± 1

2log(r)
log

(

tan
π − tan−1 r−N

3

)

. (8)

In the case of a pure sinusoid (r = 1), it gives the well-known
optimal valuesLopt ∈ {N/3,2N/3} [6]. For r < 1 andN
sufficiently large so thatrN ≪ 1, Lopt tends towardsN/2 (see
figure 1). This means that the value ofLopt lies in the interval
[N/3,2N/3] according to the value of the damping factor. In
fact, sinceE

{

|∆p|2
}

is symmetric aboutN/2, it is sufficient
to choose the value ofL betweenN/3 andN/2.
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4. PERTURBATION OF THE AMPLITUDE

In the single-mode case given by model (2), the amplitude
estimation calls for the resolution of the following linearsys-
tem:

p̃K .ã ≈ x̃K

wherep̃K = [1, p̃, . . . , p̃K−1]T , x̃K = [x̃(0), . . . , x̃(K−1)]T and
K 6 N. The least-squares solution is then given by:

ã = (p̃H
K p̃K)−1p̃H

K x̃K .

By considering the noise in the vector ˜xK and the estimation
errors inp̃K = pK + ∆pK , the first-order perturbation in the
amplitude can be derived:

∆a =
1
kp

pH
K (eK −ap′

K∆p) (9)

where ∆pK = p′
K∆p, p′

K = [0,1,2p, · · · ,(K − 1)pK−2]T ,
eK = [e(0), · · · ,e(K − 1)]T , and kp = ∑K−1

i=0 r2i. From this
expression it is easy to conclude that, if the estimate ofp is
unbiased (i.e.E{∆p}= 0), then the least-squares estimate of
a is also unbiased sinceE{∆a}=−(a/kp)p

H
K p′

KE{∆p}= 0.
Thus, E{∆A} = E{∆φ} = 0. Moreover, it can be easily
shown thatE

{

(∆a)2
}

= 0. The calculation of the variance
of the complex amplitude (E

{

|∆a|2
}

) is more tedious. The
main steps are now given. First, from (9) we have

|∆a|2 =(pH
K eKeH

KpK + A2|∆p|2pH
K p′

Kp′H
K pK

−2ℜ[apH
Kp′

K∆peH
KpK ])/k2

p.

whereℜ[�] denotes the real part of a complex number. Ap-
plying mathematical expectation and using the fact thate(n)
is zero-mean uncorrelated complex noise, we obtain

E
{

|∆a|2
}

=(pH
K E

{

eKeH
K

}

pK + A2|pH
K p′

K |2E
{

|∆p|2
}

−2ℜ[apH
Kp′

KE
{

∆peH
K

}

pK ])/k2
p

=(σ2
e k2

p + A2|pH
K p′

K |2E
{

|∆p|2
}

−2ℜ[apH
Kp′

KE
{

∆peH
K

}

pK ])/k2
p.

Finally, replacing∆p in (6) leads to the following expression:

E
{

|∆a|2
}

=
σ2

e

kp
+

A2s2
K

r2k2
p

E
{

|∆p|2
}

+
2σ2

e sKmKr2K

r2kvkuk2
p

(10)

where

sK =
K−1

∑
i=0

ir2i

mK = min(K,N −K,L,N −L).

Now, replacing all the variables depending onK in (10) leads
to the final expression (11) given at the bottom of the page.
Here again, it is possible to express the variances ofA and
φ since var(∆A) = A2var(∆φ) = 1

2E
{

|∆a|2
}

. Note that this
derivation may be extended to other subspace-based methods
for which the expression of∆p in (9) in known. For instance,
the expression of∆p for BLP and DDA may be found in [3].

4.1 The case of a pure sinusoid

In order to compare the variance (11) with those derived in
the literature, let us consider the particular case of an un-
damped sinusoid. Forr = 1, we have:

E
{

|∆a|2
}

=
σ2

e

K
+

1
4

A2
E

{

|∆p|2
}

(K −1)2+
σ2

e mK(K −1)

L(N −L)K
.

The two first terms in the right-hand side (RHS) of this equa-
tion correspond to the results already presented in [4, 20] for
the undamped case. The last term, corresponding to the cor-
relation betweeneK and∆p in (9), is neglected in [4, 20].
Now, this term is not always negligible; it depends on the
values ofL andK. Moreover, we can show that the global
minimum of the variance of the amplitude can be achieved
for Kopt ≈ 0.86N if the prediction orderL is fixed to mini-
mize the variance of the mode (i.e.L = N/3). Note that this
result is more accurate than the one presented in [20] (i.e.
Kopt ≈ 2

3N). The two minima ofE
{

|∆a|2
}

for r = 1 and
L = N/3 are:

Kopt =

{

0.53N, for N/3 6 K 6 2N/3
0.86N, for 2N/3 6 K 6 N.

(12)

Here we assumed thatL 6 N/2 thusmK = min(L,K,N −K).

4.2 Approximation of Kopt for a damped sinusoid

The values ofKopt derived in the previous subsection are
valid for an undamped sinusoid and stand approximately for
a moderately damped one. For a general damped sinusoid,
the optimal value ofK should be derived from the expression
in (11). But this is not a simple task due to its non-linear de-
pendence uponK. Hence, for practical issues, we give here
approximate values ofKopt under the following assumptions:
i) L ∈ [N/3,2N/3] andK > L,
ii) r2L ≪ 1.
Note that assumingL ∈ [N/3,2N/3] is not very restrictive
since we have seen that the optimal value ofL lies in this in-
terval. Assumption (ii) implies that the number of samples
is large enough so that the damped sinusoid vanishes suffi-
ciently (r2L ≪ 1 ⇒ r2N ≪ 1). The combination of the two
assumptions will lead us to a large sample approximation of
Kopt . First,E

{

|∆p|2
}

may be approximated by:

E
{

|∆p|2
}

≈ σ2
e

A2 .

{

1/k2
ukv, L 6 N

2
1/kuk2

v , L >
N
2

E
{

|∆a|2
}

=
1− r2

1− r2K σ2
e +

A2
E

{

|∆p|2
}

r2

(

r2

1− r2 −
Kr2K

1− r2K

)2

+
2σ2

e

r2kvku

(

r2

1− r2 −
Kr2K

1− r2K

)

(1− r2)mKr2K

1− r2K (11)
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wherekv ≈ ku ≈ 1/(1− r2), using assumption (ii). Then,
deriving (11) with respect toK and using the aforementioned
two assumptions leads to the following approximate optimal
values ofK:

Kopt ≈















min(L,N −L)+
0.5+ r2

1− r2 , if mK ∈ {L,N −L}

0.5N +
1+ r2

4(1− r2)
, if mK = N −K.

(13)

5. NUMERICAL SIMULATIONS

Consider a complex sinusoidal signal of amplitudea = 1
and angular frequencyω = π/2, with N = 30 samples. The
damping factor is set to two values:α = 0 (pure sinusoid)
and α = −0.1. The noise variance is chosen so that the
peak SNR is equal to 40 dB. The theoretical and experimen-
tal (for 1000 Monte Carlo runs) variances of the mode es-
timates versus the prediction orderL are given in figure 2.
We observe that the theoretical and simulated variances are
very close. Moreover, the theoretical expression ofLopt in
(8) is confirmed by simulations. Indeed, we can observe that
Lopt ∈ { 1

3N, 2
3N} for α = 0 (r = 1) andLopt ∈ {12,18} for

α = −0.1, which correspond to the values found with rela-
tion (8). At these points, the variance is close to the Cramér-
Rao bound (CRB) [18].

Now, let us setL to its optimal value (L = 10 for α = 0
and L = 12 for α = −0.1). A plot of the amplitude vari-
ance versusK is given in figure 3. Here again, one can check
the precision of the theoretical expression. In addition, we
observe that the minimum variance is achieved in the un-
damped case forK ≈ 16 andK ≈ 26, which correspond to
the values found using equation (12). For a damped signal,
this minimum is reached forK ≈ 20 which is near the value
given by (13):Kopt ≈ 19.3. The position of the second (lo-
cal) minimum (Kopt ≈ 10) does not satisfy assumption (i) in
subsection 4.2, therefore it cannot be expressed by (13). Gen-
erally speaking, the plots of both simulation and theoretical
variances show that a damped mode requires less equations
than an undamped one to obtain an accurate estimate of the
amplitude.

The last simulation is intended to assess the value of
the SNR from which the derived expression of the ampli-
tude variance is valid. This is an important point which de-
pends not only on the actual value of the SNR but also on
the damping factorα. Thus, the simulation presented here
is performed withα = −0.1. The parametersL andK are
set to their optimal values:L = 10 andK = 20. The re-
sults achieved for different values of the SNR are given in
figure 4. We observe that the theoretical expression of the
mean-square error is valid beyond a threshold SNR, which is
about 10 dB in our case. Of course, this is not a general result
because the threshold SNR also depends on the damping fac-
tor. Hence, the threshold will be smaller for a pure sinusoid
and larger for a strongly damped one.

6. CONCLUSION

We have presented a first-order perturbation analysis of a
well-known subspace-based method in the estimation of a
single damped sinusoidal signal. The analytical expressions
obtained allow one to tune accurately the estimator in order
to obtain a minimal variance on both the mode (frequency
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Figure 2: Comparison between theoretical and estimated
variances of the pulsation for various values ofL. (a)α = 0;
(b) α = −0.1.

and damping factor) and the amplitude. These expressions
have been confirmed by numerical simulations. The main
conclusion stemming out from this work is the importance
of the damping factor: the optimal design parameters (L and
K), allowing to reach the minimum variance, strongly de-
pend on it. In practice, a heuristic approach is to choose
L ∈ [N/3,N/2] and K ∈ [0.53N,0.86N], because the vari-
ances do not vary much in these intervals, both for a damped
and an undamped sinusoid. This conclusion remains approx-
imately valid for well separated multiple modes if the damp-
ing factors are almost equal.
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