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ABSTRACT and amplitude variances, we give the optimal design param-
This article presents a statistical analysis of the Materdl  eters of MP allowing one to achieve a minimum variance. Of
method for estimating the mode and the amplitude of a singleourse, this work can be easily extended to other subspace-
damped complex exponential. This study is based on a pebased estimation methods for damped sinusoids implying an
turbation analysis of the mode and the amplitude, assumingVD truncation, such as BLP and DDA.
a high signal-to-noise ratio. Closed-form expressionsef t The remaining of the paper is organized as follows. In
mean and variance of these perturbations are derived. It &ection 2, a brief outline of the MP method is given. Sec-
shown that the estimates are unbiased and that the estimatams 3 and 4 are devoted to the first-order perturbation-anal
can be tuned in order to obtain a minimal variance. The theysis of the method, for the mode and amplitude estimates.
oretical results are verified using Monte Carlo simulations In section 5, some Monte Carlo simulations are presented in

order to verify the analytical expressions obtained.
1. INTRODUCTION

Parameter estimation of exponential signals is a fundaahent 2. MATRIX PENCIL METHOD
problem in signal processing. Several methods have begfonsider the following complex signal composed Mf
proposed to solve this problem, such as maximum likeligamped exponentials:
hood approaches [1, 19] and subspace-based methods (MU-
SIC [15], ESPRIT [14], backward linear prediction (BLP) M
[8], direct data approximation (DDA) [9], Matrix Pencil [6] K(n) = x(n) +e(n) = Zlaj p!'+e(n) (1)
etc). In the case of undamped sinusoids, statistical perfor i=
mances of these methods have been extensively studied, ei-
ther for estimating the frequencies [5, 11-13] or the amfor n = 0,...,N — 1, where{p; = exp(ai + ja)}M, are
plitudes [4, 20]. A few studies have analyzed the case ofhe damped modes( < 0) with complex amplitudes; =
damped signals [7, 10, 16]. Nevertheless, the expressiomgexp(j@). The signale(n) is a zero-mean complex white
obtained in this case are complicated and usually written itsaussian noise with variancg. Letr; = exp(a;). Model
a matrix form. So, it is difficult to use them in order to, for d%) is used in this section in order to describe the MP method.
instance, examine precisely the dependency of the methodterwards, we will use the following modeM = 1):
design parameters on the variance.

In this paper, the estimation method considered is the %(n) = x(n) +e(n) = ap" +e(n). (2)
well-known “Matrix Pencil” (MP) method developed by Hua
and Sarkar [6]. It is based on a matrix prediction equatiomhroughout this paper, the tilde symb@) indicates the
in which the data matrices have a Hankel structure. As fOﬁoisy version of the Variab|e) which may be a scalar or
all subspace-based methods, the MP method uses a singUmatrix.
lar value decomposition (SVD) followed by the truncationof  AJl subspace-based methods consist first in estimating
the lowest singular values to reduce noise effect. The pethe modes{p;} by using SVD. Then, the amplitudes are
turbation analysis developed consists in studying erroppr obtained by solving a system of linear equations. The MP
agation, starting from the singular values of the data matri method is based on the following steps [6]:
towards the signal mode and amplitude. Thus, we use thz
same approach as in [2, 7, 10] to derive the expression of the-
damped mode (frequency and damping factor) variance. As
compared to these works, the first contribution of the presen e —
paper is the derivation of a compact form for the final expres- 1 ne parametet € N is similar to the prediction order
sion of the mode variance which is moreover more suitable 1N the well-known Prony method witht <L <N — M.
for practical use. As a second contribution, the noise sensi2. Perform the SVD of matriX; and set to O all but the
tivity of the amplitude estimate is also presented and com- first M largest singular values. The resulting matrix is
pared to previous results. From the expressions of the mode the best rani approximation oiX;.

With the available data, form two Hankel matricks
and X3 where X; = [Xj,Xj+1,-..,Xi+L-1] and Xk =
(K),X(k+1),....XN— L — 1+ k) fork=0,...,L.
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3. Compute the reduced rank pseudoinversk pfdenoted 0.7
by XI) to obtain matrixZ:

0.65

Z = XIX,. (3) 06|

4. The estimated modg$i }M correspond to the inverse 50'55'
of the M eigenvalues of matrlz lying outside the unit 5 05—
circle in the complex plan. —

5. Once the modes are estimated, the amplitudes can |
computed by solving the following linear system in the 04
least-squares sense:

0.45

0.35F

1 L & X(0) 0.25 02 015 01 0.05 0
P1 Pm 1 ' ’ ' a ’
AK-1 aK1 am X(K-1) Figure 1: Plot ofLopt /N as a function ofx for some values
P1 Pu of N.

PK5 %iK

Itleads toa™= (P} Px ) 1Pl %k. Here K < Nrepresents The first order perturbation of the nonzero eigenvauef
the number of equations used to estimate the amplitudee matrixZ is then:

The role of this parameter will be discussed later. 1
Dz = v (—ZA0f + X Eo+ EY Xo)vy
3. PERTURBATION OF THE MODE )

In the single-mode case (model (2)), the maXixis rank 1 Sincep'= 1/211 it can be shown thakp ~ —p?Az;. More-
and it can be shown [10] that its SVD is given by: over, asZ — 5V1v1 and by using the expression bb_z in

X; = g v (4), we finally obtain
whereo; = Ar(k\,ku)l/2 is the unique nonzero singular value Ap= ﬁu? (E1— pEq)v1. (6)
of X1, and 01
exp(j @) This expression of the mode error shows that the estimate
u; = [1,p,---,pV YT is unbiased, that i {Ap} = 0. Hence, it is easy to show that
vk E{Aw} =E{Aa} = 0. Moreover, under the assumption of
v exp(—jw) 1,0, ptlT white Gaussian noise, after some calculations we found that
1=k ©mPeP E{(Ap)?} =0, and [3]
are the corresponding principal singular vectors. The serm (1—r2)3(1 N2 N
ky and kv are the normallzatlon of vectors; andvy (ky = ) o2 (I_rN-2hy2(1 )’ <3
SN2k, = S 2r?), respectively. The superscripts  E{|Ap“} = Y2 (1—r2)3(14 12 (7)
“T" and “H" denote matrix transpose and conjugate trans- L> %

pose, respectively. According to perturbation theory, alkm (1—raN-2)(1—r2)2”

error in Xy produces a perturbation in the elgenvaﬂfeof
XHX;. At high SNR, the first order approximation of this
perturbation is given by [17]:

From (7), it is possible to obtain the variances of the fre-
quency and the damping factor since (W) = var(Aa) =
=5E{|Ap[?}. In addition, the closed-form expression (7)

Ao? =vH (XHK, - XHX v, can now be exploited to study the role of paraméter the
H o H estimation variance. Indeeﬂ',{|Ap|2} iS minimized with
=v1 (Ef X1+ X7 E1)vs. (4)  respect td. when:

whereE; is a Hankel matrix of noise entries. It is built as

_ - 2
X, that means thaX; = X3 + E1. Now, at high SNR, the Lopt = arglgrPLnNIE{|Ap| }

matrix X is approximately rank 1, thus: N 1 m—tarrir—N
== log | tan—— (8)
<t 1.on 2log(r) 3
X~ ?Xl . (5)
1 In the case of a pure sinusoid=£ 1), it gives the well-known

Replacing this expression in (3) and using the fact Xgt= optimal valueslop € 21\,]\,/3’ 2N/3} [6]. Forr <1 andN
Xo+ Eg (soEy is also a Hankel matrix of noise elements), sufﬂmently 'afge sothat” <1, Lopt tends_tovyardN/Z (see
it yields: figure 1). This means that the valuelgfy lies in the interval

' [N/3,2N/3] according to the value of the damping factor. In
fact, sinceE {|Ap|?} is symmetric abou/2, it is sufficient

to choose the value &f betweerN/3 andN/2.

ANZ =77~ —5(—Z0c? + X' Eo+ EY' Xo).

'—‘qm| =
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4. PERTURBATION OF THE AMPLITUDE

In the single-mode case given by model (2), the amplitudc;_|

estimation calls for the resolution of the following linesys-
tem:

f)K.éz f(K
wherepk = [1,f,..., K 4T, %« = [X(0),...,X(K—-1)]" and
K < N. The least-squares solution is then given by:

&= (BKPK) PiXx.

By considering the noise in the vectag and the estimation
errors inpx = pk + Apk, the first-order perturbation in the
amplitude can be derived:

1
ha= K (ex ~apiAp) (9)
where Apk = piAp, pi = [0,1,2p,--, (K — 1)pk~2]T,
ek = [€(0),---,e(K —1)]T, andkp, = 31<'r?. From this
expression it is easy to conclude that, if the estimatp i3f

unbiased (i.eE {Ap} = 0), then the least-squares estimate of

ais also unbiased sin@{Aa} = —(a/kp)p Pk E {Ap} =0.
Thus, E{AA} = E{A¢p} = 0. Moreover, it can be easily
shown that { (Aa)?} = 0. The calculation of the variance

of the complex amplitude{ |Aa|?}) is more tedious. The
main steps are now given. First, from (9) we have

|Aal? =(pY ek el pk + A2|Ap|?p pipit pK

— 20[ap pkApeR pk]) /K5

where(l].] denotes the real part of a complex number. Ap-

plying mathematical expectation and using the fact d(a}
is zero-mean uncorrelated complex noise, we obtain

E{|Aa]*} =(pKE {exe } pk +A?|p pk|*E {|Ap|?}
— 20[apk pkE {Ape } px]) /K5
=(02K5 + A%|pK pi [°E {|Ap|?}
— 20apg pkE {Apel } pk]) /K5

Finally, replacingA\pin (6) leads to the following expression:

Now, replacing all the variables dependingtkoim (10) leads

to the final expression (11) given at the bottom of the page.
ere again, it is possible to express the varianceA ahd

@ since va(AA) = A?var(Ap) = 1E {|Aal?}. Note that this
derivation may be extended to other subspace-based methods
for which the expression dfpin (9) in known. For instance,

the expression dhp for BLP and DDA may be found in [3].

4.1 Thecaseof apuresinusoid

In order to compare the variance (11) with those derived in
the literature, let us consider the particular case of an un-
damped sinusoid. Far= 1, we have:

o2mg (K —1)
LIN-DK

The two first terms in the right-hand side (RHS) of this equa-
tion correspond to the results already presented in [4,&0] f
the undamped case. The last term, corresponding to the cor-
relation betweerex andAp in (9), is neglected in [4, 20].
Now, this term is not always negligible; it depends on the
values ofL andK. Moreover, we can show that the global

o2 1
E{|aa)?} = <t 21AZH-<:{|Ap|2} (K—1)2+

minimum of the variance of the amplitude can be achieved
for Kopt ~ 0.86N if the prediction ordet is fixed to mini-
mize the variance of the mode (i.e= N/3). Note that this
result is more accurate than the one presented in [20] (i.e.
Kopt = 2N). The two minima ofE {|Aa/2} for r = 1 and
L=N/3are:

Kop[{

Here we assumed that< N/2 thusmk = min(L,K,N —K).

0.53N,
0.86N,

forN/3<K < 2N/3

for2N/3 <K <N. (12)

4.2 Approximation of Ko for a damped sinusoid

The values ofK, derived in the previous subsection are
valid for an undamped sinusoid and stand approximately for
a moderately damped one. For a general damped sinusoid,
the optimal value oK should be derived from the expression

in (11). But this is not a simple task due to its non-linear de-
pendence upoK. Hence, for practical issues, we give here
approximate values d€,x under the following assumptions:

i) Le[N/3,2N/3]andK > L,

i) rt <1,

Note that assuming € [N/3,2N/3] is not very restrictive

E{|Aa|2} _ U_e2 + AzsiE{mmz} + 2025 mgr¢ (10) since we have seen that the optimal valué ¢iés in this in-
Ko er% rzk\,kuk%J terval. Assumption (ii) implies that the number of samples
is large enough so that the damped sinusoid vanishes suffi-
where ciently - < 1= r™N « 1). The combination of the two
assumptions will lead us to a large sample approximation of
o — KZ)lirZi Kopt- First,E {|Ap|2} may be approximated by:
= 2 2 N
) 2. e [l/kik,, L<3
mg = min(K,N —K,L,N—L). E{|Ap| }Nﬁ'{l/kukg, L> 0
1—r2 A’E{|Ap[? r2 Kr2K \?2 202 r2 Kr2K \ (1—r2)mgr
E{|aaf*} = S+ {apl%} - + = - ( UL (11)
1—r& r2 1-r2 11X rekgky \1—r2  1—rK 1—rX
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wherek, ~ ky ~ 1/(1—r?), using assumption (ii). Then, -69

deriving (11) with respect t& and using the aforementioned ol jgr‘ﬁ?ﬂw |
two assumptions leads to the following approximate optima "
values ofK: —-T1f
2 3 .l
minLN-U+ 22" imeen-ty 27
Kopt 1412 ' _ %'73'
05N+m, if ik =N—-K. §_74>
(13) = s
5. NUMERICAL SIMULATIONS Ter
Consider a complex sinusoidal signal of amplituale- 1 7

and angular frequenay = 11/2, with N = 30 samples. The
damping factor is set to two values: = 0 (pure sinusoid)

anda = —0.1. The noise variance is chosen so that the
peak SNR is equal to 40 dB. The theoretical and experimer _g
tal (for 1000 Monte Carlo runs) variances of the mode es
timates versus the prediction orderare given in figure 2. -57r
We observe that the theoretical and simulated variances a
very close. Moreover, the theoretical expressioLgf in =~ =
(8) is confirmed by simulations. Indeed, we can observe the -59r
Lopt € {2N, 2N} for a =0 (r = 1) andLop € {12,18} for g ¢,
a = —0.1, which correspond to the values found with rela-
tion (8). At these points, the variance is close to the Cramé 2 -61

-58}

Rao bound (CRB) [18]. S ol
Now, let us set to its optimal valuel( = 10 fora =0
andL = 12 for a = —0.1). A plot of the amplitude vari- -63|

ance versuK is given in figure 3. Here again, one can check e
the precision of the theoretical expression. In additioa, w 0
observe that the minimum variance is achieved in the un
damped case fdK =~ 16 andK = 26, which correspond to (b)
the values found using equation (12). For a damped signal,

this minimum is reached fd€ ~ 20 which is near the value Figure 2: Comparison between theoretical and estimated
given by (13):Kopt ~ 19.3. The position of the second (lo- variances of the pulsation for various valueg.ofa) a = 0;

cal) minimum Kopt ~ 10) does not satisfy assumption (i) in (b) a@ = —0.1.

subsection 4.2, therefore it cannot be expressed by (13). Ge
erally speaking, the plots of both simulation and theoagtic
variances show that a damped mode requires less equati
than an undamped one to obtain an accurate estimate of thg,,

amplitude. . S cgonclusion stemming out from this work is the importance
The last simulation is intended to assess the value Git the damping factor: the optimal design parameterarn(d
the SNR from which the derived expression of the ampll-K), allowing to reach the minimum variance, strongly de-

tude variance is valid. This is an important point which de-nanq on it. In practice, a heuristic approach is to choose
pends not only on the actual vaIL_Je of t_he SNR but also OE € [N/3,N/2] andK € [0.53N,0.86N], because the vari-

the damping factoo. Thus, the simulation presented heregnces do not vary much in these intervals, both for a damped
is performed witha = —0.1. The parameters andK are 54 an undamped sinusoid. This conclusion remains approx-

set to their optimal valuesL = 10 andK = 20. The re- imately valid for well separated multiple modes if the damp-
sults achieved for different values of the SNR are given iNng factors are almost equal.

figure 4. We observe that the theoretical expression of the
mean-square error is valid beyond a threshold SNR, which is
about 10 dB in our case. Of course, this is not a general resuRtefer ences
because the threshold SNR.aIso depends on the da”?p'”g Ta‘fl] Y. Bresler and A. Makovski. Exact maximum likeli-
tor. Hence, the threshold will be smaller for a pure sinusoid hood parameter estimation of superimposed exponen-
and larger for a strongly damped one. tial signals in noiselEEE Trans. Acoust. Speech Signal
Processing, 34(5):1081-1089, 1986.
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damping factor) and the amplitude. These expressions
e been confirmed by numerical simulations. The main
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