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ABSTRACT
The allpass transformation is a common approach to design
a frequency warped analysis-synthesis filter-bank (AS FB)
with non-uniform time-frequency resolution. Such filter-
banks are beneficial, e.g., for speech and audio subband pro-
cessing, but their synthesis filter-bank design is more com-
plex as for uniform filter-banks.

This problem is tackled by a new least-squares error (LS)
synthesis filter-bank design. Magnitude and phase distor-
tions are minimized with the constraints for complete alias-
ing cancellation and a restricted signal delay. The coefficients
of the synthesis filters are determined by a linear set of equa-
tions with linear constraints which can be easily solved. The
obtained FIR synthesis subband filters exhibit a frequency
selectivity similar to that of the IIR analysis filters. The
new concept is very general and can be applied in case of an
allpass transformation of first or higher order as well as for
polyphase network (PPN) filter-banks where the prototype
filter length exceeds the number of channels. These proper-
ties make the proposed design of interest for various subband
processing systems requiring non-uniform frequency bands.

1. INTRODUCTION

The design and application of allpass transformed analysis-
synthesis filter-banks (AS FBs) has been the subject of
steady research over the past decades [1-14]. One advan-
tage of such frequency warped filter-banks is that they can
achieve a frequency resolution very close to that of the hu-
man auditory system, which is exploited, e.g., for speech
enhancement [6,9,10] or subband coding [7]. Another ben-
efit is the lower algorithmic signal delay and complexity in
comparison to tree-structured (QMF or wavelet) filter-banks.
However, the non-uniform bandwidths of the analysis (sub-
band) filters also complicate the synthesis filter-bank design,
which has been addressed by different proposals.

The ’classical’ approach is to apply the allpass transfor-
mation to the analysis and synthesis filter-bank [3,6]. The
reconstruction error can be minimized by the prototype filter
design [9,11]. However, this allows only a very restricted re-
duction of the reconstruction error due to the limited degrees
of freedom offered by the prototype filter coefficients.

More degrees of freedom are obtained by considering FIR
polyphase synthesis filters. In [10], a numerical least-squares
error (LS) design is proposed which minimizes aliasing and
amplitude distortions but not phase distortions caused by
the warped analysis filter-bank. These phase distortions are
reduced by the closed-form design of [8] which, however, does
not employ an explicit error criterion. In [13], it is shown
that a significantly lower signal reconstruction error can be
achieved by a closed-form design derived by a LS criterion.

A more general approach to design a warped filter-bank
is to apply an allpass transformation of higher order where
the delay elements of the analysis filter-bank are substituted
by allpass filters of higher order [4]. Several authors have
derived an analytical closed-form design for the synthesis
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filter-bank to achieve perfect reconstruction (PR) [5,7,12].
In general, these designs provide IIR synthesis filters which
are not necessarily stable. An exception is the special case
of an allpass transformation of first order where these ap-
proaches provide FIR synthesis filters. Another severe draw-
back of these closed-form solutions is that the synthesis sub-
band filters have not necessarily a bandpass characteristic,
cf., [12]. This can cause high signal distortions if spectral
modifications of the subband signals are performed.

In this paper, a new LS FIR synthesis filter-bank design
for a warped DFT analysis filter-bank is presented where
the amount of linear distortions is minimized with the con-
straints for complete aliasing cancellation and a specified sig-
nal delay. The new design is very general as it considers an
allpass transformation of first and higher order as well as
a polyphase network (PPN) filter-bank structure where the
subband filter degrees can exceed the number of channels.

2. ALLPASS TRANSFORMED DFT
FILTER-BANK

A uniform DFT filter-bank with M channels is taken as basis,
where the analysis subband filters are complex modulated
versions of a prototype lowpass filter with finite impulse re-
sponse (FIR) h(n) of length L according to

Hi(z) = H(z W)
1

h(n) Wy 2z""
0
with Wy = exp{—j2n/M}, cf., [15]. A non-uniform time-
frequency resolution can be obtained by an allpass transfor-
mation where the delay elements of the analysis subband
filters are replaced by allpass filters of first order [1-3].

A more general approach is to replace the delay elements

by allpass filters of higher order [4,5]

LN An(z) . BL7177L(Z) (2)

where A(z) and B(z) represent the transfer functions of sta-
ble, causal allpass filters of order K and K — 1:

™~
|

vie{0,1,....,M—1} (1)

n

K 1—a(k)z
A = T2
la(k)] <15 a(k) € C; max{la(k)[} <[] ()
K11_b
ftet z—b
(k)| < 1; b(k) € C; m&X{|b( )} <zl (4)

with K € N and * marking the conjugate complex. The
frequency responses of these allpass filters are denoted by

A(ejﬂ) — e 9Pa@® 14 B(ejﬂ) — ¢ ivB(Q) (5)
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Applying the allpass transformation of Eq.(2) to Eq.(1)
leads to the new transfer functions

Fi(z) = BE () S h(n) Wi (A(Z))n (6)

n=0 B(Z)
—0(2) 3 h(n) Wi 0" () @)
n=0
with W(z) = BE"1(2) and ©(z) = 28

to ease the notation. The common allpass transformation of
first order is included as special case for K = 1 so that

W) =1 A O(z) = 1292 )

zZ—a

The frequency responses for the uniform analysis sub-
band filters of Eq. (1) and the non-uniform analysis subband
filters given by Eq. (6) are related by

i, (Z - em) — ¢ IL-Des®) p. (ewem)) (9)
with e (Q2) = va(Q) - ¢5(Q). (10)

The phase difference of Eq.(10) ensures that the allpass
transformation causes a frequency warping where a frequency
interval of AQ) = 27 is mapped onto an interval of 27 on the
warped frequency scale

0,27] = [0.27] : 9 po(Q). (11)
In contrast, the allpass transformation z~" — A"(z) maps
the frequency interval of [0,27] onto an interval of
AQ =27 K which causes an undesirable comb-filter effect
for K > 1, cf., [4].

Eq. (9) reveals that the warping characteristic is solely
determined by ¢eo(2) and thus the transfer function
O(z) = A(z)/B(z). However, dependent on the choice for
B(z), the transfer function O(z) can become either unstable
or non-causal. Therefore, the additional filter with transfer
function W(z) = B*~!(z) is employed so that the warped
subband filters of Eq. (6) are always stable and causal.

The function of Eq. (11) is bijective if the continuous (un-
wrapped) phase response e (£2) is monotonically increasing,
which is guaranteed by a positive group delay

Jype ()
—q > ova. (12)

This property is required to ensure a unique mapping so that
a comb-filter effect is avoided. The choice

B(z) =z~ 7V (13)

is of special interest as it reduces the implementation cost
for the filter-bank and simplifies the design procedure. With
Eq. (13), the requirement of Eq. (12) can be written

K 1— ak)?
g 1 —2a(k) cos (Q - ’Y(k)) + a(k)

k=1

~>K-1vQ  (14)

where the allpass poles are expressed by a(k) = a(k)e? 7*),
As an example, a DFT AS FB is considered with M = 8
channels and analysis and synthesis prototype filter given by

g(n) = @ (1 — V2 cos (%n—k 1)) (15)

hn) = .
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Figure 1: Non-uniform DFT analysis filter-bank designed
by an allpass transformation of second order with parame-
ters: L =2M =16, a(1) = j0.5, a(2) = —50.5, b(1) = 0.

where L = 2M and n € {0,1,...,L — 1}, cf.,, [13,16]. The
frequency warping effect of an allpass transformation of sec-
ond order (K = 2) with complex allpass poles is illustrated
in Fig.1. It is easily verified (and visible) that the phase
response e () of Fig. 1-b fulfills Eq. (11) and Eq. (12). The
bandwidths of the analysis filters shown in Fig. 1-c decrease
first and increase afterwards within the interval Q2 € [0, 7]
since the phase response @e (2) has an inflection point within
this region. In contrast, such an adjustment of the frequency
resolution cannot be achieved by an allpass transformation
of first order.

A vparticular efficient polyphase network (PPN) imple-
mentation of the analysis filter-bank is obtained by rewriting
Eq. (7) according to

Ipr—1M—1
Hi(z) = W(z) 30 D7 h(mM+X)- 0™ )
m=0 A=0
(16)
where it is assumed without loss of generality that L =[x M
with Ips € N. Fig. 2 illustrates this PPN implementation of

the analysis filter-bank.
The following synthesis subband filters are used

L—-1
Gi(z) = g(n) Wy, "V . P(z,L —1—n) (17)

n=0

with g(n) denoting the FIR of the synthesis prototype filter
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Figure 2: PPN implementation of the allpass transformed
analysis filter-bank with downsampling by R and L =2 M.

(—)(z)

of length L. The coefficients of the L transfer functions

Np—1

V=3 )
n=0

with N, € N shall be determined in such a way that a nearly
perfect signal reconstruction is achieved.

The FIR synthesis subband filters can be expressed by
the PPN representation

2" Ae{0,1,...,L—1} (18)

) Wi i€ {0,1,...,M—1}

(19)

M-1
~(M)
z GhrZi-a(

A=0

with 'modified’ (type 1) polyphase components

Ip—1
G0 (z) = 37 glm M+ )« Pz, (las —m) M — 1 )).
m=0

(20)

This efficient PPN implementation of the synthesis filter-
bank is shown in Fig. 3.

It should be noted that the uniform DFT AS FB is
included as special case for ¥(z) = 1, ©(z) = z~' and

P(z,n) =z~ with n € {0,1,...,L — 1}.

3. SYNTHESIS FILTER-BANK DESIGN

The output signal of the AS FB can be represented in the
z-domain (after some calculations) by the expression

R—1 M-—1
V()= 3 XGWE) Y HiG:WE) -Giz) (21)
=0 =0

with R € {N|1 < R < M}. Since Wj, = Wi for | € Z,
the AS FB with subsampling by R is a lmear pemadzcally
time-varying (LPTV) system with period R. We will take
this behavior into account by determining the overall transfer
function of the filter-bank for R time-shifted unit sample

Xo(2) é TR (2,0)
— 9(2M-2)
%o I b Ry
H .
A (M)
g /]
Xar-1(2) é TR P(z,M—1) —&
o g —1)
Lo P(z, M) B
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L —® P(Z,]\J'Q‘l) N
4(0) |
& P(z,2M 1) \Y(2)

Figure 3: PPN implementation of the synthesis filter-bank
with upsampling by R and L =2 M.

R—1}.

sequences as input, i.e., X(z) = z7' forl € {0,1,...,
Eq. (21) turns then into the new transfer function

Ty(z) = %

M-1

RZWR” ZH@zWR Gi(z). (22

For our numerical design approach, a matrix representation
of the transfer function 7;(z) in dependence of the unknown
L N, coefficients px(n) of the synthesis polyphase filters is
required. In the following, bold lower-case variables denote
vectors and matrices are marked by bold upper-case vari-
ables. The superscript T indicates the transpose of a vector
or matrix. Some manipulations of Eq. (17) lead to

Gi(z) =v{ -D"(2)-p; i€{0,1,...,M—1} (23a)

with v; = [g(L — 1), g(L —2) W, ..
g WY, g(0) Wy 1T (23b)
D(z)=1; ®de( 2) (23¢)
dn,(2) =[1, 2~ s (23d)
p:[q » 41 7"-79271]T (236)
= [pn(0), pn(1), -, pu(Ny = )" (23f)

for ne{0,1,...,L—1}.

The L x L identity matrix is denoted by I, and the operator
® marks the Kronecker product of two matrices.

With Eq. (23), the transfer function of Eq.(22) is now
formulated by the matrix notation

R—1 -
1 r
1o = (3 S Wit S A o D7)
r=0 i=0
where the complex vector £(z,1) is of dimension 1 x L Np.
The new formulation of the transfer function according
to Eq. (22) allows to express the condition for a linear time-
invariant (LTI) transfer function (for R > 1) as follows

Ty(z) = To(z) for 1€ {N|0<I< R}. (25)
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This condition can now be cast into a matrix notation by
means of Eq. (24)

€(z71) _€(Z70)
€(z72) _€(Z70) |
. ‘p=0gr-1, (26)

=Ea(?)

where a column vector with R zeros is denoted by 0r. This
condition for an LTI system ensures an aliasing-free signal
reconstruction (if no spectral modifications of the subband
signals X;(z) are performed). In this case, Eq. (22) becomes
equal to the linear transfer function of the filter-bank which,
by means of Eq. (7) and (17), can be written as

M—-1L—-1L-1

Tin(2) = £ 9() D2 5 S Wi 7 V() g(p)

=0 n=0 p=0
O () P(5L—1-p) (27)

= ZZ

meZ n=0

O"(z) P(z2,L—mM +n). (28)

gmM —1—n)

The condition Tiin(z) L
and is fulfilled if

274 avoids linear signal distortions

M= 1 sm=Ily
Enz_oh(n)-g(mM—1—n)—{0 € Z\ {1} (29)
A U(z)-0"(2)-Plz,n) =2 "°Vne{01,...,L—1}.
(30)

Eq. (29) states a standard problem in the design of (uni-
form) AS FBs and can be either solved by numerical design
approaches, e.g., [15] or analytical closed-form expressions
as given, for instance, by Eq. (15).

The second requirement stated by Eq.(30) can be ex-
pressed by means of the matrices introduced in Eq. (23)

V(z)
W(z)-O6(z) 1
1in, ® OD"(2) | -p=2"" 1,
U(z)- 057 1(2)
31)
with ® denoting the element-wise multiplication of two ma-
trices of the same dimensions (Hadamard product) and 1,

representing a column vector with L ones. The condition of
Eq. (31) is now written by the compact notation

U(z) p =v(zdo) (32)

with the complex matrix U(z) being of dimension L X L Np,.
The conditions of Eq. (26) and Eq. (31) shall be fulfilled
for N'= L N, discrete z-values on the unit circle

—1}. (33)

Evaluating the matrix U(z) and vector v(z,do) of Eq.(32)
at these points can be expressed by the (stacking) notation

z2=Wyx; ne{0,1,...,.N

Uu@1) ﬁL
U(Wx) W™ -1g
UWl = : 'U[N](do) - : (34)
UWA™ WD,

and the matrix EK\” is derived from the matrix Ea(z) of

Eq. (26) in the same manner

[1]

N
W — . . (35)

The N synthesis filter coefficients p to fulfill Eq.(26) and
Eq. (31) can now be determined by the equality constrained
least-squares error (CLS) problem

2
p =arg minipmize HUW] -p— v[N](do)‘ ’2 (36a)
subject to [ ! P=0r_1)n- (36b)

This linear set of equations with linear constraints can
be easily solved by means of the function 1sqlin of the
MATLAB optimization toolbox. With this approach, lin-
ear signal distortions are minimized with the constraints for
complete aliasing cancellation and a given signal delay dpo.

The devised CLS design is a very general concept and
contains some previous proposals as spectal cases: The de-
sign of [14] is obtained for an allpass transformation of first
order according to Eq.(8) with real poles (¢ € R) and
a prototype filter length restricted to L = M. The ap-
proach of [13] is obtained for an allpass transformation of
first order, and if Eq. (36) is solved without the constraint
Eq. (36b). The synthesis polyphase filters with transfer func-
tions P(z,n) act then purely as phase equalizers designed by
a LS error criterion." Their coefficients can then of course
be determined by closed-form expressions according to [14]
instead of solving Eq. (36a) numerically.

4. DESIGN EXAMPLE

The optimization of Eq. (36) has been employed to design
the synthesis filter-bank for the analysis filter-bank given by
Fig.1. The obtained vector p is rather ‘sparse’ with about
35.84% of its coefficients having a value of less than 107",
The resulting filter-bank is analyzed in Fig. 4.

The magnitude responses of the FIR synthesis subband
filters in Fig. 4-a are similar to that of the IIR analysis fil-
ters of Fig.1-c. Thus, synthesis subband filters with a dis-
tinct bandpass characteristic are obtained in contrast to
the PR designs of [5,7,12]. The frequency response for
Eq. (22) To(e?®) = [To(e??)|e 97D is analyzed by plot-
ting its magnitude response |To(e’®?)| (Fig. 4-b) and phase
error Apr(Q) = o7(Q) — do Q (Fig. 4-c) which reveal negli-
gible magnitude and phase distortions of less than +0.006 dB
and +0.00027, respectively.? The peak aliasing distortions
according to [15] are here given by

LSS 2
Darias() = 3 ST Hi(e W) - Gi(ei®)| . (37)
p=1 | i=0

The plot of this function in Fig.4-d indicates a complete
aliasing cancellation (LTI system), given that calculating the
peak aliasing distortions of a closed-form PR design yields a
similar amount due to rounding errors.

Finally, it should be noted that a tree-structured (QMF
or wavelet) AS FB with a comparable frequency resolution
exhibits a higher signal delay and complexity than the pre-
sented allpass transformed AS FB, cf., [6].

Un this case, |G (el )| —|H;(e7?)| for Ny —o0o A g(n)=h(n).
2In practice, a higher signal reconstruction error is usually tol-
erable so that a lower degree N, can be taken.
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(a) magnitude responses of synthesis filters
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Figure 4: Analysis of the new synthesis filter-bank design
(Np =64, do = 60, R = M/4 = 2) designed for the analysis
filter-bank of Fig. 1.

5. CONCLUSIONS

A general LS design concept for allpass transformed DFT
AS FBs is presented. It uses an allpass transformation of
first and higher order, and considers a PPN filter-bank where
the prototype filter length exceeds the number of channels to
achieve an enhanced frequency selectivity for the subband fil-
ters. The FIR synthesis filter-bank design is derived by a LS
minimization of linear signal distortions with the constraints
for complete aliasing cancellation and a specified signal de-
lay. This equality constrained LS optimization consists of
a linear set of equations with linear constraints, which is
much easier to solve than quadratic optimizations with lin-
ear or quadratic constraints, e.g., [9,11]. In addition, the new
design minimizes magnitude and phase distortions and can
achieve a complete aliasing cancellation in contrast to [8-11].
The synthesis subband filters are inherently stable and have
a pronounced bandpass characteristic unlike [5,7,12]. The
new general design contains our previous proposals [13, 14]
as special cases, and it can also be applied to other trans-
formation kernels such as the DCT. These properties make
the proposed AS FB of interest for different subband pro-
cessing systems requiring non-uniform frequency bands as,

for example, speech enhancements systems, cf., [6,9,10].
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