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ABSTRACT
In this work we propose a detection method for compact
sources in the Time-Frequency domain. By exploring the
joint Time-Frequency distribution of data and by calculat-
ing the time-frequency profile of the compact sources it is
possible to improve the detectability of faint point sources.
We propose the detection of sources by identification of local
maxima (peaks) in the time-frequency Wigner-Ville distribu-
tion of the data, previously filtered with a two-dimensional
correlator filter. The filter serves the double purpose of en-
hancing the signal and of reducing cross-terms derived from
the Wigner-Ville transform. We test our method and compare
it with a the case of the detection in the time domain (filtered
with the appropriate one-dimensional correlator), for a situ-
ation in which we have faint sources embedded in stationary
white Gaussian noise. The detection in the time-frequency
domain gives us better significance levels of faint sources
(signal-to-noise ratio∼ 1) than the detection in just the time
domain.

1. INTRODUCTION

The detection and estimation of the intensity of compact ob-
jects embedded in a background plus instrumental noise is
relevant in different contexts, e.g. astrophysics, cosmology,
medicine, teledetection, radar, etc. A typical situation in mi-
crowave astronomy, for example, is the detection of far and
faint galaxies embedded in the diffuse emission of the Cos-
mic Microwave Background (CMB), our Galaxy and the in-
strumental noise of the telescope detectors. Typically those
galaxies have angular scales that are smaller than the angular
size of the beam of the antenna, hence they are referred to
as ’point sources’ in the literature. More in general, we talk
aboutcompact sources(CS): objects/signals that are spread
out over a small region.

Different techniques have proven useful in the literature.
In the context of microwave astronomy, some of the proposed
techniques are frequentist, such as the standard matched filter
[1,2], wavelets like the standard Mexican Hat [3–5] and other
members of its family [6] and, more generally, filters based
on the Neyman-Pearson approach using the distribution of
maxima [7–9]. Besides, Bayesian methods have also been
recently developed [10,11].

All the previous methods make use of the fact that CS
have a characteristic profile (spatial or temporal) that is dif-
ferent from the diffuse noise they are embedded in. For ex-

ample, the matched filter is just the correlation of the data
with the source profile (weighted by the noise correlation
function), wavelets are useful because they identify features
with a given scale and so on.

Another possibility, not much explored yet, is to detect
CS in the frequency domain; for example, it is possible to
devise detectors that work in Fourier space. Again, the key
point is that CS are compact as well in frequency domain and
therefore it could be possible to separate them from other
components if they are not band-limited or if their spectral
distribution differs sufficiently from the profile of the CS.

Since CS are compact in both time and frequency do-
main, an interesting possibility is to detect them in the joint
Time-Frequency domain. This way the full distinctiveness
of CS with respect to the other components (diffuse sig-
nals and noise) can be taken into account. Time-frequency
detectors have been studied in the literature (see for exam-
ple [12–14]); besides, the problem of blind time-frequency
source separation in astrophysics has been addressed in sev-
eral works [15, 16]. In this work we propose a detec-
tion method specifically tailored for compact sources. The
method is based on filtering of the joint Time-Frequency do-
main, in which we can calculate the profile of the sources. In
Section 2 we will shortly review the fundamental of Time-
Frequency distributions and we will propose the detection
method. In Section 3 we compare with simulations the pro-
posed detection method in the Time-Frequency domain to a
standard detection method in the time domain only. Finally,
in Section 4 we summarise our conclusions.

2. FILTERING OF TIME-FREQUENCY
DISTRIBUTIONS

Time-Frequency distributions can be described in a unified
approach by means of Cohen’s distribution [17,18]
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Here t denotes the time variable andω the frequency vari-
able. Unless otherwise stated, all integrals in this paper run
from −∞ to ∞. Eq. (1) is a bilinear distribution obtained
from a certain signals(t) by applying a symmetric lag±τ/2
and by weighting it by akernel functionφ(θ ,τ) that must
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satisfy a set of conditions (see [17] for a list of the different
conditions that the kernel must satisfy) in order to guaran-
tee thatP(t,ω) is a valid time-frequency distribution. There
are many different kernels that satisfy the required options.
Therefore, there are many different ways to define time-
frequency distributions. The comparison among the different
kernels and time-frequency distributions is out of the scope
of this work.

One of the simplest and historically most used time-
frequency distributions is the Wigner-Ville [19, 20] distribu-
tion:
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The Wigner-Ville distribution can be obtained from the gen-
eral formula (1) by makingφ(θ ,τ) = 1. This simplifies cal-
culations a lot. Besides, the Wigner-Ville has some good
properties: it is real, time and frequency shifts in the sig-
nal produce time and frequency shifts in the distribution, its
properties under time and frequency scaling are readily de-
termined, and it has the following inversion property:

s(t) =
1

s∗(0)

∫

W
( t

2
,ω

)
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For these reasons we will use the Wigner-Ville distribution
in this paper. However, the method we present here could be
easily generalised for other time-frequency distributions.

We are interested in the detection of compact sources
with a given waveform. An interesting situation is the case
of point sources observed with a instrument with a known
point spread function, for example stellar objects or very far
galaxies observed with a radiometer whose antenna beam is
Gaussian-shaped. As the point source passes across the field
of view of the telescope, the radiometer registers its intensity
as a function of time:

g(t) = A exp

[

−
t2

2R2

]

, (4)

whereA is theamplitude(or central intensity) of the source
andR is the width of the beam, and we have assumed for
simplicity that the source is centred at the positiont0 = 0.
Let G(ω) be the Fourier transform ofg(t). Then we have

G(ω) = A R exp
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]

. (5)

Using equations 2 and 4 it is straightforward to obtain
the Wigner-Ville distribution corresponding to a Gaussian-
shaped object:

Wg(t,ω) = A2
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. (6)

Eq. (6) associates to the source, at any timet, its local
power spectrum and it is normalised so that the marginals
of Wg(t,ω) (the instantaneous energy and spectrum ofg(t))
are satisfied.

Now let us consider that the source is embedded in sta-
tionary white noise. Stationary white noise is characterised
by a flat power spectrum at any time instantt. Noise tends to
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Figure 1: A example of the two approaches examined in
this paper: in the two top panels, the one-dimensional ap-
proach of filtering the data directly. In the two bottom panels,
the two-dimensional approach of filtering the Wigner-Ville
transform of the data instead.

mask the presence of the sources, making it difficult to detect
them. The theory of detection of signals in stationary white
noise is well established (see for example [21]) and it seems
to be little else to be said on the topic. We could, for example,
use a detector based on the correlator:

Ψg(t) ∝ g(t). (7)

But we intend to go a little bit further. Time-frequency
analysis is generally used in the context of non-stationary
signals and/or noise, where the study of the local properties
of the data can give useful insights about the statistical nature
of the signals. Here, however, we hope to show that it may
be useful to apply time-frequency analysis even tostationary
noise. The key idea is as follows:

Valid time-frequency distributions (including the
Wigner-Ville distribution) must satisfy the condition of
the marginals: if we integrateP(t,ω) over the frequency
for a given t we must obtain the instantaneous energy at
t, and if we integrate over time for a given frequencyω
we must obtain the power spectrum atω . If we apply a
time-frequency transform (for example Wigner-Ville) to
stationary white noise its energy is distributed uniformly
across the entire(t,ω) plane, whereas if we apply it to a
noiseless Gaussian signal we obtain we obtain eq. (6): the
energy of the signal is still concentrated in a compact elliptic
region of area∝ π ×R× (1/R) = π . Therefore, by going to
the time-frequency plane we expect the source to stand out
more clearly among the noise.

The problem is not as easy. The bilinear form of the
Wigner-Ville transform make it appear interference cross-
terms, both between different sources and between sources
and noise. For example, let us consider the case of two Gaus-
sian signals, one located att = 0 and the other att = t0, with
no noise:

s(t) = A1 exp

[

−
t2

2R2

]

+A2 exp

[

−
(t − t0)2

2R2

]

. (8)
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Then the corresponding Wigner-Ville distribution would be
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(√
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The last term is a quickly oscillatory interference cross-term,
located at the positiont0/2 and whose absolute amplitude
is comparable to the ’true’ point sources. Similarly, inter-
ference terms do appear between the signal and noise peaks
and between different noise peaks. Interference terms are
a serious nuisance and, if not taken into account properly,
can lead to spurious detections. One possible solution is
to choose wisely the kernel so that the cross-terms are can-
celled [22]. Other possibility is to realize the oscillating na-
ture of the cross-term and to do some post-processing that
effectively removes them. A way to do this is convolving
the time-frequency image with a suitable filter. We can de-
fine, in analogy to the one-dimensional correlator in eq. (7),
a two-dimensional correlator:

ΨW(t,ω) ∝ Wg(t,ω). (10)

This filter will serve the double purpose of removing cross-
terms and improving the detectability of point sources in the
time-frequency plane [14].

In the following, we are going to test this idea using
one-dimensional simulations of white noise plus Gaussian
sources. On the one hand, we will use the correlator (7) to
the simulations and detect the sources on the filtered data. On
the other hand, we are going to apply a discrete Wigner-Ville
transform to the simulations, then to use the two dimensional
correlator (10) and detect in the resulting two-dimensional
image. Figure 1 shows in its first panel (top-left) the time
series containing the sources mixed with the noise. The po-
sition of the sources is marked with vertical dot lines. The
second panel (top-right) shows the time series after filter-
ing; it is possible to see how much easier would be to detect
the sources in the filtered data. The third panel (bottom-left)
shows the discrete Wigner-Ville transform of the time series.
Note that the cross-terms make it very difficult to see any-
thing meaningful. However, in the last panel (bottom-right)
we can see the filtered time-frequency image, where sources
are clearly detectable.

3. SIMULATIONS

In order to quantify the previous ideas we have performed
a set of toy simulations. Each simulation consists of 512
samples (’pixels’). For each simulation we have generated a
random realisation of stationary white Gaussian noise, with
standard deviationσ = 1 (in arbitrary units), to which we
add five identical point sources with a given amplitudeA dis-
tributed in regularly spaced grid so that there is no overlap
among sources. We filter the simulation with the correlator
(7), with a normalisation chosen so that the amplitude of the
sources is unchanged after filtering. We filter separately the
noise alone and the total simulation (noise+sources) with the
same filter; the noise-only filtered simulation will be used
later to establish the significance of the detections.

In parallel, we compute the discrete Wigner-Ville trans-
form of the noise, on the one hand, and the total simulation,

on the other hand. The output of the Wigner-Ville transform
are two 512×512 pixel images (due to the symmetry of the
time-frequency transform, these images are redundant: the
part corresponding to negative frequencies is symmetric to
the part corresponding to positive ones). We filter both im-
ages with the two-dimensional asymmetric correlator (10),
normalised to preserve the amplitude of the sources. Again,
we keep the part corresponding to noise for later use.

We identify detections by looking for peaks (local max-
ima) in the filtered simulations. We are interested in testing
whether the significance of the detections, as a function of
the input source amplitudeA, is better in the filtered Wigner-
Ville images or in the filtered one-dimensional real space.
We have simulated 40 different values ofA, from A = 0.7 to
A = 3.5 (in the same arbitrary units of the noise, note that
we are simulating rather low signal-to-noise sources, from-
1.5 to 5.4 dB). We made 1000 simulations for each value of
the amplitude (5000 sources). In total, we have simulated
200000 sources in 40000 different noise realisations.

For each source we find (we consider a detection any
peak in the filtered image whose position corresponds to the
position of a input source) we have calculated its signifi-
cance. In order to calculate it, we use the statistics of the
noise peaks we have saved during the process (tens of mil-
lions of peaks in both cases). The significance of a detection
with an observed amplitudêA is the fraction of peaks of the
noise that have intensities≥ Â.

Results can be seen in Figure 2. The solid line shows
the average significance of the detected sources as a function
of the input value ofA for the one-dimensional case (filter-
ing in real space). The dashed line shows the same for the
two-dimensional case (filtering in the Wigner-Ville space).
The dashed curve is below the solid one: that means that
is more difficult to mistake a peak generated by noise for
a true source in the two-dimensional case than in the one-
dimensional case.

3.1 Non-stationary noise

The main goal of this paper has been to show that time-
frequency analysis, that has been traditionally applied for
non-stationary noise and/or signals, can also improve the de-
tection of compact sources embedded in stationary noise. In
this section we will briefly show that even in the case on non-
stationary noise similar improvements can be observed. For
this purpose, we have performed a set of simulations similar
to the ones described in the previous section, but considering
non-stationary noise.

In order to make the study more realistic, we have taken
the instrumental noise pattern of a typical row of pixels be-
longing to a CMB image of the ESAPlanckmission [23] at
70 GHz. The non-stationary noise pattern can be seen in Fig-
ure 3. The non-stationarity of the noise comes from a combi-
nation of the non-isotropic scanning strategy of the satellite
and the map-making algorithm used for obtaining the im-
ages. Since the physical units of the images are not relevant
for this exercise, we have normalised the noise pattern to an
average value of 1 (in arbitrary units). In the same arbitrary
units, the variance of the rms values is 0.21. Note that, since
at the moment of the preparation of this paperPlanck has
not been launched yet, the rms noise pattern comes from a
simulation.

We have repeated the same procedure as explained in the
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previous section. The results can be seen in Figure 4. The
qualitative agreement of figures 2 and 4 indicates that the
proposed technique can work well even under non-stationary
conditions.

4. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed a new method to detect point
sources embedded in stationary white noise based on the fil-
tering of time-frequency distributions. The time-frequency
transform spreads the energy of the noise over a large area
on the time-frequency space whereas point sources remain
compact objects in the same space. This makes them easier
to detect among noise fluctuations. In order to quantify this,
we have compared a standard detection procedure based on
the standard correlator to its equivalent in the Wigner-Ville
transformed data. We have performed 40000 simulations
of stationary white Gaussian noise plus low signal-to-noise
sources, and computed the significance of the detections in
the two approaches. The approach based on the filtering of
the time-frequency images leads to better significance levels.

We have chosen a very simple filtering scheme based on
the well-known correlator. However, we admit that this is
a too naive approach, as the time-frequency transform of a
white Gaussian noise is not in general a Gaussian noise. In
spite of this, the results are good enough to improve the re-
sults of the standard one-dimensional approach. But a more
proper treatment of the problem would require filters that
are specifically suited for the kind of noise that appears in
time-frequency space, maybe a modification of the Neyman-
Pearson filter proposed in [9]. This will be the subject of a
future work.

Finally, we have considered as well the case of non-
stationary noise, applying the same filtering scheme as in
the stationary case. We observe similar results in terms of
improvement of the time-frequency filtering over the stan-
dard one-dimensional approach. We wish to let it clear, how-
ever, that this cannot be considered as a full non-stationary
approach to the problem, since the filters we have used are
stationary. We have simply shown that the techniques pro-
posed here can work even in non-stationary environments.
Another direction of future work will be the development of
a full non-stationary filtering scheme extension of these re-
sults to the regime of non-stationary noise able to generalise
the results of this paper.

Acknowledgements

The authors acknowledge partial financial support from
the Spanish Ministry of Education (MEC) under project
ESP2004-07067-C03-01 and from the joint CNR-CSIC re-
search project 2006-IT-0037. We acknowledge the computer
resources, technical expertise and assistance provided bythe
Spanish Supercomputing Network (RES) node at the Univer-
sidad de Cantabria.

REFERENCES

[1] M. Tegmark and A. de Oliveira-Costa. Removing
Point Sources from Cosmic Microwave Background
Maps. The Astrophysical Journal Letters, 500:L83+,
June 1998.

[2] J. L. Sanz, D. Herranz, and E. Martı́nez-Gónzalez. Op-
timal Detection of Sources on a Homogeneous and

0.8 1 1.2 1.4 1.6 1.8

0

0.01

0.02

0.03

0.04

0.05

0.06

Input source amplitude

S
ig

ni
fic

an
ce

Stationary noise

1D
2D

Figure 2: Average significance of the detections in the one-
dimensional case (solid line) and the two-dimensional case
(dotted line), as a function of the input source amplitude.
Each point in the curves is the average over 1000 simula-
tions.

50 100 150 200 250 300 350 400 450 500
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

N
oi

se
 r

m
s

Figure 3: Non-stationary noise rms pattern for a row of pixels
in a 70 GHz image of thePlancksatellite.

Isotropic Background. The Astrophysical Journal,
552:484–492, May 2001.

[3] P. Vielva, R. B. Barreiro, M. P. Hobson, E. Martı́nez-
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[9] F. Argüeso, J. L. Sanz, D. Herranz, M. López-Caniego,
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