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ABSTRACT ample, the matched filter is just the correlation of the data
In this work we propose a detection method for compacwith the source profile (weighted by the noise correlation
sources in the Time-Frequency domain. By exploring thdunction), wavelets are useful because they identify festu
joint Time-Frequency distribution of data and by calculat-with a given scale and so on.
ing the time-frequency profile of the compact sources it is Another possibility, not much explored yet, is to detect
possible to improve the detectability of faint point sowrce CS in the frequency domain; for example, it is possible to
We propose the detection of sources by identification ofllocadevise detectors that work in Fourier space. Again, the key
maxima (peaks) in the time-frequency Wigner-Ville distrib ~ pointis that CS are compact as well in frequency domain and
tion of the data, previously filtered with a two-dimensionaltherefore it could be possible to separate them from other
correlator filter. The filter serves the double purpose of encomponents if they are not band-limited or if their spectral
hancing the signal and of reducing cross-terms derived frorglistribution differs sufficiently from the profile of the CS.
the Wigner-Ville transform. We test our method and compare  Since CS are compact in both time and frequency do-
it with a the case of the detection in the time domain (filteredmain, an interesting possibility is to detect them in thajoi
with the appropriate one-dimensional correlator), forta-si Time-Frequency domain. This way the full distinctiveness
ation in which we have faint sources embedded in stationargf CS with respect to the other components (diffuse sig-
white Gaussian noise. The detection in the time-frequencials and noise) can be taken into account. Time-frequency
domain gives us better significance levels of faint sourcegetectors have been studied in the literature (see for exam-
(signal-to-noise ratie- 1) than the detection in just the time ple [12-14]); besides, the problem of blind time-frequency
domain. source separation in astrophysics has been addressed in sev
eral works [15, 16]. In this work we propose a detec-
1. INTRODUCTION tion method specifically tailored for compact sources. The

) . . ) method is based on filtering of the joint Time-Frequency do-
The detection and estimation of the intensity of compact obmain, in which we can calculate the profile of the sources. In

jects embedded in a background plus instrumental noise Section 2 we will shortly review the fundamental of Time-

relevant in different contexts, e.g. astrophysics, cosgql  Frequency distributions and we will propose the detection
medicine, teledetection, radar, etc. A typical situatiomi-  method. In Section 3 we compare with simulations the pro-
crowave astronomy, for example, is the detection of far andyosed detection method in the Time-Frequency domain to a

faint galaxies embedded in the diffuse emission of the Cosstandard detection method in the time domain only. Finally,
mic Microwave Background (CMB), our Galaxy and the in- i, section 4 we summarise our conclusions.

strumental noise of the telescope detectors. Typicallgeho
galaxies have angular scales that are smaller than theangul 2. FILTERING OF TIME-FREQUENCY
size of the beam of the antenna, hence they are referred to DISTRIBUTIONS
as ‘point sourcesin the literature. More in general, we talk
aboutcompact source€CS): objects/signals that are spreadTime-Frequency distributions can be described in a unified
out over a small region. approach by means of Cohen’s distribution [17, 18]
Different techniques have proven useful in the literature. 1
Inthe context of microwave astronomy, some of the proposed  p(t, o) = —— ///e—iet—ifw+i9u(p(gvr) ~
techniques are frequentist, such as the standard matdeed fil a2 J .
[1,2], wavelets like the standard Mexican Hat [3-5] and pthe N 1
members of its family [6] and, more generally, filters based S <u - ET) S(
on the Neyman-Pearson approach using the distribution of
maxima [7-9]. Besides, Bayesian methods have also beétteret denotes the time variable arad the frequency vari-
recently developed [10, 11]. able. Unless otherwise stated, all integrals in this paper r
All the previous methods make use of the fact that CSrom — to . EqQ. (1) is a bilinear distribution obtained
have a characteristic profile (spatial or temporal) thaffis d from a certain signad(t) by applying a symmetric lag:7/2
ferent from the diffuse noise they are embedded in. For exand by weighting it by &ernel functiong(6, 1) that must

u+%r> du dr d6. Q)
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satisfy a set of conditions (see [17] for a list of the differe pe e
conditions that the kernel must satisfy) in order to guaran | §
tee thatP(t, w) is a valid time-frequency distribution. There
are many different kernels that satisfy the required ogtion
Therefore, there are many different ways to define time
frequency distributions. The comparison among the differe !
kernels and time-frequency distributions is out of the gcop S e e B
of this work.

One of the simplest and historically most used time-
frequency distributions is the Wigner-Ville [19, 20] dibtu-
tion:

W(t, w) = %T/e‘”‘*’s* (t— %r) s<t+ %r) dr. (2

The Wigner-Ville distribution can be obtained from the gen-

eral formula (1) by making(6,1) = 1. This simplifies cal- . ] ]
culations a lot. Besides, the Wigner-Ville has some good-igure 1: A example of the two approaches examined in
properties: it is real, time and frequency shifts in the sigthis paper: in the two top panels, the one-dimensional ap-
nal produce time and frequency shifts in the distributios, i Proach of filtering the data directly. In the two bottom panel
properties under time and frequency scaling are readily ddhe two-dimensional approach of filtering the Wigner-Ville

termined, and it has the following inversion property: transform of the data instead.
1 t ot
s(t) = s*(0) /W (5’ w) e“da. ) mask the presence of the sources, making it difficult to detec

them. The theory of detection of signals in stationary white
For these reasons we will use the Wigner-Ville distributionnoise is well established (see for example [21]) and it seems
in this paper. However, the method we present here could e be little else to be said on the topic. We could, for example
easily generalised for other time-frequency distribugion use a detector based on the correlator:

We are interested in the detection of compact sources

with a given waveform. An interesting situation is the case Wy(t) Og(t). 7)
of point sources observed with a instrument with a known
point spread function, for example stellar objects or very f ) ) ) ,
galaxies observed with a radiometer whose antenna beam is But we intend to go a little bit further. Time-frequency
Gaussian-shaped. As the point source passes across the fi@iflysis is generally used in the context of non-stationary
of view of the telescope, the radiometer registers its sitgn ~ Signals and/or noise, where the study of the local propertie

as a function of time: of the data can give useful insights about the statistictairea
of the signals. Here, however, we hope to show that it may
t2 be useful to apply time-frequency analysis evesttdionary
git)=A EXP{—ﬁ] ; (4)  noise. The key idea is as follows:

Valid time-frequency distributions (including the
whereA is theamplitude(or central intensity) of the source Wigner-Ville distribution) must satisfy the condition of
andR is the width of the beam, and we have assumed fothe marginals: if we integrat®(t,w) over the frequency
simplicity that the source is centred at the positiga= 0.  for a givent we must obtain the instantaneous energy at
Let G(w) be the Fourier transform af(t). Then we have t, and if we integrate over time for a given frequenoy

we must obtain the power spectrumat If we apply a
szz} time-frequency transform (for example Wigner-Ville) to

(5) stationary white noise its energy is distributed uniformly
across the entier,w)_plane, whereas if we apply it to a
Using equations 2 and 4 it is straightforward to obtainnoiseless Gaussian signal we obtain we obtain eq. (6): the

the Wigner-Ville distribution corresponding to a Gaussian €nergy of the signal is still concentrated in a compactidlip
shaped object: region of ared] mx Rx (1/R) = . Therefore, by going to

the time-frequency plane we expect the source to stand out
5 t\2 ) more clearly among the noise.
Wo(t, w) = A (\/ER) exp[— (ﬁ) — (wR) ] - (6) The problem is not as easy. The bilinear form of the
Wigner-Ville transform make it appear interference cross-
Eq. (6) associates to the source, at any timés local  terms, both between different sources and between sources

power spectrum and it is normalised so that the marginal8nd noise. For example, let us consider the case of two Gaus-
of Wy(t, w) (the instantaneous energy and spectrurg(of) ~ Sian signals, one locatedtat- 0 and the other dt=to, with
are satisfied. no noise:
Now let us consider that the source is embedded in sta-
tionary white noise. Stationary white noise is characeefis t2 (t —tp)?
by a flat power spectrum at any time instanioise tends to S(t) = Ay exp{—ﬁ} +A2 exp{— SR } - (8)

G(w)=AR exp[—
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Then the corresponding Wigner-Ville distribution would be on the other hand. The output of the Wigner-Ville transform
are two 512« 512 pixel images (due to the symmetry of the

Py(t,w) = (\/QR) e (WR)? o time-frequency transform, these images are redundant: the
part corresponding to negative frequencies is symmetric to
[Afe*tz/ R +A§e*<t*to)2/ R the part corresponding to positive ones). We filter both im-

ages with the two-dimensional asymmetric correlator (10),
9) normalised to preserve the amplitude of the sources. Again,
we keep the part corresponding to noise for later use.
The last term is a quickly oscillatory interference cromst, We identify detections by looking for peaks (local max-
located at the positioty/2 and whose absolute amplitude ima) in the filtered simulations. We are interested in testin
is comparable to the 'true’ point sources. Similarly, inter whether the significance of the detections, as a function of
ference terms do appear between the signal and noise pedhks input source amplitud®, is better in the filtered Wigner-
and between different noise peaks. Interference terms akélle images or in the filtered one-dimensional real space.
a serious nuisance and, if not taken into account properlyVe have simulated 40 different valuesAffrom A= 0.7 to
can lead to spurious detections. One possible solution i& = 3.5 (in the same arbitrary units of the noise, note that
to choose wisely the kernel so that the cross-terms are came are simulating rather low signal-to-noise sources, from
celled [22]. Other possibility is to realize the oscillaggina- 1.5 to 5.4 dB). We made 1000 simulations for each value of
ture of the cross-term and to do some post-processing th#te amplitude (5000 sources). In total, we have simulated
effectively removes them. A way to do this is convolving 200000 sources in 40000 different noise realisations.
the time-frequency image with a suitable filter. We can de- For each source we find (we consider a detection any
fine, in analogy to the one-dimensional correlator in eq, (7)peak in the filtered image whose position corresponds to the

_(t—to/Z)z
2A1Azcogt —to)e \ R/ ]

a two-dimensional correlator: position of a input source) we have calculated its signifi-
cance. In order to calculate it, we use the statistics of the
Ww (t, ) OWg(t, w). (10)  noise peaks we have saved during the process (tens of mil-

- . . lions of peaks in both cases). The significance of a detection
This filter will serve the double purpose of removing Cross- o1 observed amplitudk is the fraction of beaks of the
terms and improving the detectability of point sources mth . PIILCR! ' P
time-frequency plane [14]. noise that have |nten5|t|e>_§A. . o

one-dimensional simulations of white noise plus Gaussiaf€ average significance of the detected sources as a fanctio
sources. On the one hand, we will use the correlator (7) t_@f the input value ofA for the one_—dlmensmnal case (filter-
the simulations and detect the sources on the filtered data. @9 in real space). The dashed line shows the same for the
the other hand, we are going to apply a discrete Wigner-Villdwo-dimensional case (filtering in the Wigner-Ville space)
transform to the simulations, then to use the two dimengiona he dashed curve is below the solid one: that means that
correlator (10) and detect in the resulting two-dimensionalS more difficult to mistake a peak generated by noise for
image. Figure 1 shows in its first panel (top-left) the time& true source In the two-dimensional case than in the one-
series containing the sources mixed with the noise. The pélimensional case.

sition of the sources is marked with vertical dot lines. The

second panel (top-right) shows the time series after filter3.1 Non-stationary noise

ing; it is possible to see how much easier would be to dete
the sources in the filtered data. The third panel (bottor)-lef
shows the discrete Wigner-Ville transform of the time serie
Note that the cross-terms make it very difficult to see any
thing meaningful. However, in the last panel (bottom-rjght
we can see the filtered time-frequency image, where sourc
are clearly detectable.

%he main goal of this paper has been to show that time-
frequency analysis, that has been traditionally applied fo
non-stationary noise and/or signals, can also improveghe d
tection of compact sources embedded in stationary noise. In
this section we will briefly show that even in the case on non-
%?ationary noise similar improvements can be observed. For
this purpose, we have performed a set of simulations similar
to the ones described in the previous section, but consigleri
3. SIMULATIONS non-stationary noise.

In order to quantify the previous ideas we have performed In order to make the study more realistic, we have taken
a set of toy simulations. Each simulation consists of 512he instrumental noise pattern of a typical row of pixels be-
samples ('pixels’). For each simulation we have generated ®nging to a CMB image of the ESRlanckmission [23] at
random realisation of stationary white Gaussian noiseh wit 70 GHz. The non-stationary noise pattern can be seen in Fig-
standard deviatiowr = 1 (in arbitrary units), to which we ure 3. The non-stationarity of the noise comes from a combi-
add five identical point sources with a given amplitdddis-  nation of the non-isotropic scanning strategy of the steell
tributed in regularly spaced grid so that there is no overlagnd the map-making algorithm used for obtaining the im-
among sources. We filter the simulation with the correlatoages. Since the physical units of the images are not relevant
(7), with a normalisation chosen so that the amplitude of thdor this exercise, we have normalised the noise pattern to an
sources is unchanged after filtering. We filter separataly thaverage value of 1 (in arbitrary units). In the same arbyjtrar
noise alone and the total simulation (noise+sources) Wwih t units, the variance of the rms values i20D. Note that, since
same filter; the noise-only filtered simulation will be usedat the moment of the preparation of this papdanck has
later to establish the significance of the detections. not been launched yet, the rms noise pattern comes from a

In parallel, we compute the discrete Wigner-Ville trans-simulation.
form of the noise, on the one hand, and the total simulation, We have repeated the same procedure as explained in the
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previous section. The results can be seen in Figure 4. Tt
qualitative agreement of figures 2 and 4 indicates that th
proposed technique can work well even under non-stational
conditions.

Stationary noise
T
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4. CONCLUSIONSAND DISCUSSION

In this paper, we have proposed a new method to detect poi
sources embedded in stationary white noise based on the f
tering of time-frequency distributions. The time-freqagn

transform spreads the energy of the noise over a large ar
on the time-frequency space whereas point sources reme
compact objects in the same space. This makes them eas
to detect among noise fluctuations. In order to quantify, this
we have compared a standard detection procedure based
the standard correlator to its equivalent in the WignetleVil

transformed data. We have performed 40000 simulation
of stationary white Gaussian noise plus low signal-to-@ois
sources, and computed the significance of the detections jfjgure 2: Average significance of the detections in the one-

the two approaches. The approach based on the filtering @§mensional case (solid line) and the two-dimensional case
the time-frequency images leads to better significancédeve (dotted line), as a function of the input source amplitude.
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We have chosen a very simple filtering scheme based ofach point in the curves is the average over 1000 simula-
the well-known correlator. However, we admit that this istjgng.

a too naive approach, as the time-frequency transform of a
white Gaussian noise is not in general a Gaussian noise. 'n

spite of this, the results are good enough to improve the re
sults of the standard one-dimensional approach. But a mo
proper treatment of the problem would require filters thal
are specifically suited for the kind of noise that appears ir
time-frequency space, maybe a modification of the Neymar
Pearson filter proposed in [9]. This will be the subject of a
future work.

Finally, we have considered as well the case of non
stationary noise, applying the same filtering scheme as i
the stationary case. We observe similar results in terms ¢
improvement of the time-frequency filtering over the stan-
dard one-dimensional approach. We wish to let it clear, how
ever, that this cannot be considered as a full non-statyonau
approach to the problem, since the filters we have used a
stationary. We have simply shown that the techniques prc
posed here can work even in non-stationary environment
Another direction of future work will be the development of
a full non-stationary filtering scheme extension of these re
sults to the regime of non-stationary noise able to gerserali .
the results of this paper.
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