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ABSTRACT
In this paper, an unsupervised change detection technique for
synthetic aperture radar (SAR) images is proposed by con-
ducting probabilistic Bayesian inferencing with expectation
maximization-based parameter estimation to perform unsu-
pervised thresholding over the data collected from the dual-
tree complex wavelet transform (DT-CWT) subbands gener-
ated at the various scales. The proposed approach exploits
a DT-CWT-based multiscale decomposition of the log-ratio
image aimed at achieving different scales of representation
of the change signal. Experimental results obtained on mul-
titemporal SAR images acquired by the ERS-1, and JERS
satellites confirm the effectiveness of the proposed approach.

1. INTRODUCTION

Automatic change detection of a given scene, based on
a set of images acquired at different time instances, has
been quickly becoming fairly instrumental to many image
processing applications nowadays. Important applications
of change detection include environmental surveillance, re-
mote sensing, medical diagnosis and treatment, infrastruc-
ture monitoring, driver assistance systems, to name a few [1].
Remote sensing imagery generally requires certain cor-
rections due to undesirable sensor characteristics and other
disturbing effects before performing data analysis. Typical
corrections include noise reduction, radiometric calibration
(sensor calibration, atmospheric correction, solar correction
and topographic correction) and geometric correction [2]. In
this paper, without loosing any generality, we assume that the
changes between two images are only caused from the phys-
ical changes in the geographical area, and all typical correc-
tions mentioned previously have been applied on the images
before applying the proposed change detection method.
Change detection methods could be categorized as either
supervised or unsupervised according to the nature of data
processing. The former is based on a supervised classifi-
cation method, which requires the availability of a ground
truth in order to derive a suitable training set for the learning
process of classifiers. The latter approach, which is adopted
in our work, performs change detection by making a direct
comparison of two multi-spectral images considered with-
out incorporating with relying on any additional information.
Several unsupervised change detection techniques have been
proposed in the literature [3]. Most of the methods are de-
veloped based on the so-called difference image. In [4], two
automatic techniques based on the Bayes theory for the anal-
ysis of the difference image are proposed. One allows an
automatic selection of the decision threshold for maximiz-
ing the overall change detection error under the assumption
that the pixels of difference image are spatially independent.
The other analyzes the difference image by considering the
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spatial contextual information included in the neighborhood
of each pixel. This approach based on the Markov Random
Fields (MRFs) exploits the context of inter-pixel class de-
pendency. In [5], the observed multitemporal images are
modeled as MRFs in order to search for an optimal image
of changes by means of the maximum a posteriori (MAP)
probability decision criterion and the simulated annealing
(SA) energy minimization procedure. There are many other
change detection methods using the same framework for syn-
thetic aperture radar (SAR) images [6,7]. However, these
methods are applied to the raw data domain and suffer from
the inference of speckle noise.

Recently, the transform-domain analysis is applied for
conducting change detection for SAR images using discrete
wavelet transform (DWT) [8] to remedy the problems caused
by the speckle noise. They proposed DWT-based multiscale
decomposition of the log-ratio image (obtained by the log-
arithm of the pixel ratio of two co-registered observations
of the same scene) aimed at achieving different scales (lev-
els) of representation of the difference image (logarithm of
the pixel ratio is equivalent to the difference of logarithm of
each pixel). Each scale is characterized by a tradeoff be-
tween speckle noise reduction and preservation of image de-
tails. The final change detection result is obtained according
to an adaptive scale-driven fusion algorithm. The method
achieves good results but has two major disadvantages: the
selection of an appropriate detection threshold and the prop-
erty of shift-variance of DWT.

In this paper, an automatic change detection method is
proposed by analyzing log-ratio image of two SAR images
acquired from the same area coverage, but at two different
time instances. The two images are first scaled up by a factor
of two in both dimensions in order to produce change detec-
tion result on the same spatial grid as that of the original im-
ages. The log-ratio image of two SAR images is then repre-
sented by exploiting the DT-CWT [9], as it possesses attrac-
tive properties for image processing, namely, shift invariance
and more directional information, when compared with the
DWT. Note that the DT-CWT is a form of DWT but gener-
ating complex-valued coefficients. It is implemented with a
dual-tree of filter banks such that one tree independently gen-
erates the real part, while the other tree yields the imaginary
part of complex coefficients. At each scale, the DT-CWT
produces six directional subbands, oriented at £15°,+£45°,
and £75°, while the DWT produces only three directional
subbands, oriented at 0°, 45°, and 90°.

The change detection problem is then tackled by employ-
ing the Bayesian inferencing on the magnitude of low-pass
and high-pass subbands. To estimate the involved parame-
ters and probability densities of the Bayesian framework, the
expectation maximization (EM) algorithm [10] is exploited
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Figure 1: Two-level 1-D dual-tree complex wavelets trans-
form (DT-CWT).

through iterations. Based on the final estimated densities,
an unsupervised thresholding process can be established to
determine whether it involves a change or no change at each
pixel location. The binary mask of final change detection can
be formed by eventually merging intra-scale and inter-scale
information.

The paper is organized as follows. Section 2 gives a brief
review of the DT-CWT. Section 3 describes the proposed
multiscale change detection algorithm. Section 4 provides
some experimental results of the proposed approach for both
noise-free and noisy images. Section 5 concludes the paper.

2. COMPLEX WAVELETS

The ordinary DWT is not shift invariant because of the dec-
imation operation exploited in the transform. A small shift
in the input signal can cause a very different set of output
wavelet coefficients. For that, Kingsbury [9] introduced a
new kind of wavelet transform, called the dual-tree complex
wavelet transform, that exhibits approximate shift invariant
property and improved directional resolution with respect to
DWT.

The DT-CWT also yields perfect reconstruction by us-
ing two parallel decimated trees with real coefficients. The
one-dimensional (1-D) DT-CWT decomposes a signal f(x)
in terms of a complex shifted and dilated mother wavelet
y(x) and scaling function ¢ (x), i.e.,

flx)= Zsjo,z%,z(x) + Z ch,lll/j,l(x)a (D

1eZ JjZjoleZ

where j and [ refer to the shifts and dilations respec-
tively, s;,; is the scaling coefficient and c;; is the complex

wavelet coefficient with ¢;,/(x) = ¢} ;(x) +v/~1¢ ,(x),

and yj(x) = ¥}, (x) + =1y} (x). The complex wavelet
transform is a combination of two real wavelet transforms;
in 1-D, the set {q);()’,,q)]’.o’l, v l//}oJ} forms a tight wavelet
frame with two times of redundancy. The real and imaginary
parts of the 1-D DT-CWT are computed using separate filter
banks with wavelet filters iy and & for the real part, and gg
and g; for the imaginary part, as illustrated in Figure 1 [9].
The outputs from the two trees in Figure 1 are interpreted as
the real and imaginary parts of the complex coefficients.
Similar to the 1-D DT-CWT, the two-dimensional (2-D)
DT-CWT decomposes an 2-D image f(x,y) through a series
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Figure 2: The real (R) and imaginary (/) parts of the impulse
responses of the 2-D DT-CWT filters for the 6 directional
subbands: (a) R_150; (b) R_450; (¢) R_750; (d) Ry7s0; (€)
Ryigse; () Ryyses (8) I-ses (h) Lase; () 17505 () L7503 (K)
Ligses () Lygse.

of dilations and translations of a complex scaling function
and six complex wavelet functions l,l/e, i.e.,

FEy) =Y sipiioax )+ Y Y Y < vlixy). @

1ez? b€ j>jolcz?

where 0 = {£15° +£45°,+75°} refers to the directional-
ity of the complex wavelet function. The impulse re-
sponse of six complex wavelets associated with 2-D com-
plex wavelet transform is illustrated in Figure 2. The com-
plex wavelet transform can discriminate between features
at positive and negative frequencies. Hence, there are six
subbands capturing features along lines at angles of 6 =
{£15°,+45°,+75°}.

3. CHANGE DETECTION ALGORITHM
3.1 Problem Formulation

Let us consider two SAR images, X = {x1(i,j) | 1 <i <
L1<j<J}and Xy ={x(i,j) |1 <i<I,1<j<J}, with
a size of I x J each acquired at the same geographical area
but at two different time instances, ¢ and #,, respectively. Let
us further assume that such images have been registered with
respect to each other [11,12] and that the possible differences
due to the light and atmospheric conditions at the two time
instances have been corrected [13]. Let Q = {w,,w, } be the
set of classes associated with changed (denoted by w,) and
unchanged (denoted by w,,) pixels on the images X and X,.

The decomposition of a 2-D signal by DT-CWT produces
one complex-valued low-pass (approximation) subband and
six complex-valued high-pass (detail) subbands at each level
of decomposition. Let S-level decomposition of 2-D signal
X of size I x J produces the complex-valued low-pass and
high-pass subbands, and the magnitude of these subbands
are denoted as LX = {IX(i,j) | 1 <i<1/25,1<i<J/2%}
and Hy = {hg(i,j) [ 1 <i<1/2°,1<i<J/2’}, 6 =
+15°,+45° £75° and s = 1,..., S, respectively. That is, LX
and Hgfs are real-valued 2-D signal, representing the magni-
tude of complex-valued low-pass and high-pass subbands at
a specific scale s, respectively.

3.2 Architecture of the Proposed Algorithm

The flowchart of the proposed multiscale change detection
algorithm is given in Figure 3 and described as follows. Be-
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Figure 3: Proposed multiscale change detection algorithm.

cause of the decimation operation in DT-CWT decomposi-
tion, the size of subbands at the finest resolution (i.e., S = 1)
is I/2 x J/2. In order to create a change detection mask with
the same size of that input images, firstly, the two input im-
ages, X1 and X3, are scaled up by a factor of 2 in both di-
mensions. To enhance low-intensity pixels, the ratio image
is usually expressed in a logarithmic scale, resulting in the
absolute valued log-ratio image X,

X, =

X
logxl‘ = |log X —log X5| 3)
2

where log stands for natural-logarithm. X, is decomposed
by the DT-CWT up to scale S. Ateachscales,s=1,2,...,S5,
one complex-valued low-pass and six complex-valued high-
pass subbands are generated, and the magnitude at each pixel
of these subbands are computed and collectively denoted by
LX and H}", respectively, where @ € {+15°,+45°, +75°}.
In order to detect changed pixels in high-pass subbands we
define a new statistics which is the average of magnitudes of
high-pass subbands, i.e.,

1
H = =) Hy. )
Ve

LX and HX can be viewed as 2-D random fields hold-
ing information on change pixels in low-pass and high-
pass subbands at specific scale s, respectively. For the

ease of mathematical notation, we represent Lg(’ =D, =
{dis(i,j) |1 <i<1/25,1<i<J/2°} and HY =D, =
{dns(i, ) | 1 <i<1I/2°,1<i<J/2°}. Unlike the classical
unsupervised methods used in the remote sensing applica-
tions, Bayesian inferencing approach is proposed in this pa-
per. Our final goal is to decide whether each pixel of X, took
at a later time instance is different from that of X acquired
earlier; this binary decision process is conducted on the ran-
dom fields Dy s and D, 5. That is, the entire issue boils down
to discriminating each coefficient of D; ; and D, ¢ into one of
the two opposite classes, w, or w,, representing the involved
pixel is changed or unchanged, respectively.

For this purpose the main problem to be solved is
the estimation of a posterior probability density functions
p(dis (i, j)lwe) and p(dys(i, j)lw,) and ‘the a priori proba-
bilities P(w.) and P(w,) of the classes w, and w,, respec-
tively [4], where k = {/,h}. We assume that the probability
density function p(dj (i, j)) computed on the pixel values of
the Dy, can be modelled as a mixture density distribution
consisting of two density distribution components, i.e.,

I’(dk,S(iaj)) = p(dk,s(iaj)‘WC)P(WC) +P(dk,s(ivj)|Wu)P(Wz(tga)
where P(w.) + P(w,) = 1. It is assumed that p(dy (i, j)|we)
and p(dy (i, j)|wy) can be modelled by the Gaussian dis-
tributions. In this manner, the density function associated
with the class w. can be described by the mean ., ; and

. 2 . . .
the variance O ks and likewise the mean pi, ; ; and the vari-

ance Guz_ ks for the class w,. Now, the whole issue becomes
how to estimate the values of these parameters and the above-
mentioned a priori probabilities. In several problems, these
terms are estimated by using supervised approaches that re-
quire the availability of a training set. In our work, an un-
supervised approach is proposed instead, which exploits the
expectation maximization (EM) algorithm [10], as follows.

The EM algorithm is a general approach used to conduct
the maximum likelihood estimation for tackling incomplete-
data problems, and it is an iterative process. In each iteration,
it consists of two steps: expectation step and maximization
step, which are iterated until the convergence is reached. The
expectation step is computed with respect to the unknown
underlying variables, using the current estimates of the pa-
rameters, and is conditioned by the observations [10]; that
is,

p(t) (dk,x(iaj)‘wc)

(t) ..
Vc s LJj)= i (6)
ks ( ) p(l) (dk,s(la]))
1/257)2°
Yy ¥ PU)(WC) Vgtl)c.s(i7j)
(1) () = =197 -
P (we) 1/25 x J /25 @
PO () = 1 P (). ®

On the other hand, the maximization step provides new esti-
mates of the parameters [10] for the distributions as

1/297)2°

oy S L v () dis (i )
t+1) _ i=lj=
cks T 1/25 728 ©

T v G))

i=1 j=1
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where the superscripts (¢) and (¢ + 1) denote the iteration in-
dex.

After all parameters are estimated through iterations us-
ing (6) through (13), together with an assumption that the
inter-pixels are independent, each pixel d (i, j) will be as-
signed into one of the two classes: w, or wy. According
to the Bayes rule, the minimization of the total decision er-
ror can be achieved by maximizing the conditional posteriori
probability. Therefore, each pixel at the coordinate (i, j) is
going to be labelled with one of the two classes, w. and w,,,
according to

Cys (i, j) = argmax } {P (wildis (i, ))) }

wi€{we,wy
P i d .7 ] i
g (PO PG
wi€{we,wu}t p (dk,x (l>J)>
Using (14), a binary image (or mask) Bi, =
{brs(i,j) [ 1<i<1/2°,1<j<J/2°} can be created

for each k € {/,h} at the scale s, in which ‘1’ indicates that
the corresponding pixel location involves a change, whereas
‘0’ involving no changes. This process can be viewed as
unsupervised thresholding according to

P(dis ()we) < P(w).
bis (i,J) =9 7 pldistif)bwa) = POve)? (15)
0, otherwise.

Based on all By, the total change mask, BCIMy, at scale s
is generated by performing intra-scale data fusion; i.e.,

BCM, =B, | By, (16)

where | performs binary union operations. In Figure 4, a set
of two co-registered ERS-1 SAR images of a rice plantation
in Java Island, Indonesia, X; and X5, are used to demon-
strate the performance of the change mask generation by the
proposed algorithm at scale s = 1 according to (15) and (16).
The resultant change mask at s = 1 shown in Figure 4 (f) is
produced according to the (16) by combining change masks
Bl,l and Bh,l-

The same set of two input SAR images as shown in Fig-
ure 4 (a)-(b) are used to demonstrate the performance of the

(a) (®)

(d) (e) (H

Figure 4: Change detection mask generation at scale s = 1:
(a) X, (b) X2, (¢) X, (d) By1, (¢) By 1, and (f) BCM,.

Figure 5: Change detection conducted in three scales and
the resulted change masks for satellite images shown in Fig-
ure 4 (a)-(b): (a) change detection mask yielded at scale
1, BCM,, (b) change detection mask yielded at scale
2, BCM,;, (c) change detection mask yielded at scale 3,
BCM3;, and (d) the change detection mask, CM, resulted
by merging all three binary masks according to (17).

change detection generated by (16) at different scales, i.e.,
s =1 (Figure 5 (a)), s = 2 (Figure 5 (b)), and s = 3 (Figure 5
(c)). It is further noticed from Figs. 5 (a)-(c) that finer resolu-
tion tends to yield more false detections. This phenomenon
can be effectively overcome by jointly considering all the bi-
nary change masks across all scales. The main reason for this
is that any noticeable change should be detected in coarser
resolution too. Based on this intuition, the final change mask
can be generated by conducting the inter-scale data fusion;
ie.,
s
CM = (] ®(BCMy) (17)
s=1
where S is the total number of scales used, () performs binary
AND operations, and ®(BCMj) is an interpolation function
which upscales BCM; by a factor of 2°~! in each dimen-

sion simply using nearest-neighbor interpolation. Figure 5
(d) shows the final merged change mask CIM based on (17).

4. EXPERIMENTAL RESULTS

We have applied the proposed method on different types of
SAR images. Three scales (i.e., S = 3) are used in DT-CWT
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Figure 6: Change detection results using different sets SAR

images, and the total number of scales S = 3: (a) Input im-

age X, (b) Input image X>, and (c) Final change detection
masks, CM.

decompositions. Columns (a) and (b) in Figure 6 display
different sets of two satellite images which are used in our
simulation as input samples. Column (c) of Figure 6 presents
the final change mask for each experiment.

The input images shown in the first and second rows of
Figure 6 are acquired from rice plantation in Semarang (Java
Island) by ERS-1 [14]. The input images in the third row
are JERS SAR channel 1 images of the airport at Cooinda,
Kakadu National Park, Australia [15]. It is clear from Fig-
ure 6 column (c) that the resultant change masks accurately
reflect the changes occured on the same geographical area
taken at two different time instances.

5. CONCLUSION

An unsupervised change detection technique is developed
by conducting probabilistic Bayesian inferencing with EM-
based parameter estimation to perform unsupervised thresh-
olding over the DT-CWT subbands generated at the various
scales. At the each scale, the data in low-pass and high-
pass subbands are processed separately to yield two differ-
ent change masks, and those change masks are merged to-
gether to produce a single change mask. Since the proposed
method only exploits spatial information, the resulted final
change detection mask at each scale could yield higher false
detection due to image noise. This drawback is overcome by
exploiting the inter-scale information inherently provided by
the DT-CWT to effectively reduce false detection rate.
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