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ABSTRACT

Oversampling, complex-modulated digital subband coder filter
banks are commonly adopted in modern hearing aids to allow for
individual amplification of subband signals in order to compensate
for hearing losses of impaired persons. Minimum power consump-
tion and low group delay have been the main concern in the design
of these filter banks. Guaranteeing frequency-independentand low
group delay in case of subband-signal amplification has, however,
been neglected in the past.

In this contribution, we investigate the delay and amplification
properties of oversampling complex-modulated FIR filter banks in
case of extensive subband signal amplification. Based on these re-
sults, a sufficient condition for constant group delay is derived. Fur-
thermore, we present a compensation method which allows forcon-
stant group delay, even if the sufficient condition is violated. An
illustrative design example demonstrates the potential ofthe com-
pensation method.

1. INTRODUCTION

Primal task of hearing aids is to amplify the microphone signal in a
frequency-selective manner in order to compensate for the hearing
loss of an impaired person. In addition to this task present-day hear-
ing aids provide a vast spectrum of frequency-band-dependent pro-
cessing steps, such as noise reduction and speech enhancement [4].
For this purpose we use filter banks pairs (FBP), which first decom-
pose the microphone signal by an analysis filter bank (AFB) into
several subband-signals at an adequately reduced samplingrate,
and then reconstruct the manipulated subband-signals by a synthe-
sis filter bank (SFB). Due to low battery energy available in hear-
ing aids, non-uniform filter banks with frequency-dependent filter
bandwidths at Bark scale intervals [11] are presently disregarded
and reserved for future research. Currently, the energy constraints
are accounted for best dealt with by use of uniform, oversampling,
complex-modulated (DFT) polyphase filter banks applying FIR fil-
ters that essentially avoid aliasing and imaging disturbance by suffi-
ciently high stopband attenuation of the prototype filters [10, 9, 3].
Another challenge of similar importance in hearing aids is the over-
all signal delay of the cascade of the AFB and the SFB. The to-
tal delay (including subband-signal manipulation) of the filter bank
must not exceed 5...8ms [8], since otherwise the signal quality de-
grades as a result of the superposition of the direct and the pro-
cessed (delayed) sound signal in the auditory canal. In addition to
this requirement, the delay must approximately be constantversus
frequency even in any case of extensive subband-signal amplifica-
tion. The demand for a low signal delay of the cascade of the AFB
and the SFB is equivalent to the requirement for a low group delay
of both the analysis and synthesis prototype filters. Therefore the
lowest possible signal delay is obtained by using non linear-phase
(LP) FIR prototype filters.

In the past, many attempts have been made to design oversam-
pling, complex-modulated filter bank prototype filter pairswith ap-
proximately constant group delay that, at the same time, do not
exceed a prescribed value. In [2], an iterative method has been
proposed, which allows for controlling the distortion level for each
frequency component and directly minimizes subband-aliasing and
imaging. In a similar design approach [7], non-linear aliasing and

Figure 1: Uniform Oversampling filter bank pair, oversampling fac-
tor O = I/M ∈N

imaging disturbance is minimised by alternatingly optimising the
AFB and SFB prototype filters, respectively. The design method-
ology according to [1, 5] aims at an optimum FBP output SNR for
arbitrary subband-signal amplification in conjunction with low and
flat overall group delay.

It has been observed that extensive subband-signal amplifica-
tion in complex-modulated FBP gives rise to severe group delay and
amplification distortions especially at the interception of contiguous
subbands with different amplification. To this end, subsequently we
investigate the properties of oversampling complex-modulated FIR
FBP for differing amplification of the subband-signal. Fromthese
results we derive a sufficient condition for the absence of these un-
desired distortions. Finally, a compensation method is proposed to
meet this sufficient condition for a wide variety of oversampling
complex-modulated FBP designs. Illustrative examples areused
troughout.

2. OVERSAMPLING COMPLEX-MODULATED FIR
FILTER BANK PAIRS

For a uniform oversampling complex-modulatedI -channel filter
bank with additional subband signal amplificationξl , ∀l = 0, . . . , I−
1, as shown in Fig. 1, the AFB und SFB filters, respectively, are de-
rived from common prototype filters by modulation [9, 3]:

Hl (zi) = H
(

ziW
l
I

)

, l = 0, . . . , I −1 (1)

Gl (zi) = G
(

ziW
l
I

)

, l = 0, . . . , I −1 (2)

The input signalx(n)
zT
←→X (zi) in Fig. 1 is simultaneously passed

through all AFB channel filtersHl (zi), l = 0, . . . , I −1 and subse-
quently downsampled by a factor ofM, yielding the subband signal
representation:
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1
M
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X
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, l = 0,1, . . . , I −1,

(3)
where use is made of the alias component representation [9, 3], and
WM = e−j2π/M . Next, each subband signal is individually amplified
by the factorξl , l = 0, . . . , I −1, yielding

Yl (zsn) = ξl ·Xl (zsn) , l = 0,1, . . . , I −1 (4)
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In the SFB, the amplified andM-fold upsampled subband-signals
Yl

(

zM
i

)

= Yl (zsn) are combined to form thez-domain output signal
representation [3]:
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∑
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Gl (zi)Yl
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)

(5)

Inserting the upsampled form of (3) into (5), we obtain:
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Obviously, the output signal representationY (zi) depends on allM
modulation componentsX

(

ziWk
M

)

, k = 0, . . . ,M− 1, of the input
signal. All these components are filtered by the compound term
I−1
∑

l=0
ξl Hl

(

ziWk
M

)

Gl (zi) before combination. The transfer function

of the zeroth (k = 0) modulation component is considered as the
distortion function [9, 3]:

Fdist(zi) =
1
M

[

I−1

∑
l=0

ξl Hl (zi)Gl (zi)

]

. (7)

Particularly in our considerations, this distortion function deter-
mines the properties of the filter bank almost exclusively, since
aliasing and imaging are assumed to be negligible as a resultof suf-
ficiently high AFB and SFB prototype filter stopband attenuation
[1, 5]. Inserting (1) and (2) into (7), we obtain
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Desired Characteristics

In order to measure the quality of any actual FBP distortion func-
tion, we define adesireddistortion function in polar coordinate rep-
resentation as follows:

Fdes
dist
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ejΩ,ξ0, . . . ,ξI−1

)

=
∣

∣

∣
Fdist

dist
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)
∣

∣

∣
·e−j·Ω·τdes

g, (9)

The magnitude of (9) reflects the amplification pattern applied to
the subband signals, where|Fdes

dist(e
jΩ,ξ0, . . . ,ξI−1)| is unity (allpass

function) forξl = 1, ∀l = 0, . . . , I −1. The linear-phase term of (9)
defines the requirement that the constant group delayτdes

g shall be
independent of the amplification patternξl , l = 0, . . . , I −1. Since
the FBP must transfer all spectral components of the input signal
x(n)←→ X(zi) subject to frequency-selective amplification [1], it
follows that|Fdes

dist(e
jΩ,ξ0, . . . ,ξI−1)|> 0∀Ω and, hence, the distor-

tion function (8) has no zero on thez-plane unit circle [6]. As a
consequence, the above definition of the desired distortionfunction
(9) corresponds to the frequency response of a linear-phaseFIR fil-
ter, where the magnitude of (9) can be interpreted as the associated
zero-phase response [6]. In fact, the actual overall FBP transfer
function has to approximate the desired distortion function (9). In
case ofξl = 1, ∀l , the desired response (9) represents a linear-phase
allpass function.

3. THE IMPACT OF AMPLIFICATION

To begin with, we examine the impact of subband signal amplifica-
tion on the group delay of the distortion function. For demonstra-
tion purposes we choose a realistic uniform oversampling complex-
modulatedI -channel filter bank, whereI = 64 andM = 16. Hence,

(a) Log Magnitude

(b) Group Delay

Figure 2: FBP prototype filters

the oversampling factorO = I/M = 4. The passband and stopband
edge frequencies of the corresponding filter bank prototypefilters
are Ωp = π/64 andΩs = π/16, respectively [1]. The prototype
filter lengths of the AFB and SFB areNh = 80 andNg = 120, re-
spectively. The prototype filters are designed according to[7]. Both
filters are matched such that the distortion function of an oversam-
pling I -channel complex-modulated FIR filterbank approximates a
constant delay ofτg = I = 64 [5], and the non-linear disturbance
(aliasing & imaging) is minimized. Fig. 2 (a) shows the logarithmic
magnitude responses of the AFB and SFB prototype filters. The
characteristics of the stopband responses are typical for oversam-
pling FBPs with minimised disturbance [7, 2]. Fig. 2 (b) depicts
the group delay of the prototype filters both in the passband and the
transition band. Obviously, both filters do not even approximately
possess the linear-phase property. The mean values of the group
delay within passband and transition bands, which are needed for a
system modelling later on, areτg,AFB = 44.11 andτg,SFB = 52.25,
respectively.

Next, an amplification patternξl , ∀l = 0, . . . , I −1, for the sub-
band channels is implemented:

ξl = 50 , 34dB, ∀l = 12, . . . ,19

ξl = 300, 49.5dB, ∀l = 20, . . . ,27 (10)

ξl = 15 , 23 dB, ∀l = 28, . . . ,35

For the remaining channels we assumeξl = 1. Fig. 3 (a) shows
the magnitude response of the distortion function with the above
subband-signal amplification. What strikes most are the huge peaks,
which appear only at the interceptions between two contiguous
channels with different amplificationsξl , e.g. between channel
l = 19 andl = 20. Their heights depend on the ratio of amplifi-
cations of contiguous channels. The smallest peak is observed at
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(a) Magnitude Response

(b) Group Delay Response

Figure 3: Dist. func. with subband-signal amplification

the transition between channel 35 and 36, since the amplification
ratio is only 15. The corresponding group delay response in Fig.
3 (b) also exhibits high peaks at the transitions of amplifications.
The peaks extend over two channels and their maximum value is
increased by more than two-fold compared to the mean value of
τg = I = 64. Except for these transitions, the group delay behaves
the way it is expected of an oversampling complex-modulatedfil-
terbank [5].

Based on these results, we obeserve that oversampling
complex-modulated filterbanks do not inherently guaranteeapprox-
imately constant group delay, when different amplifications of the
subband signals are applied. In the following we first examine the
reason for this effect and, based on the obtained insight to cancel
the undesired distortions.

3.1 Linear-Phase Approximation Model

In order to understand the mechanism responsible for the effects
described above, we make some simplifying approximations con-
cerning the prototype filters. An example will show that these ap-
proximations are sufficiently correct for our considerations.

The first approximation made concerns the AFB prototype fil-
ter. Despite the fact, that the group delay is highly non-constant, as
to be seen in Fig. 2 (b), we yet assume the prototype filter to have
an overall constant group delay ofτg,AFB = 44.11, read from Fig.
2 (b). Using this approximation, we model the AFB prototype filter
as a linear-phase filter:

H
(

ejΩ
)

≈ H0

(

ejΩ
)

·e−jτg,AFB·Ω (11)

whereH0
(

ejΩ)

represents the zero-phase response andτg,AFB ·Ω
the linear-phase. The SFB FIR prototype filter is modelled inthe

same manner:

G
(

ejΩ
)

≈G0

(

ejΩ
)

·e−jτg,SFB·Ω (12)

whereτg,SFB = 52.25.
Next, we have to show that the above model approximations

are sufficiently exact for our purposes. To this end, we replace the
original nonlinear-phase FIR prototype filters according to Fig. 2 in
the actual distortion function (8) with linear-phase filters (11) and
(12) of suitable lengths. Using the relation between group delay
and filter lengthτg = (N−1)/2 of linear-phase FIR filters [6], the
lengths of the model filters (11) and (12) are chosen such thattheir
group delays approximate the mean values of the group delaysof
the respective filters of Fig.2,τg,AFB = 44.11 andτg,SFB = 52.25.
With the corresponding closest (rounded) integer group delays, the
model filter lengths are readily derived:Nh = 89 andNg = 105.

With these linear-phase model filters, the original FBP is re-
designed by using a modified version of the design algorithm [7]
being adapted to the design of FBP with linear-phase filters.Since
the overall expenditure of the linear-phase design is smaller and,
in addition, due to the linear-phase constraint, the approximation
with the linear-phase model filters is worse than that with the orig-
inal filters according to Fig. 2: The peak-to-peak deviationfrom
the allpass distortion function is 0.17dB rather than 0.03dB, and the
minimum stopband attenuations are considerably lower thanthose
of Fig. 3 (a). Nevertheless, the approximation of the desired dis-
tortion function is good enough, and the impact of nonlineardis-
turbance due to aliasing and imaging is still negligible. Byagain
using the amplification pattern (10), the magnitude response of the
distortion function of the linear-phase model FBP is depicted in
Fig. 4 (a). As it is obvious from a comparison of Figs. 3 (a) and
4 (a), the impact of amplification is reasonably well approximated
by the model FBP. Only at the interceptions of different amplifica-
tion factorsξl , the model FBP exhibits slightly higher overshoots.
The corresponding group delay behaviour of the model FBP distor-
tion function is presented in Fig. 4 (b). Again, the similarity with
the original nonlinear-phase design of Fig. 3 (b) is remarkable. The
main group delay deviation from that of the original FBP is ob-
served in those regions, where the amplification factorsξl are con-
stant, i.e. between interceptions of different amplification factors.
This increased group delay deviation from the expected meanvalue
of τg = I = 64 gives also rise to slightly higher deviations of the
magnitude of the distortion function from the desired function (9)
in these regions, as deduced from a comparison of Figs. 3 (a) and
4 (a). From the above comparisons it is concluded that the model
approximation (11) and (12) is justified. Hence, we use this model
for the following investigations.

3.2 A Sufficient Condition

Next, we use the above linear-phase model to identify the origin
for the observed effects presented at the beginning of this section.
To this end, both approximations (11) and (12) are introduced into
the distortion function (8), and the result is compared with(9). We
use the subsequent abbreviation:τΣ = τg,AFB + τg,SFB. To begin
with, we examine the product of the AFB and SFB prototype filter
transfer functions of the approximations (11) and (12):

H (zi) ·G(zi)≈H0 (zi) ·G0(zi) ·z
−τΣ
i . (13)

The aliasing components of this expression are:

H
(
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l
I

)
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(

ziW
l
I

)

≈ (14)

W−l ·τΣ
I ·H0

(

ziW
l
I
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·G0

(

ziW
l
I

)

·z−τΣ
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Inserting (14) into the distortion function (8), we obtain:

Fdist(zi)≈

z−τΣ
i ·

[

1
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I−1
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(16)
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(a) Magnitude Response

(b) Group Delay Response

Figure 4: Dist. func. with amplification based on linear-phase filters

This expression formally resembles condition (9). It can besplit up
in an amplification-independent delay term and an amplification-
dependent magnitude term (term within brackets). Comparing (16)
with (9), the magnitude term of (16) should be real-valued which, in
general, is not satisfied due to the complex factorsW−l ·τΣ

I of (16).
Nevertheless, we can derive a sufficient condition for a constant
group delay of complex-modulated filter banks by requiring:

W−l ·τΣ
I = ejl ·τΣ·2π/I = 1, ∀l = 0, . . . , I −1 (17)

Condition (17) is satisfied by

τΣ ·2π/I =
(

τg,AFB + τg,SFB
)

·2π/I = κ ·2π
τg,AFB + τg,SFB = κ · I , ∀κ ∈ Z (18)

This condition is likewise expressed by applying the modulooper-
ation in the following way:

r =
(

τg,AFB + τg,SFB
)

I = 0. (19)

When applied to the prototype filters of Fig. 2, we obtainr =
(44.11+52.25)64 = 32.36 6= 0. Hence, the sufficient condition (19)
is violated resulting in the observed effects.

It should be noted that factorr can be considered as a qual-
ity criterion for the ability of an oversampling complex-modulated
filter bank to provide constant group delay in case of subbandchan-
nels amplification: The greater the factorr the worse the behaviour
subject to subband signal amplification.

3.3 Compensation Approach

Fot the case the sufficient condition (19) is violated, a simple com-
pensation method is developed which provides constant group delay
of the distortion function under any amplification pattern.By using

the definition of the modulo operator, we can reformulate expres-
sion (19) as follows:τΣ = r + κI , κ ∈ Z. Introducing this form
into (16), we obtain the model distortion function in dependence of
factorr defined in (19):

Fdist(zi)≈

z−τΣ
i ·

[

1
M

I−1

∑
l=0

ξl ·W
−l ·r
I ·H0
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ziW
l
I

)

·G0

(

ziW
l
I

)

]

. (20)

The above necessary condition (19) is obviously met if the real am-
plification factorsξl are replaced with the complex amplification
factors:

ξ
l
= ξl ·W

lr
I , l = 0, . . . , I −1 (21)

which, in addition to the amplification factorξl , comprise an indi-
vidual complex compensation factor in each channel. The resulting
distortion function is given by:

Fdist(zi) ≈

z
−(τg,AFB+τg,SFB)
i ·

[

1
M

I−1

∑
l=0

ξl ·H0

(

ziW
l
I

)

·G0

(

ziW
l
I

)

]

, (22)

which satisfies condition (9) and, hence, guarantees constant group
delay independently of the amplification pattern. Moreover, it
should be noted that the resulting constant value of the group de-
lay according to (22) is no longer restricted to a multiple integer
of the number of channelsI , as shown in [5]. Instead, the summa-
tion of the mean group delays of the prototype filters determines the
overall delay.

3.4 Example

Subsequently, we apply the above compensation method to thepro-
totype filter pair of Fig. 2. Rather thanr = 32.26, for the complex-
valued amplification factors (21) we apply the closest integer value
r = 32. Again, the real amplification pattern used is defined by (10).

Fig. 5 depicts the magnitude and group delay responses of the
distortion function. Evidently, all original artifacts ofFigs. 3 and
4 are compensated. We observe an approximately constant group
delay about a mean value ofτΣ = 44.11+52.25≈ 96. The observed
peaks at the transitions in Fig. 5 (b) can be neglected, sincethey do
not exceed 8% of the mean value.

4. CONCLUSION

We have investigated the impact of arbitrarily different amplifica-
tions of the subband signals of oversampling uniform complex-
modulated filter bank pairs (FBP of the SBC-type ) on their trans-
fer characteristics, in particular, with focus on the groupdelay re-
sponse of the FBP distortion function. First, for this classof FBP,
it has been shown that extensive subband signal amplifications, in
general, give rise to more or less extremal deviations from the de-
siredconstantgroup delay of the overall FBP transfer characteris-
tic. Next, we have derived a sufficient condition for the absence of
these adverse, unacceptable group delay deteriorations. Yet, most
interestingly, this sufficient condition can be satisfied with particular
choices of the filter lengths of the FIR prototype filters. Finally, we
have proposed a compensation method which satisfies the sufficient
condition for any FIR prototype filter lengths. This compensation
approach merely requires to replace the real amplification factorsξl
with complex-valued amplification factorsξ

l
, where|ξ

l
| = ξl . As

a result, the number of multiplications for amplification ismerely
doubled, since the subband signals of complex-modulated FBP are
complex-valued.

The main result of this study is that oversampling complex-
modulated FBP applying our compensation method can unrestrict-
edly be used for any subband signal amplification pattern (i.e., also
for hearing aids). As a consequence, the resultingconstantFBP
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(a) Magnitude Response

(b) Group Delay Response

Figure 5: Dist. func. with compensation approach

group delay is no longer restricted to an integer multiple ofthe num-
berI of filter bank channels [5]. It is, however, slightly increased to
the summation of the mean group delays of the AFB and SFB pro-
totype filters. Nevertheless, the tight FBP group delay constraints
of hearing aids can still be maintained, since our FBP designs [5, 7]
generate low-delay FIR prototype filter.

In future research, we will investigate the impact of our com-
pensation method on the signal-to-distortion ratio at the FBP output
port. Especially, we are interested in the potential of noise shaping
of this compensation approach.
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